The thermodynamic assessment of the Au–In–Ga system

Ghasemi, Masoomeh; Sundman, Bo; Fries, Suzana; Johansson, Jonas

Published in: Journal of Alloys and Compounds

2014

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The thermodynamic assessment of the Au-In-Ga system

M. Ghasemia,*, B. Sundmanb, S. G. Friesc, J. Johanssona

aSolid State Physics, Lund University, Box 118 SE-22100 Lund, Sweden
bINSTN-CEA Saclay, 91191 Gif sur Yvette, France
cICAMS, Interdisciplinary Centre for Advanced Materials Simulation, Ruhr-Universitt Bochum, address, Germany

Abstract

The Au-In-Ga ternary phase diagram is of importance for understanding the involved thermodynamic processes during the growth of Au-seeded III-V heterostructure nanowires containing In and Ga (e.g. Au-seeded InAs/GaAs nanowires). In this work the Au-In-Ga system has been thermodynamically modeled using the CALPHAD technique based on a recent experimental investigation of the phase equilibria in the system. As a result, a set of self-consistent interaction parameters have been optimized that can reproduce most of the experimental results.

Keywords: Ternary alloy system, Phase diagrams, CALPHAD, Thermodynamic modeling, Thermodynamic calculation.

1. Introduction

There have been considerable attempts towards downscaling of electronic and optoelectronic devices. III-V semiconductor nanowires (NWs) are con-
sidered to be useful structures for future device applications [1, 2]. Therefore it is essential to have an understanding of the optimal growth condition of the NWs. One approach is to develop knowledge of the thermodynamic behavior of the materials systems of interest. In the Vapor-Liquid-Solid (VLS) growth mechanism [3], seed particles (often 20-100 nm Au particles) are dispersed on a crystalline substrate. At elevated temperatures, the precursor materials (e.g., metalorganics) supplied in the gas phase decompose on the particle surface and dissolve in it. When the particle is supersaturated, solid material, contributing the growing NW, begins to crystallize at the interface between the particle and the substrate.

We report on the thermodynamic assessment of the Au-In-Ga ternary system which is useful in the growth of Au-seeded III-V semiconductor heterostructure NWs containing In and Ga from group III [4, 5]. The role of group V elements has been ignored in this first step, since the solubility of the group V elements of our interest (As and P) in Au is negligible. The Au-In-Ga system has been assessed using the CALPHAD technique [6] based on the recent experimental evidence [7], resulting in a complete thermodynamic description.

2. Literature review

2.1. Au-In-Ga

To the best of our knowledge, the only experimental investigation of the Au-In-Ga ternary system was reported by Hoyt and Mota in 1978 [8] and it refers to the Au-rich region. They investigated the dependence of Curie temperature (T_c) on the elastic energy of the Au-In-Ga alloys in the fcc phase
with the fixed composition of gold (92 at.% Au). The lattice parameter of the Au-In-Ga alloys with the varying compositions of In and Ga was measured and the correlation between the lattice parameters and \(T_c \) was studied.

Very recently an experimental investigation was published \([7]\) related to an isothermal section of the Au-In-Ga phase diagram at 280 °C using the complementary techniques: Differential Thermal Analysis (DTA), X-Ray Diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDS) and Scanning Electron Microscopy (SEM). As a result, a previously unknown ternary phase was identified \([9]\) which should be included in the thermodynamic description of this ternary system. The new ternary phase, \(\text{Au}_2\text{InGa}_2 \), with a hexagonal structure belonging to the space group \(P6_3/mmc \) melts incongruently at 394 °C. Some level of ternary solubility in the binary phases was also observed \([7]\); thus showing the need for adding interaction parameters to include solubility terms for the corresponding binary phases.

