Parmelia ernstiae, P. serrana and P. submontana, three species increasing in the Nordic countries

Thell, Arne; Tsurykau, Andrei; Persson, Per-Erik; Hansson, Mats; Åsegård, Emil; Kärnefelt, Ingvar; Seaward, Mark R. D.

Published in:
Graphis Scripta

2017

Document Version:
Publisher’s PDF, also known as Version of record

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Parmelia ernstiae, P. serrana and P. submontana, three species increasing in the Nordic countries

Arne Thell, Andrei Tsurykau, Per-Erik Persson, Mats Hansson, Emil Åsegård, Ingvar Kärnefelt and Mark R.D. Seaward

Revised information on the morphology, chemistry and distribution of species of Parmelia s. str. in Fennoscandia is presented. Although Parmelia ernstiae was earlier believed to be chemically distinct from P. serrana in terms of lobaric acid, its presence in all studied samples detected by TLC means that these two semi-cryptic species can no longer be chemically separated. All three species are increasing in frequency and spreading northwards in Fennoscandia. Parmelia serrana is reported as new to Zealand in Denmark.

Introduction

Parmelia Ach., is one of the most well-known of Nordic lichen genera. Its thallus is foliose, loosely to rather closely attached with a grey or brownish upper and blackish lower side. After the separation of the genera Nipponoparmelia (Kurok.) K. H. Moon, Y. Ohmura & Kashiw. and Notoparmelia A. Crespo, Ferencova & Divakar (Crespo et al. 2010, Ferencova et al. 2014), Parmelia is a genus of c. 40 species worldwide, mainly occurring in temperate-boreal areas of the Northern Hemisphere, nine of which occur in the Nordic countries (Thell et al. 2011). The genus can be divided into three morphological groups according to their vegetative propagules: (1) the Parmelia sulcata group having soredia or isidiate soredia (P. sulcata Taylor, P. submontana Nádv. ex Hale and P. fraudans (Nyl.) Nyl.) (2) the Parmelia saxatilis group, characterized by isidia (P.
saxatilis Ach., P. ernstiae Feuerer & A. Thell, and P. serrana A. Crespo, M. C. Molina & D. Hawskw.), and (3) the P. omphalodes group, without propagules (P. omphalodes (L.) Ach., P. pinnatifida Kurok, and P. skultii Hale).

Several species of Parmelia s. str. can be categorized as semi-cryptic, their distinguishing characters overlapping with other species, such as Parmelia ernstiae and P. serrana, which may be difficult to distinguish from each other and from P. saxatilis (Molina et al. 2004). Poorly developed or young specimens of P. submontana can be confused with P. sulcata, while P. pinnatifida may overlap morphologically with P. omphalodes. However, their species status is supported by phylogenetic analyses based on DNA-sequences (Thell et al. 2008). Two cryptic species were recently described in Parmelia, neither of which occur in the Nordic area: (1) P. mayi Divakar, A. Crespo & M. C. Molina, found at high altitudes in the Appalachian Mountains in North America, which differs from P. saxatilis by the presence of aliphatic acids (Molina et al. 2011a), and (2) P. encryptata A. Crespo, Divakar & M. C. Molina, found in Spain and Ireland, which has been segregated from P. sulcata (Molina et al. 2011b). The two species are otherwise identical, both in morphology and chemistry, according to current knowledge, but differ in their DNA-sequences. However, the discovery of cryptic species may in some cases lead to the discovery of earlier unknown distinguishing characters. Two additional species have been described very recently, earlier considered morphotypes of P. saxatilis, namely P. sulymae Goward, Divakar, M. C. Molina & A. Crespo and P. imbricaria Goward, Divakar, M. C. Molina & A. Crespo, that were revealed as independent monophyletic clades (Molina et al. 2016). The P. sulcata segregate, P. barrenoae Divakar, M. C. Molina & A. Crespo, was recently reported as new to Poland as a result of revision of herbarium material filed as P. sulcata (Ossowska & Kukwa 2016). It is possible that this semi-cryptic species, originally described from Spain but later found also in North America and Africa (Hodkinson et al. 2010), also occur in Scandinavia. P. barrenoae differs from P. sulcata by its simple rhizines, broader and apically rounded lobes which overlap (Divakar et al. 2005), and the pseudocyphellae are less abundant but develop into very distinct soralia which quickly release soredia.

This study is a contribution to our knowledge of three Parmelia species (P. ernstiae, P. serrana and P. submontana) with a more or less southern distribution in the Nordic area. New data on their secondary chemistry, distribution and morphology are provided, some of the specimens being confirmed by nuclear ITS rDNA-sequences.

