Prostate cancer, prostate cancer death, and death from other causes, among men with metabolic aberrations.

Häggström, Christel; Stocks, Tanja; Nagel, Gabriele; Manjer, Jonas; Bjørge, Tone; Hallmans, Göran; Engeland, Anders; Ulmer, Hanno; Lindkvist, Björn; Selmer, Randi; Concin, Hans; Tretli, Steinar; Jonsson, Håkan; Stattin, Pär

Published in:
Epidemiology

DOI:
10.1097/EDE.0000000000000174

Published: 2014-01-01

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal
Prostate Cancer, Prostate Cancer Death, and Death from Other Causes, Among Men with Metabolic Aberrations

Christel Häggström, Tanja Stocks, Gabriele Nagel, Jonas Manjer, Tone Bjørge, Göran Hallmans, Anders Engeland, Hanno Ulmer, Björn Lindkvist, Randi Selmer, Hans Concin, Steinar Tretli, Håkan Jonsson, and Pär Stattin

Background: Few previous studies of metabolic aberrations and prostate cancer risk have taken into account the fact that men with metabolic aberrations have an increased risk of death from causes other than prostate cancer. The aim of this study was to calculate, in a real-life scenario, the risk of prostate cancer diagnosis, prostate cancer death, and death from other causes.

Methods: In the Metabolic Syndrome and Cancer Project, prospective data on body mass index, blood pressure, glucose, cholesterol, and triglycerides were collected from 285,040 men. Risks of prostate cancer diagnosis, prostate cancer death, and death from other causes were calculated by use of competing risk analysis for men with normal (bottom 84%) and high (top 16%) levels of each factor, and a composite score.

Results: During a mean follow-up period of 12 years, 5,893 men were diagnosed with prostate cancer, 1,013 died of prostate cancer, and 26,328 died of other causes. After 1996, when prostate-specific antigen testing was introduced, men up to age 80 years with normal metabolic levels had 13% risk of prostate cancer, 2% risk of prostate cancer death, and 30% risk of death from other causes, whereas men with metabolic aberrations had corresponding risks of 11%, 2%, and 44%.

Conclusions: In contrast to recent studies using conventional survival analysis, in a real-world scenario taking risk of competing events into account, men with metabolic aberrations had lower risk of prostate cancer diagnosis, similar risk of prostate cancer death, and substantially higher risk of death from other causes compared with men who had normal metabolic levels.

(Epidemiology 2014;25: 823–828)
METHODS

Study Population

This study was conducted within the Metabolic Syndrome and Cancer Project, which has previously been described in detail. In brief, the project consists of 7 subcohorts from Norway, Sweden, and Austria, with prospectively collected data on body mass index (BMI), systolic and diastolic blood pressure, and circulating levels of glucose, total cholesterol, and triglycerides from 578,700 men and women from 1972 to 2005.

The study was approved by The Research Review Board of Umeå, Sweden, the Regional Committee for Medical and Health Research Ethics, Southeast Norway and the Ethikomission of the Land Vorarlberg, Austria. Participants from Sweden and Austria provided written informed consent to participate in this study. In Norway, the participants were invited to come to the health survey and a questionnaire was sent together with the invitation. An attendance to the health examination where the participants delivered their filled in questionnaire, has been accepted by the Data Inspectorate as an informed consent, but not a written consent. Written consent was obtained from 1994 onwards.

Endpoints

Prostate cancer cases were identified through linkage to each National Cancer Register, by use of code 177 in the International Statistical Classification of Diseases, revision 7 (ICD-7). All men diagnosed with prostate cancer were selected. Of these, approximately 5% were secondary or later cancer diagnoses for men previously diagnosed with cancer at another site. We excluded 78 men with prostate cancer diagnosed at the date of death. Causes of death were obtained by linkage to each National Cause of Death Register, with data available until the last date of follow up (31 December 2003 in Austria, and until 31 December 2004 in Norway and Sweden), and coded according to Eurostat European shortlist for causes of death. We used data only from the first health examination, and we excluded men with first health examination after last date of follow up (1,742 men) or without a recorded cause of death cause (3,084 men). Data were also linked to The Register of Total Population and Population Changes for migration status in Norway and Sweden.