Since, the Au-In-Ga ternary system has not been thermodynamically assessed, we will here present a thermodynamic model for this ternary system, consistent with the recently published experimental results. As the assessment of the Au-In-Ga ternary system using CALPHAD technique depends on the binary sub-systems, we will review here the thermodynamic assessments of Au-Ga, Au-In and In-Ga binaries available in the literature. Table 1 summarizes the crystal structure information of all solid phases in the Au-In-Ga ternary system. The description of the chosen thermodynamic models as well as the corresponding Gibbs energy functions and the interaction parameters will be explained later.
Table 1: Crystal structure data of all solid phases in the Au-In-Ga ternary system.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Structure</th>
<th>lattice parameters (nm)</th>
<th>composition range</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au-fcc</td>
<td>Cub, Fm-3m</td>
<td>Au: (a = 0.4072)</td>
<td>Au-In: 0 – 12.7 at.%In</td>
<td>[10]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Au-Ga: (a = 0.4072)</td>
<td>0 – 12.4 at.%Ga</td>
<td></td>
</tr>
<tr>
<td>In-tetra</td>
<td>Tet, I4/mmc</td>
<td>In: (a = 0.32480)</td>
<td>In-Ga: 0 – 3.1 at.%Ga</td>
<td>[11]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c = 0.49480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ga-Orth</td>
<td>Orth, Cmca</td>
<td>Ga: (a = 0.45192)</td>
<td>In-Ga: 0 at.%In</td>
<td>[12]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b = 0.76586</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c = 0.45258</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D0_{24}</td>
<td>Hex, P6_3/mmc</td>
<td>Au-Ga: 12.75 – 14.1 at.%Ga</td>
<td>Au-In: 12.0 – 14.3 at.%In</td>
<td>[13]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hcp</td>
<td>Hex, P6_3/mmc</td>
<td>Au-In: 13 – 23 at.%In</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au_{7}Ga_{2}-HT</td>
<td>Hex, P-62m</td>
<td>(a = 0.77258)</td>
<td>Au-Ga: 20.4 – 22.1 at.%Ga</td>
<td>[13]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c = 0.87413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au_{7}Ga_{2}-LT</td>
<td>Orth, -</td>
<td>Au-Ga: 21.5 – 23.2 at.%Ga</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au_{7}Ga_{3}</td>
<td>Orth, -</td>
<td>Au-Ga: 29.8 – 31 at.%Ga</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AuGa</td>
<td>Orth, Pnma</td>
<td>(a = 0.63971)</td>
<td>Au-Ga:</td>
<td>[13]</td>
</tr>
</tbody>
</table>

4
\[b = 0.62620 \quad 50 \text{ at.\%Ga} \]
\[c = 0.34630 \quad \text{Au-In-Ga:} \]
\[\text{Solubility of about 3.0 at.\%In} \]

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>Parameters</th>
<th>Composition</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>AuGa₂</td>
<td>Cub, $Fm\text{-}3m$</td>
<td>(a = 0.60758)</td>
<td>66.7 at.%Ga</td>
<td>Au-Ga: [7]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b = 0.60758)</td>
<td>Au-In-Ga:</td>
<td>[7]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(c = 0.34630)</td>
<td>Solubility of about 3.0 at.%In</td>
<td></td>
</tr>
<tr>
<td>Au₄In-HT</td>
<td>Hex, -</td>
<td>-</td>
<td>21.5 – 22.2 at.%In</td>
<td>Au-In: [10]</td>
</tr>
<tr>
<td>Au₄In-LT</td>
<td>Hex, $P\text{-}3$</td>
<td>(a = 1.0524)</td>
<td>21.7 – 22.5 at.%In</td>
<td>Au-In: [10]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b = 0.4759)</td>
<td>Au-In-Ga:</td>
<td>[7]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(c = 0.51504)</td>
<td>Solubility of about 5.5 at.%In</td>
<td></td>
</tr>
<tr>
<td>Au₃In₃</td>
<td>Orth, $Pmmm$</td>
<td>(a = 0.58572)</td>
<td>24.5 – 25 at.%In</td>
<td>Au-In: [10]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b = 0.47352)</td>
<td>Au-In-Ga:</td>
<td>[7]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(c = 0.51504)</td>
<td>Solubility of about 5.5 at.%In</td>
<td></td>
</tr>
<tr>
<td>Au₉In₄</td>
<td>Cub, $P\text{-}4\text{3}m$</td>
<td>(a = 0.9843)</td>
<td>28.8 – 31.4 at.%In</td>
<td>Au-In: [10]</td>
</tr>
<tr>
<td>Au₇In₃</td>
<td>Hex, $P\text{-}3$</td>
<td>(a = 1.21)</td>
<td>29.8 – 30.6 at.%In</td>
<td>Au-In: [10]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b = 0.851)</td>
<td>Au-In-Ga:</td>
<td>[7]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(c = 0.5659)</td>
<td>Solubility of about 5.5 at.%In</td>
<td></td>
</tr>
<tr>
<td>AuIn</td>
<td>Tri, aP^*</td>
<td>(a = 0.430)</td>
<td>50 – 50.1 at.%In</td>
<td>Au-In: [10]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b = 1.059)</td>
<td>Au-In-Ga:</td>
<td>[7]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(c = 0.356)</td>
<td>Solubility of about 4.0 at.%Ga</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\alpha = 90.54^\circ)</td>
<td>(\beta = 90.0^\circ)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\gamma = 90.17^\circ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AuIn₂</td>
<td>Cub, $Fm\text{-}3m$</td>
<td>(a = 0.6515)</td>
<td>66.7 at.%In</td>
<td>Au-In-Ga: [7]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b = 0.6515)</td>
<td>Solubility of about 9.5 at.%Ga</td>
<td></td>
</tr>
</tbody>
</table>
2.2. **Au-Ga**

The Au-Ga phase diagram has been experimentally investigated several times. In 1987, Massalski and Okamoto [15] redrew the phase diagram based on prior experimental data, especially the work by Cooke and Hume-Rothery [13]. Later, Mouani et al. [16] re-reviewed the Au-Ga system in the investigation of the Au-Ga-Te ternary system.

