Exploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae

Research output: Contribution to journalArticle

Abstract

Background: The production of ethanol and other fuels and chemicals from lignocellulosic materials is dependent of efficient xylose conversion. Xylose fermentation capacity in yeasts is usually linked to xylose reductase (XR) accepting NADH as cofactor. The XR from Scheffersomyces stipitis, which is able to use NADH as cofactor but still prefers NADPH, has been used to generate recombinant xylose-fermenting Saccharomyces cerevisiae. Novel xylose-fermenting yeasts species, as those from the Spathaspora clade, have been described and are potential sources of novel genes to improve xylose fermentation in S. cerevisiae. Results: Xylose fermentation by six strains from different Spathaspora species isolated in Brazil, plus the Sp. passalidarum type strain (CBS 10155T), was characterized under two oxygen-limited conditions. The best xylose-fermenting strains belong to the Sp. passalidarum species, and their highest ethanol titers, yields, and productivities were correlated to higher XR activity with NADH than with NADPH. Among the different Spathaspora species, Sp. passalidarum appears to be the sole harboring two XYL1 genes: XYL1.1, similar to the XYL1 found in other Spathaspora and yeast species and XYL1.2, with relatively higher expression level. XYL1.1p and XYL1.2p from Sp. passalidarum were expressed in S. cerevisiae TMB 3044 and XYL1.1p was confirmed to be strictly NADPH-dependent, while XYL1.2p to use both NADPH and NADH, with higher activity with the later. Recombinant S. cerevisiae strains expressing XYL1.1p did not show anaerobic growth in xylose medium. Under anaerobic xylose fermentation, S. cerevisiae TMB 3504, which expresses XYL1.2p from Sp. passalidarum, revealed significant higher ethanol yield and productivity than S. cerevisiae TMB 3422, which harbors XYL1p N272D from Sc. stipitis in the same isogenic background (0.40 vs 0.34 g g CDW -1 and 0.33 vs 0.18 g g CDW -1 h-1, respectively). Conclusion: This work explored a new clade of xylose-fermenting yeasts (Spathaspora species) towards the engineering of S. cerevisiae for improved xylose fermentation. The new S. cerevisiae TMB 3504 displays higher XR activity with NADH than with NADPH, with consequent improved ethanol yield and productivity and low xylitol production. This meaningful advance in anaerobic xylose fermentation by recombinant S. cerevisiae (using the XR/XDH pathway) paves the way for the development of novel industrial pentose-fermenting strains.

Details

Authors
Organisations
External organisations
  • Novozymes A/S
  • Aalborg University
  • Federal University of Minas Gerais
  • National Laboratory of Energy and Geology (LNEG)
  • Lund University
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Industrial Biotechnology
  • Microbiology

Keywords

  • Bioethanol, NADH-preferring xylose reductase, Saccharomyces cerevisiae, Spathaspora passalidarum, Spathaspora species, XYL1.2, Xylose fermentation
Original languageEnglish
Article number167
JournalBiotechnology for Biofuels
Volume9
Issue number1
StatePublished - 2016 Aug 5
Peer-reviewedYes

Related research output

Alejandro Muñoz De Las Heras 2017 Apr 18 Lund, Sweden: Department of Chemistry, Lund University. 100 p.

Research output: ThesisDoctoral Thesis (compilation)

View all (1)