Statistical Analysis

Follow-up started 1 year after the first health examination and continued until the first date of either the main event or the competing event, or until date of censoring due to emigration or end of follow-up. Incident prostate cancer and prostate cancer death were the main events in separate analyses, and death from all causes and death from causes other than prostate cancer were the competing events, respectively.

To investigate whether the risk of prostate cancer was related to diagnostic intensity—with a larger proportion of low-risk cancers after the introduction of prostate-specific antigen (PSA) testing—we performed sub-group analysis for 2 periods of follow up. The cut-point of 31 December 1996 was chosen because that time marked the beginning of an increase in the incidence of prostate cancer due to the introduction of PSA testing in Sweden, Norway, and Austria. We denoted the earlier period ending at 31 December 1996, as “pre-PSA era,” and the later period, beginning 1 January 1997, as “PSA era.” No sub-group analyses were performed for prostate cancer death.

Metabolic factors were transformed to a standardized score (z-score), with zero as mean and 1 as standard deviation in all analyses. BMI and blood pressure were transformed into z-scores separately for each sub-cohort, whereas glucose, cholesterol, and triglycerides were transformed into z-scores separately by sub-cohort and also according to fasting time (less than 1h, 1–2h, 2–4h, 4–8h, more than 8h). As the distributions of glucose and triglycerides were skewed, natural logarithm was applied before z-score transformation. Mid blood pressure was defined as (systolic + diastolic blood pressure)/2, and a composite score was defined as the sum of all single z-scores. The z-scores were dichotomized at z = 1, resulting in a nonexposed group comprising 84% of the participants who had measured levels of each metabolic factor and the composite score below this cut-point and the exposed group consisted of the remaining 16% with levels above this cut-point. We denoted men in the lower 84% of the composite score as “men with normal metabolic levels” and men in the top 16% of the composite score as “men with metabolic aberrations.”

For the main and competing event in each analysis, we calculated cumulative incidence functions, for men with normal and high levels of metabolic factors. Attained age was used as the time scale. All analyses also included smoking status (never, former, or current), 5 categories of birth year (before 1927, 1927–1929, 1930–1932, 1933–1938, 1939, and later), age at health examination, and sub-cohort. The cumulative incidence functions were calculated based on Cox regression models in which smoking and age at health examination were allowed to have different effects on the main event and competing events, in addition to each metabolic factor. The assumption of proportional hazards in the Cox regression model was tested with Schoenfeld residuals and was found to be valid.

Calculations were performed with STATA MP/2 version 11.2 (StataCorp LP, College Station, TX).

RESULTS

Mean baseline age among the 285,040 men in the study was 44 years (SD = 11), 44% of the men were overweight (BMI 25–29.9 kg/m²) and 10% were obese (BMI≥30 kg/m²) (Table). A total of 5,893 men were diagnosed with prostate cancer, and 1,013 men died of prostate cancer during follow up, which was on average 12 years (SD = 8) (Figure 1). Of these men, 1,366 men had been diagnosed with prostate cancer in the pre-PSA era end of follow up at December 31, 1996,
and 4,527 men were diagnosed in the PSA era. The earliest prostate cancer case was diagnosed in 1974.

The risk of prostate cancer diagnosis was lower for men with metabolic aberrations than for men with normal metabolic levels, in both the pre-PSA and PSA eras. In the pre-PSA era, the risk of prostate cancer for men up to age 80 years was 6% for men with normal metabolic levels and 5% for men with metabolic aberrations (Figure 2a). In the PSA era, the corresponding risk of prostate cancer diagnosis was 13% for men with normal levels and 11% for men with metabolic aberrations, and the risk of death from any cause was and 37% and 47%, respectively (Figures 2B and 3). Risk for men with normal and high levels of BMI, blood pressure, glucose, total cholesterol, and triglycerides were similar to the results for men with normal metabolic levels and metabolic aberrations. (See eFigure 1, http://links.lww.com/EDE/A831 which illustrates the risk of prostate cancer diagnosis for separate metabolic factors in the PSA era.)