The first thermodynamic description of the Au-Ga system using CALPHAD technique [9] was reported by Liu et al. in 2010 [17]. Soon afterwards in 2011, the system was reassessed by Wang et al. [11]. There are differences between the two recent assessments in the modeling of several phases. In the work by Wang et al. [11], Au$_7$Ga$_2$-HT and Au$_7$Ga$_2$-LT phases are modeled as stoichiometric phases due to narrow homogeneity ranges. Also, the phase transition between Au$_7$Ga$_3$-HT and Au$_7$Ga$_3$-LT was ignored in the most recent assessment by Wang et al. [11] and both phases were merged to one stoichiometric phase. In addition, the D0$_{24}$ phase was modeled using a substitutional model.

In the present optimization, the thermodynamic description by Wang et al. [11] has been selected due to model compatibility with the phases in the Au-In binary system [10]. The phase diagram calculated by the evaluated parameters in [11] is redrawn in Figure 1.
2.3. Au-In

Based on available experimental data, especially the phase diagram by Massalski [18], Ansara and Nabot presented the first thermodynamic assessment of the Au-In phase diagram in 1988 [19]. In their phase diagram, the D0$_{24}$ phase which is an intermediate phase between fcc and hcp was not included. Furthermore, all intermetallic phases have been considered as stoichiometric phases. Later, in 1992, the system was reassessed by the same authors in the Au-rich side to include the D0$_{24}$ phase [20]. The most recent thermodynamic assessment of the Au-In system was reported by Liu et al. in 2003 [10]. The Au$_4$In phase was remodeled as two phases: Au$_4$In-HT and Au$_4$In-LT to differ between the crystal structures at low and high temperatures. Also, the Au$_9$In$_4$ phase has been modeled using a three-sublattice model. Taking the composition range of the Au$_3$In$_2$ phase into account, a
three-sublattice model, the same model as for the isotropic Al$_3$Ni$_2$ \[21\] has been adapted for this phase. Moreover, in this assessment, the solubility of In in the fcc phase decreases with temperature at low temperatures which is more realistic than the assessment by Ansara and Nabot \[19, 20\].

In the present assessment, all parameters evaluated by Liu et al. \[10\] have been used except for the sub-regular interaction parameter of the fcc phase (\(1L_{\text{fcc}}^{\text{Au,In}}\)). The lattice stability of the fcc phase for indium was modified in the assessment of the Bi-In-Pb system by Boa and Ansara \[22\]. However, in the assessment by Liu et al \[10\], this has not been taken into account and the old unary description of the fcc phase for indium reported by Dinsdale \[23\] has been used. In the current assessment, the updated SGTE unary descriptions \[24\] was used. This causes the decomposition of the D0$_{24}$ phase to occur at a higher temperature (26 °C higher) as in the assessment of the Au-In-Sn system by Caccimani et al. \[25\] which is not in agreement with the experimental value reported by Mikler et al. \[26\] (See Figure A.8 in Appendix A). Therefore, the \(1L_{\text{fcc}}^{\text{Au,In}}\) parameter was adjusted to reproduce the peritectic formation of the D0$_{24}$ phase at a temperature as close as possible to the experimental results. The Gibbs energies of the phases in the Au-rich corner of the Au-In phase diagram (fcc, D0$_{24}$ and liquid) at 649 °C, the temperature of the invariant reaction: L + fcc ⇄ D0$_{24}$, according to \[26\], reproduced with the parameters evaluated in the current assessment and with those assessed by Liu et al. \[10\] have been compared. See Figure A.9 in Appendix A. The calculated Au-In phase diagram is shown in Figure 2.
2.4. In-Ga

The In-Ga binary system is a eutectic system with negligible solubility of In in Ga and a limited solubility of up to 2.3 at.% Ga in In. The eutectic reaction occurs at 15.3 °C at 14.2 at.% In [12].

Since the first phase equilibria study on the In-Ga system by Biosbauer in 1885 [27] and the complete liquidus measurements of the system by French et al. in 1937 [28], the system has been critically assessed several times [12 29 30 31 32 33]. Rugg and Chart [32] and Anderson and Ansara [12] thoroughly assessed the system using available liquidus data, enthalpies of mixing, activity measurements and new unary data at about the same time to provide a complete and simple thermodynamic description of the system. While both descriptions were not noticeably different, that of
Anderson and Ansara also included the metastable phase diagram. Later, in 1993, Ravindra and Hajra \cite{33} recalculated the system using complex multi-parameter equations to describe the excess Gibbs energy terms. The description was able to interpret the phase equilibria as well as the high and low temperature data in the system. Nevertheless we used the description by Anderson and Ansara \cite{12} in this assessment because it provides a simpler thermodynamic description with less fitting parameters (Figure 3).

![In-Ga phase diagram](image)

Figure 3: The In-Ga phase diagram calculated using the parameters assessed by Anderson and Ansara \cite{12}.

