Hydrological Modelling, Topographical Influence and Yield Mapping in Precision Agriculture

Research output: ThesisDoctoral Thesis (compilation)

Abstract

The use of topographical data in hydrological and agricultural applications has increased with GPS data availability and the concept of precision agriculture. This thesis investigates the relationships between topography and in one case simulated soil moisture and in the other case yield. The yield was recorded with a new optical sensor, which uses a digital camera to detect objects and records the yield on tuber level. The accuracy of this yield monitor was determined to be better than that of alternative methods. The topographical influence on yield was determined with correlation to topographical indices. A spatial regression and a multiple step-wise regression method resulted in 20% of yield being explained by elevation, gradient and a new topographical index (horizontal position) in one field. In the other field studied, 18% of the yield was explained by topography, here the horizontal position was replaced by drainage area. Drainage area (a) calculation is a derivation of digital elevation models (DEMs) used within e.g. the TWI (topographical wetness index), ln (a / tan ƒÒ). The methods to quantify (a) are several and have an influence on the result of the TWI. Three drainage area algorithms were therefore tested together with TWI to map soil moisture for one German and one Swedish site. The methods tested included an eight-directions algorithm, a ¡¥stream tube¡¦ algorithm and a form-based algorithm. In the correlation with soil moisture the stream-tube and form-based methods performed best. Conventional drainage area calculations are applied to surfaces without any of the recurring features that may appear in cultivated fields, such as ridges. A new method for the calculation of drainage area in ridged fields was developed. Monte Carlo simulations showed a significant difference in estimated potential wetness between the new ¡¥ridged¡¦ and old methods. Simulation of soil moisture from three spatially distributed hydrological models, TOPMODEL, SMR and MIKE SHE, on the investigated fields ensued. The models all have a pronounced topographical driving force for the movement of water. The models were evaluated against observed soil moisture for two fields during two growing seasons. A correlation between simulated and observed soil moisture gave overall low correlation, 0.03 for SMR and MIKE SHE. It was concluded that the sole use of topography in explaining yield or estimating soil moisture is not enough. The spatial hydrological models tested need more tests on agricultural scale before they can be integrated into irrigation management systems.

Details

Authors
Organisations
Research areas and keywords

Subject classification (UKÄ) – MANDATORY

  • Physical Geography

Keywords

  • Spatially distributed hydrological modelling, Precision Agriculture, Yield mapping, Topographical wetness index, Drainage area, Lantbrukshydrologi, marklära, agricultural hydrology, Soil Science
Original languageEnglish
QualificationDoctor
Awarding Institution
Supervisors/Assistant supervisor
Award date2004 Sep 17
Publisher
  • Andreas Persson, GIS Centre, Lund University, Sölvegatan 12, 223 62, Lund, Sweden,
Print ISBNs91-973857-9-4
StatePublished - 2004

Bibliographic note

Defence details Date: 2004-09-17 Time: 10:15 Place: Room 111, Sölvegatan 10, Lund, Sweden External reviewer(s) Name: Jarvis, Nicholas Title: [unknown] Affiliation: Department of Soil Sciences, SLU, Uppsala, Sweden --- Article: Persson, D.A., Eklundh, L., Algerbo, P.-A.Evaluation of an optical sensor for tuber yield mapping.Persson, D.A., Pilesjö, P., Eklundh, L. Spatial influence of topographical factors on yield of potato (Solanum tuberosum L.) in central SwedenSchmidt, F., Persson, D.A., Comparison of DEM data capture and topographic wetness indices.Pilesjö, P., Persson, D.A., Harrie, L. Digital elevation datafor estimation of potential wetness in ridged fields - comparison of two different methods.Persson, D.A., Seibert, J., Brooks, E.S. Soil moisture pattern comparisons from spatially distributed hydrological models in cultivated fields.