All men in the study up to age 80 had approximately 2% risk of prostate cancer death regardless of metabolic status. Men with normal metabolic levels had 30% risk of death from other causes and men with metabolic aberrations had 44% risk (Figure 4). Risk for men with normal and high levels of BMI, blood pressure, glucose, total cholesterol, and triglycerides was also around 2%. (See eFigure 2, http://links.lww.com/EDE/A831 which illustrates the risk of prostate cancer death for separate metabolic factors.)

TABLE. Baseline Characteristics of Men in the Metabolic Syndrome and Cancer Project (n = 285,040)

<table>
<thead>
<tr>
<th>Sub-cohort</th>
<th>Men (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norway</td>
<td></td>
</tr>
<tr>
<td>Oslo study I</td>
<td>16,311 (6)</td>
</tr>
<tr>
<td>Norwegian Counties Study</td>
<td>25,511 (9)</td>
</tr>
<tr>
<td>Cohort of Norway</td>
<td>51,660 (18)</td>
</tr>
<tr>
<td>Age 40-programme</td>
<td>60,549 (21)</td>
</tr>
<tr>
<td>Austria</td>
<td></td>
</tr>
<tr>
<td>Vorarlberg Heath Monitoring</td>
<td>72,961 (26)</td>
</tr>
<tr>
<td>and Prevention Programme</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
</tr>
<tr>
<td>Västerbotten Intervention Project</td>
<td>36,675 (13)</td>
</tr>
<tr>
<td>Malmö Preventive Project</td>
<td>21,373 (7)</td>
</tr>
<tr>
<td>Age at health examination (years)</td>
<td></td>
</tr>
<tr>
<td><40</td>
<td>82,390 (29)</td>
</tr>
<tr>
<td>40–49</td>
<td>142,266 (50)</td>
</tr>
<tr>
<td>50–59</td>
<td>32,596 (11)</td>
</tr>
<tr>
<td>60 +</td>
<td>27,788 (10)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td></td>
</tr>
<tr>
<td>Normal weight</td>
<td>129,108 (45)</td>
</tr>
<tr>
<td>Overweight</td>
<td>125,757 (44)</td>
</tr>
<tr>
<td>Obese</td>
<td>30,175 (11)</td>
</tr>
<tr>
<td>Blood pressure</td>
<td></td>
</tr>
<tr>
<td>Normotension</td>
<td>176,791 (62)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>108,249 (38)</td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>111,62 (39)</td>
</tr>
<tr>
<td>Former</td>
<td>85,047 (30)</td>
</tr>
<tr>
<td>Current</td>
<td>87,546 (31)</td>
</tr>
<tr>
<td>Metabolic factors; mean (SD)</td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>26 (3)</td>
</tr>
<tr>
<td>Mid blood pressure (mmHg)</td>
<td>107 (13)</td>
</tr>
<tr>
<td>Glucose (mmol/L)</td>
<td>5.1 (1.3)</td>
</tr>
<tr>
<td>Total cholesterol (mmol/L)</td>
<td>5.6 (1.2)</td>
</tr>
<tr>
<td>Triglycerides (mmol/L)</td>
<td>1.6 (1.2)</td>
</tr>
</tbody>
</table>

*No. (%), unless otherwise specified.