In summary, for thermodynamic assessment of the Au-In-Ga ternary system, the descriptions of Au-Ga, Au-In and In-Ga binary sub-systems have been selected from \cite{11}, \cite{10} and \cite{12}, respectively. The only exception was that we modified the description of the fcc phase in the Au-In binary system which was not consistent with the updated description of the fcc phase for
pure In in the SGTE database [24].

3. Thermodynamic modeling

The thermodynamic models of the unary, solution and binary and ternary intermetallic phases in the Au-In-Ga ternary system will be briefly discussed here. The adapted models for all solid phases as well as their crystal structure data are summarized in Table 1.

3.1. Pure elements

The temperature dependence of the molar Gibbs energy of pure elements, $0^\theta G_m(T)$, in the phase θ referred to its reference state is described by:

$$0^\theta G_m(T) = G_m^\theta(T) - H^{SER} = a + bT + cT \ln(T) + dT^2 + eT^3 + fT^{-1} + gT^7 + hT^{-9}$$ (1)

where G_m^θ is the Gibbs energy of the element in the phase θ and H^{SER} refers to the molar enthalpy of formation of the element m at its standard reference state (its stable form at 298.15 K and 1 bar). The empirical parameters a to h for $m = Au, In$ and Ga have been taken from SGTE (Scientific Group Thermodata Europe) thermodynamic database [24].

3.2. Solution phases

There are four substitutional solution phases: liquid, fcc, D0$_{24}$ and hcp in the Au-In-Ga ternary system, which are modeled by only one sublattice.
The Gibbs energy of the binary solution phases is described by:

\[
G^\theta = \sum_{m=A,B} x_m^0 G_m^\theta + RT \sum_{m=A,B} x_m \ln(x_m) \\
+ x_A x_B \sum_{i=0,1} (i) L^\theta_{A,B} (x_A - x_B)^i
\]

where \(0 G_m^\theta\) is the Gibbs energy of the pure element \(m\) and \(x_m\) is the molar fraction of the element. \((i) L^\theta_{A,B}\) is the interaction parameter for the phase \(\theta\) which is expressed as:

\[
(i) L^\theta_{A,B} = a_0^\theta + a_1^\theta T + a_2^\theta T \ln(T)
\]

where \(a_0, a_1\) and \(a_2\) are parameters to be optimized. In the case of ternary solution phases, the Gibbs energy based on Muggianu extrapolation formula for the excess Gibbs energy terms [34] is described by:

\[
G^\theta = \sum_{m=A,B} x_m^0 G_m^\theta + RT \sum_{m=A,B,C} x_m \ln(x_m) \\
+ x_A x_B x_C \sum_{i=0,1} (i) L^\theta_{A,B,C} (x_A - x_B)^i \\
+ x_B x_C \sum_{i=0,1} (i) L^\theta_{B,C} (x_B - x_C)^i \\
+ x_A x_C \sum_{i=0,1} (i) L^\theta_{A,C} (x_A - x_C)^i \\
+ x_A x_B x_C (x_A (0) L^\theta_{A,B,C} + x_B (1) L^\theta_{A,B,C} + x_C (2) L^\theta_{A,B,C})
\]

where \((i) L^\theta_{A,B,C}\) \((i = 0, 1, 2)\) are parameters to be assessed and are represented by the same kind of equation as in Eq. 3. In this work, only the ternary interaction parameter for the liquid phase was optimized and those for other ternary solution phases were set to zero for simplicity [35].
3.3. Intermetallic compounds

Gibbs energy of the stoichiometric compounds was modeled with two and three sublattices depending on the number of phase constituents. The binary phases with no ternary solubility including Au$_7$Ga$_3$, Au$_7$Ga$_2$-LT, Au$_7$Ga$_2$-HT, Au$_3$In$_3$, Au$_3$In, Au$_4$In-LT and Au$_4$In-HT were modeled as:

$$G^{A_aB_b} = a^0 G^r_A + b^0 G^r_B + L^{A_aB_b}_{A:B}$$

(5)

where a and b are stoichiometric coefficients of the compound A_aB_b. The interaction parameters, $L^{A_aB_b}_{A:B}$, has the same form as in Eq. 3 and were directly taken from binary descriptions. The ternary phase, Au$_2$InGa$_2$, was modeled with three sublattice as (Au)$_{2/5}$(In)$_{1/5}$(Ga)$_{2/5}$ with no mixing of the second element on sublattices.

For stoichiometric binary phases with some level of solubility of In or Ga, mixing of the third element on the second sublattice was taken into account. AuIn and AuGa phases with different crystal structure were modeled as two different phases with mixing of In and Ga on the second sublattice: (Au)$_{1/2}$(In,Ga)$_{1/2}$, (Au)$_{1/2}$(Ga,In)$_{1/2}$, respectively, while AuIn$_2$ and AuGa$_2$ phases with the same crystal structure were modeled as one phase: (Au)$_{1/3}$(In,Ga)$_{2/3}$. The Gibbs energy for these phases was described as:

$$G^{A_a(B,C)_b} = a^0 G^r_A + b^0 G^r_B + L^{A_aB_b}_{A:B}$$

$$+ a^0 G^r_C + b^0 G^r_C + L^{A_aC_b}_{A:C} + L^{A_a(B,C)_b}_{A:B:C}$$

(6)

where for AuIn and AuGa phases, $L^{A_aB_b}_{A:B}$ and $L^{A_a(B,C)_b}_{A:B:C}$ are defined by the same expression as in Eq. 3. To make the AuIn (AuGa) phase unstable on the AuGa (AuIn) side, a large positive value was assigned to $L^{A_aC_b}_{A:C}$. In the
case of AuIn$_2$ and AuGa$_2$, all interaction parameters had the same form as in Eq. 3.

Ordered solid solutions were modeled by three sublattices with partial occupancy of Au and In on the second sublattice. No ternary solubility was taken into account for these phases. Au$_3$In$_2$ with similar structure type as Al$_3$Ni$_2$ was modeled as (Au)$_{1/2}$(Au,In)$_{1/3}$(In)$_{1/6}$, while an (Au)$_{9/13}$(Au,In)$_{3/13}$(In)$_{1/13}$ model was used for the Au$_9$In$_4$ phase which is isostructural with Cu$_9$Al$_4$.

4. Thermodynamic optimization

The thermodynamic descriptions of the constituting binary phase diagrams in the Au-In-Ga ternary system have been taken from the literature. The Au-Ga binary phase diagram studied by Wang et al. [11] has been used. In the case of Au-In binary system, the thermodynamic assessment by Liu et al. [10] has been taken; except for a modification in the fcc phase which was outlined in section 2.3. The In-Ga description has been adapted from the assessment by Anderson and Ansara [12].

The extrapolated ternary phase diagram was optimized using the experimental results with the PARROT optimizer [6, 36, 37] included in the Thermo-Calc software [38]. The ternary solubility was taken into account for those phases that showed noticeable amount of solubility and where enough experimental evidence was available. The thermodynamic description of the new ternary phase, Au$_2$InGa$_2$, was also added to the system. Moreover, the ternary interaction parameter for the liquid phase was evaluated. In conclusion, the optimization resulted in a self-consistent set of interaction parameters for the Au-In-Ga ternary system with which most of the experimental
results can be reproduced.

5. Results and discussion

The Gibbs energy functions and the interaction parameters of all phases in the Au-In-Ga and the constituting binaries are given in Table 2. In this work, the ternary interaction parameter (T-independent) for the liquid phase has been optimized. Also, the ternary solubility for AuIn, AuGa, AuIn$_2$ and AuGa$_2$ phases has been taken into account. AuIn$_2$ and AuGa$_2$ constitute one phase with the name of AuX$_2$, because they have the same crystal structure, meaning that In and Ga mix on the second sublattice. For the fcc, hcp and D0$_{24}$ phases, a large positive value has been assigned to the regular interaction parameter to make these phases metastable on binaries where the elements are unstable in these structures [37]. Moreover, a three-sublattice model has been adapted for the new ternary phase with no binary mixing of the elements on the sublattices.

<table>
<thead>
<tr>
<th>Phase and sublattice</th>
<th>Thermodynamic parameters</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid(Au,In,Ga)</td>
<td>$^0L_{Au, Ga} = -71830.123 + 42.286T - 4.289T \ln(T)$</td>
<td>[11]</td>
</tr>
<tr>
<td></td>
<td>$^1L_{Au, Ga} = -22892.323 + 5.069T$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$^2L_{Au, Ga} = -8839.911 + 7.674T$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$^0L_{Au, In} = -76196.19 + 64.2914T - 6.6375T \ln(T)$</td>
<td>[10]</td>
</tr>
<tr>
<td></td>
<td>$^1L_{Au, In} = -31134.02 + 81.3582T - 8.5134T \ln(T)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$^0L_{In, Ga} = 4450 + 1.19185T$</td>
<td>[12]</td>
</tr>
</tbody>
</table>
\[^1L_{In,Ga} = +0.259T \]
\[^0L_{Au,In,Ga} = +20500 \]

This work

\begin{tabular}{ll}
\textbf{Au-fcc(Au,In,Ga)} & \textbf{In-tetragonal (In,Ga)} \\
\hline
\[^0L_{Au,Ga} = -31511.768 - 12.788T \] & \[^0L_{In,Ga} = +9000 \] \\
\[^1L_{Au,Ga} = -20073.352 + 14.067T \] & \[^0L_{In,Ga} = 0 \] \\
\[^0L_{Au,In} = -48493.65 + 46.6237T - 6.8308Tln(T) \] & \[^0L_{In,Ga} = +25000 \] \\
\[^1L_{Au,In} = +200 \] & \[^0L_{In,Ga} = +25000 \] \\
\[^0L_{In,Ga} = +25000 \] & \[^1L_{Au,In} = +20000 + 0.5 \] \\
\end{tabular}