FIGURE 1. Main and competing events in analysis of risk of (A) prostate cancer diagnosis and (B) prostate cancer death in the Metabolic Syndrome and Cancer Project of 285,040 men. Men were followed until the first point in time of main or competing event, or until censoring due to migration or end of follow-up. The number of deaths from all causes in analysis (A) is smaller than the number of deaths from other causes in analysis (B) because many of men followed from date of prostate cancer diagnosis in (A) have died either from prostate cancer or other causes in (B).
Strengths of our study include the large sample size from 7 European sub-cohorts and almost complete follow-up of cancer diagnoses.23–25 The main limitation was the lack of information on tumor characteristics and on covariates that affect the risk of a prostate cancer diagnosis, such as family history of prostate cancer26 and socioeconomic status.27 We previously found no association of these metabolic factors with prostate cancer diagnosis, but we did find an association of high BMI, blood pressure and the composite score with increased risk of prostate cancer death,9 in accordance with several other large studies.7,28,29 In the current study we considered whether men with metabolic aberrations have a different risk of prostate cancer diagnosis and prostate cancer death, compared with men with normal metabolic levels, when competing events are taken into account. There are 2 reasons why the present results differ from those in our earlier analyses. First, prostate cancer tends to be diagnosed at older ages, when many other men have already died (mean age at prostate cancer diagnosis in Scandinavia is 70–75 years);30 therefore, conventional survival analysis may overestimate the absolute risk.31 Second, high levels of metabolic factors are related to increased risk of death from all causes,10 which may affect calculations of relative risk,11 since men with high levels of metabolic factors have a shorter life expectancy, and are therefore more likely to be censored in conventional survival analysis. In other words, among men who are censored due to death from other causes there is a larger proportion of men with high levels of metabolic factors, than among men censored because of migration or end of follow-up. This difference is similar to reports on smoking as risk factor for Alzheimer disease32 and melanoma,33 in which a decreased risk of the disease was found among smokers. This is most likely a spurious association due to selection bias, since smokers have a shorter life expectancy compared with nonsmokers and therefore have
lower risks of diseases occurring later in life. Accordingly, we hypothesize that a similar selection bias occurs in studies of metabolic factors and prostate cancer, since men with high levels of metabolic factors have a shorter life expectancy than men with normal levels.

Only a few studies on metabolic factors and prostate cancer have used methods of competing risk analysis, and results have been inconsistent. In our study, men with metabolic aberrations had lower risk of prostate cancer, in accordance with results from Fine and Gray regression analysis of a Swedish cohort study of almost 37,000 men, in which men with high levels of BMI at age 60 years had a lower risk of localized prostate cancer, slightly higher risk of advanced cancer, and an higher risk of prostate cancer death. However, our findings are in contrast with 2 studies based on conditional probability of prostate cancer—a method that yields results that are difficult to interpret. The first of these studies used data from 200,000 men with 5,000 prostate cancer cases and found an increased risk of prostate cancer for high levels of triglycerides and glucose at age 75. The second study of 2,322 men found that men with the metabolic syndrome had an increased risk of prostate cancer at age 80.

A high proportion of men with high socioeconomic status undergo PSA testing, and therefore have an increased risk of prostate cancer, in particular of low-risk cancer. In contrast, men with high socioeconomic status have a lower prevalence of the metabolic syndrome, obesity, and diabetes mellitus type 2. Consistent with these associations, the metabolic syndrome, obesity, diabetes, and other metabolic aberrations have been linked to lower risk of prostate cancer diagnosis during the PSA era. Taking competing events into account, the risk of the event of interest will depend on the all-cause mortality. Our calculated risks of prostate cancer are in accordance with prostate cancer incidence in the Nordic countries during the same calendar period, and our results can be generalized to populations with similar all-cause mortality, e.g. Western countries.

In conclusion, conventional studies by use of Cox regression analysis from the PSA era have found a similar risk of prostate cancer for men with or without metabolic aberrations. In this study, taking risk of competing events into account in a real world scenario, men with metabolic aberrations had a lower risk of prostate cancer diagnosis, similar risk of prostate cancer death, and a higher risk of death from other causes, compared with men who had normal metabolic levels.

ACKNOWLEDGMENTS

We thank the following: in Norway, the screening team at the former National Health Screening Service of Norway, now the Norwegian Institute of Public Health, the services of CONOR and the contributing research centres delivering data to CONOR; in the VHM&PP, Elmar Stimpfl, data base manager, Karin Parschalk at the cancer registry, and Markus Wallner, Christian Bernhard, Andrea Kaufmann and Gabriela Dür at the Vorarlberg State Government; in the VIP, Åsa Ågren, database manager at the Medical Biobank, Umeå University, Sweden; and in the MPP, Anders Dahlin, data base manager.

REFERENCES