\textbf{In-tetragonal (In,Ga)}

\[^0L_{In,Ga} = +9000 \]

\textbf{Ga-orthorhombic(Ga,In)}

\[^0L_{In,Ga} = 0 \]

\textbf{D0}_{24}(Au,In,Ga)

\[^0L_{Au,Ga} = -41291.692 - 0.227T \]

\[^1L_{Au,Ga} = -15367.206 - 3.768T \]

\[^0L_{Au,In} = -48238.66 + 5.3551T \]

\[^1L_{Au,In} = -48.36 - 16.7932T \]

\[^0L_{In,Ga} = +25000 \]

This work

\[^0L_{In,Ga} = +25000 \]

This work

\textbf{hcp(Au,In,Ga)}

\[^0L_{Au,In} = -55780.55 + 13.8198T \]

\[^1L_{Au,In} = +6788.95 - 32.893T \]

\[^0L_{Au,Ga} = +25000 \]

This work

\[^0L_{In,Ga} = +25000 \]

This work

\textbf{Au}_{7}Ga_{2}-HT:

\[G_{Au:Ga} = -11148.55 - 1.257T + 0.789476^0G_{fcc}^{fcc} + 0.210526^0G_{ort}^{ort}_{Ga} \]

\textbf{Au}_{7}Ga_{2}-LT:

\[G_{Au:Ga} = -12640.544 + 0.326T + 0.77777^0G_{fcc}^{fcc} + 0.22222^0G_{ort}^{ort}_{Ga} \]

\textbf{Au}_{7}Ga_{3}:

\[G_{Au:Ga} = -16720.107 + 2.397T + 0.7^0G_{fcc}^{fcc} + 0.3^0G_{ort}^{ort}_{Ga} \]

\textbf{AuGa}:

\[G_{Au:Ga} = -24002.418 + 4.422T + 0.5^0G_{fcc}^{fcc} + 0.5^0G_{ort}^{ort}_{Ga} \]

\[G_{Au:In} = +20000 + 0.5^0G_{fcc}^{fcc} + 0.5^0G_{tet}^{tet}_{In} \]

This work

\[^0L_{Au,Ga,In} = -37500 \]

This work
<table>
<thead>
<tr>
<th>Compound</th>
<th>Reaction</th>
<th>Energy Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>AuX₂</td>
<td>$G_{Au:Ga} = -24823.663 + 5.961T + 0.3333G^{fcc}{Au} + 0.6667G^{ort}{Ga}$</td>
<td>[11]</td>
</tr>
<tr>
<td>Au₄₃Ga</td>
<td>$G_{Au:In} = -26129.06 + 11.113T + 0.3333G^{fcc}{Au} + 0.6667G^{ort}{In}$</td>
<td>[10]</td>
</tr>
<tr>
<td>Au₄₃In</td>
<td>$0L_{Au:Ga,In} = +8900$</td>
<td>This work</td>
</tr>
<tr>
<td>Au₄In-HT</td>
<td>$G_{Au:In} = -9382.52 - 3.1015T + 0.775G^{fcc}{Au} + 0.225G^{ort}{In}$</td>
<td>[10]</td>
</tr>
<tr>
<td>Au₄In-LT</td>
<td>$G_{Au:In} = -10582.67 - 2.9323T + 0.75G^{fcc}{Au} + 0.25G^{ort}{In}$</td>
<td>[10]</td>
</tr>
<tr>
<td>Au₅In₄</td>
<td>$G_{Au:Au:In} = -2830.47 - 2.519T + 0.9239G^{fcc}{Au} + 0.0769G^{ort}{In}$</td>
<td>[10]</td>
</tr>
<tr>
<td>Au₈In₃</td>
<td>$G_{Au:In} = -12813.11 - 2.0538T + 0.7G^{fcc}{Au} + 0.3G^{ort}{In}$</td>
<td>[10]</td>
</tr>
<tr>
<td>Au₅In₂</td>
<td>$G_{Au:Au:In} = +2153.38 - 8.039T + 0.8333G^{fcc}{Au} + 0.1667G^{ort}{In}$</td>
<td>[10]</td>
</tr>
<tr>
<td>AuIn</td>
<td>$G_{Au:In} = -20188.37 + 2.3786T + 0.5G^{fcc}{Au} + 0.5G^{ort}{In}$</td>
<td>[10]</td>
</tr>
<tr>
<td>Au₃In₅(Ga)</td>
<td>$G_{Au:Ga} = +20000 + 0.5G^{fcc}{Au} + 0.5G^{ort}{Ga}$</td>
<td>This work</td>
</tr>
<tr>
<td>Au₂InGa₂</td>
<td>$G_{Au:In} = -35900 + 22.5T + 0.4G^{fcc}_{Au}$</td>
<td>This work</td>
</tr>
<tr>
<td>Au₂InGa₂</td>
<td>$G_{Au:In} = 0.2G^{fcc}{Ga} + 0.4G^{ort}{Ga}$</td>
<td></td>
</tr>
</tbody>
</table>
Calculated monovariant lines with liquidus projections every 20 °C superimposed with the experimental liquidus temperatures are shown in Figure 4. While a fairly good agreement for most temperatures can be noticed, there are discrepancies between the calculated and the measured temperatures in some cases; especially for liquidus temperatures at 389 °C and 419 °C at gold composition of about 54 at.% and 68 at.%, respectively.

Figure 4: Calculated monovariant lines (in red) of the Au-In-Ga system along with isothermal liquidus projections with 20 °C temperature increments (in black) based on the present work. The calculated liquidus temperatures (°C) are compared to experimental liquidus temperatures (green triangles).

Figure 5 shows the calculated liquidus monovariant lines and the primary crystallization fields. The reaction labels are consistent with the calculated
invariant reactions listed in Table 3. A calculated isothermal section at 280 °C in which all three-phase fields are marked is shown in Figure 6.

Figure 5: The Au-In-Ga monovariant lines calculated in this optimization. The invariant reactions are labeled according to the reactions in Table 3.

Two vertical sections of the Au-In-Ga phase diagram are shown in Figures 7-a and -b at \(x(Au)-2x(In)=0 \) and \(x(In)-x(Ga)=0.01 \), respectively. Two Scheil solidification simulations of compositions 1 and 2 (marked on the isopleth sections in a and b, respectively) are shown in Figures 7-c and -d. The measured temperatures on heating and cooling with the DTA technique have been compared to the calculated temperatures in the isopleths. The predicted temperatures by Scheil simulations for the two compositions are marked with circles on the isopleths. The Scheil simulations are in a good agreement with the calculated vertical sections. This is however expected because equilibrium conditions are not always met in thermal analysis mea-
Table 3: Calculated invariant reactions involving the liquid phase in the Au-In-Ga ternary system. With P type, the ternary and quasi-ternary peritectic reactions are meant. With E type, the ternary eutectic reactions are meant.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>T(°C)</th>
<th>Type</th>
<th>Composition of liquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>L+hcp → Au₃In + D₀²₄</td>
<td>398</td>
<td>P1</td>
<td>xₐu 0.7181, x₉₉ 0.0884, xᵢₙ 0.1935</td>
</tr>
<tr>
<td>L + Au₅In₄ → Au₃In + Au₇In₃</td>
<td>376</td>
<td>P2</td>
<td>xₐu 0.6924, x₉₉ 0.0847, xᵢₙ 0.2228</td>
</tr>
<tr>
<td>L + Au₅In₄ + Au₇In₃ → Au₃In₂</td>
<td>364</td>
<td>P3</td>
<td>xₐu 0.6600, x₉₉ 0.0823, xᵢₙ 0.2577</td>
</tr>
<tr>
<td>L + Au₇Ga₂-HT → D₀²₄ + Au₇Ga₂-LT</td>
<td>340</td>
<td>P4</td>
<td>xₐu 0.7240, x₉₉ 0.1803, xᵢₙ 0.0957</td>
</tr>
<tr>
<td>L + D₀²₄ → Au₃In + Au₇Ga₂-LT</td>
<td>307</td>
<td>P5</td>
<td>xₐu 0.7078, x₉₉ 0.1490, xᵢₙ 0.1432</td>
</tr>
<tr>
<td>L + Au₇Ga₂-LT + Au₃In → Au₇In₃</td>
<td>293</td>
<td>P6</td>
<td>xₐu 0.6954, x₉₉ 0.1515, xᵢₙ 0.1531</td>
</tr>
<tr>
<td>L + Au₇Ga₂-LT → Au₇In₃ + Au₇Ga₃</td>
<td>284</td>
<td>P7</td>
<td>xₐu 0.6856, x₉₉ 0.1596, xᵢₙ 0.1548</td>
</tr>
<tr>
<td>L + AuIn → Au₃In₂ + AuGa</td>
<td>276</td>
<td>P8</td>
<td>xₐu 0.6492, x₉₉ 0.1590, xᵢₙ 0.1918</td>
</tr>
<tr>
<td>L + AuIn₂ + Au₃In₂ + AuGa</td>
<td>274</td>
<td>E1</td>
<td>xₐu 0.6511, x₉₉ 0.1588, xᵢₙ 0.1901</td>
</tr>
<tr>
<td>L → Au₇In₃ + Au₇Ga₃ + AuGa</td>
<td>272</td>
<td>E2</td>
<td>xₐu 0.6572, x₉₉ 0.1637, xᵢₙ 0.1791</td>
</tr>
<tr>
<td>L + AuGa₂ + AuIn₂ → Au₂InGa₂</td>
<td>400</td>
<td>P9</td>
<td>xₐu 0.4368, x₉₉ 0.3168, xᵢₙ 0.2494</td>
</tr>
<tr>
<td>L + AuIn + Au₃In₂ + AuGa</td>
<td>399</td>
<td>P10</td>
<td>xₐu 0.4466, x₉₉ 0.3295, xᵢₙ 0.2239</td>
</tr>
<tr>
<td>L + AuIn₂ + Au₂InGa₂ → AuIn</td>
<td>385</td>
<td>P11</td>
<td>xₐu 0.4851, x₉₉ 0.2481, xᵢₙ 0.2668</td>
</tr>
<tr>
<td>L + AuIn₂ + Au₂InGa₂ → AuIn</td>
<td>384</td>
<td>E3</td>
<td>xₐu 0.4879, x₉₉ 0.2486, xᵢₙ 0.2635</td>
</tr>
<tr>
<td>L + Au₂InGa₂ + AuIn + AuGa</td>
<td>384</td>
<td>P12</td>
<td>xₐu 0.0179, x₉₉ 0.6524, xᵢₙ 0.3297</td>
</tr>
<tr>
<td>L + (Ga) → Au₂InGa₂ + AuGa</td>
<td>192</td>
<td>P13</td>
<td>xₐu 0.0179, x₉₉ 0.6524, xᵢₙ 0.3297</td>
</tr>
<tr>
<td>L → Au₂InGa₂ + (In) + (Ga)</td>
<td>152</td>
<td>E4</td>
<td>xₐu 0.9947, x₉₉ 0.0053</td>
</tr>
<tr>
<td>L + (In) → Au₂InGa₂ + AuGa</td>
<td>96</td>
<td>P14</td>
<td>xₐu 0.0004, x₉₉ 0.2140, xᵢₙ 0.7856</td>
</tr>
</tbody>
</table>
Figure 6: A calculated isothermal section of the Au-In-Ga system at 280 °C based on the present optimization. The three-phase fields are labeled. The asterisk symbols (*) show the measured solubility limits and the circle symbol (o) shows the composition of the ternary phase.

urements. Nevertheless, the discrepancies between the measured and the calculated temperatures point out the need for further experimental investigation of the system.

We present here the first thermodynamic assessment of the Au-In-Ga system. The Au-In-Ga ternary system is comprised of several stoichiometric and non-stoichiometric intermediate phases. It is motivated to perform more experimental investigations of the system for multiple reasons. It was especially difficult to interpret the experimental data in Au-rich corner because the structures of some phases in the Au-In and Au-Ga binaries either are not completely determined (e.g. \(\text{Au}_7\text{Ga}_2 \)-LT, \(\text{Au}_7\text{Ga}_3 \) and \(\text{Au}_4\text{In}-\text{LT} \)) or are
Figure 7: Calculated vertical section of the Au-In-Ga system at (a) x(Au)-2x(In)=0 and (b) x(In)-x(Ga)=0.01 compared to the experimental temperatures determined by the DTA analysis. (c) The Scheil solidification simulation for a sample with composition 1 (56 at.% Au-28 at.% In-18 at.% Ga) marked on the isopleth in part a. (d) The Scheil solidification simulation for a sample with composition 2 (42 at.% Au-29 at.% In-29 at.% Ga) marked on the isopleth in part b. The registered temperatures on heating and cooling are denoted by the upside triangles (in blue) and the downside triangles (in red), respectively. The hollow circles (in green) on the isopleths show the predicted temperatures by Scheil simulations.
highly complex to model (e.g. AuIn, Au₃In₂ and Au₅In₄). On the other hand, some phases in these binaries have similar structures (e.g. Au₄In-LT and Au₄In-HT), creating overlapping diffraction patterns or non-distinguishable microstructural patterns. Another important fact is that it is already known that the In and Ga liquid alloys tend to easily undercool, demanding a long time to reach equilibrium[12]. Therefore the determination of liquidus temperatures in systems containing Ga and In is difficult.

6. Conclusion

The thermodynamic assessment of the Au-In-Ga ternary system based on recent experimental investigations of the system has been carried out. The assessment resulted in a set of complete interaction parameters, which can reproduce most of the experimental results with a good agreement. However, the need for more experimental investigations, especially in the determination of liquidus and phase transition temperatures, to obtain a complete thermodynamic description is outlined.

Acknowledgement

We gratefully acknowledge financial support from the Nanometer Structure Consortium at Lund University (nmC@LU), the Swedish Research Council (VR), and the Knut and Alice Wallenberg Foundation (KAW).

may be deceptive: the case of the new type structure Au2InGa2, Intermetallics 46 (2014) 40–44.

Appendix A. Supplementary Information

Figure A.8: The Au-In phase diagram calculated in this work (in solid line) is compared with the calculated phase diagram using parameters from Ref. [25] (in dashed line).
Figure A.9: The calculated Gibbs energies for liquid, fcc and D0\textsubscript{24} phases reproduced with the parameters evaluated in the current assessment (colored lines) and the parameters assessed in [10] (dashed lines) at 649 °C, the decomposition temperature of the D0\textsubscript{24} phase.