Material and methods

Material used in the chemical and molecular analyses is listed in Table 1. Chemical compounds were detected by thin-layer chromatography (TLC) in solvents A, C and G according to methods described by Orange et al. (2001). ITS-sequences were amplified with the primers ITS5 and ITS4 (White et al. 1990), and extraction of total DNA and amplification of the ITS1-5.8S-ITS2 ribosomal DNA-region followed standard methods (e.g. Thell et al. 2008). BLAST searches were performed for the sequences (Altschul et al. 1990) which were aligned and compared with sequences from the GenBank (http://www.ncbi.nlm.nih.gov).
The species

Parmelia ernstiae Feuerer & A. Thell

Parmelia ernstiae was described in 2002 and discovered in the Nordic area for the first time at Skåne in southernmost Sweden in 2003 (Feuerer & Thell 2002, Thell 2003). Since then it has been mapped for Denmark where it is relatively common in all regions except for western Jutland (Thell *et al.* 2007); it has also been collected in southernmost Finland, but not as yet observed in Norway. Except for young specimens and poorly developed thalli, the species is usually easily recognized by its pruinose lobes and many lobules. It cannot be distinguished chemically using TLC from its closest relative, *P. serrana*, as earlier believed, since lobaric acid was revealed also in the latter species (Table 1). The best distinguishing character is the clustering of the isidia (Fig. 3). *P. ernstiae* is increasing in southern Scandinavia and is currently the dominating epiphyte in some beech forests in Skåne (Figs. 1–2).

Chemistry. Cortex C–, K+ yellow, KC–, PD–; atranorin and chloroatranorin. Medulla C–, K+ red, KC–, PD+ orange; consalazinic, salazinic, lobaric, lichesterinic and protolichesterinic acids detected by TLC.

Distribution. Widespread in Denmark, including Bornholm, southern Finland (Regio aboënsis, Nylandia and Tavastia australis), southwestern Sweden (Skåne, Blekinge, Småland, Halland, Bohuslän, Dalsland and Västergötland), as well as Gotland, Uppland and Dalarna; unknown in Norway (http://herbarium.emg.umu.se/databases.html).

![Figure 1. Parmelia ernstiae as the dominating epiphyte on a beech tree in Norra Rörum parish in central Skåne, the southernmost province of Sweden. Photo: Arne Thell 2016-07-02](image)
Although morphologically very variable, *P. serrana* is usually recognizable by the position of the isidia, being marginal or clustered as spots or along ridges (Fig. 3, Thell et al. 2011, Thell et al. 2014: 24). It was reported from Sweden later than *P. ernstiae* (Mattsson et al. 2006), and only recently in Denmark (Alstrup et al. 2013). *Parmelia serrana* has been searched for at many places in Denmark but only found twice, on both occasions in planted, coastal scrub forests dominated by *Pinus mugo* Turra. A sample from Omberg in Västra Tollstad parish, Östergötland, published by Thell et al. (2014) was rejected on the basis of its chemical characters (Motiejūnaitė et al. 2016-08-27).
2016), but according to this study, both the morphology, i.e. clustered and marginal isidia, and an ITS analysis, it corresponds with *P. serrana*. However, the discovery of lobaric acid in *P. serrana* makes it chemically indistinguishable from *P. ernstiae* when present. Preliminary studies show that the chemistry of *P. serrana* is more complicated than earlier believed.

Chemistry. Cortex C–, K+ yellow, KC–, PD–; atranorin and chloroatranorin. Medulla C–, K+ red, KC–, PD+ orange; consalazinic, salazinic, [usually] lobaric, lichesterinic and protolichesterinic acids detected by TLC.

Distribution. Rømø and North Zealand in Denmark (Fig. 4), southern Finland (Alandia, Regio aboënsis, Nylandia and Tavastia australis), Nord-Trøndelag in Norway, and southwestern Sweden (Skåne, Halland and Bohuslän) and Östergötland. (http://herbarium.emg.umu.se/databases.html)

Parmelia submontana Nádv. ex Hale

Parmelia submontana, formally described in a monograph of the genus (Hale 1987), was originally believed to have a southern distribution in Europe, but was discovered in Sweden 1989. In the 1990s it was also discovered in Denmark and Norway (Arvidsson 1989, Christensen 1997, Gauslaa 1999). Although the species has been overlooked, it is undoubtedly increasing in southern Scandinavia (Thell et al. 2011). It may be mixed with *P. sulcata* as young and poorly developed thalli, but when well developed, it has characteristic long lobes with down-rolled margins and isidia-like soredia, reminiscent of *Pseudevernia furfuracea* (L.) Zopf (Fig. 6). According to ITS-sequences, *Parmelia submontana* is more closely related to the *P. saxatilis* group than the *P. sulcata* group, whereas the secondary chemistry, presence of atranorin, salazinic and consalazinic acid, is identical with *P. sulcata* (Table 1).

Chemistry. Cortex C–, K+ yellow, KC–; atranorin. Medulla C–, K+ red, KC–, PD+ orange; salazinic and consalazinic acids detected by TLC.

Concluding remarks

The three species studied were accorded species status in recent years due to their semi-cryptic habits, *Parmelia ernstiae* and *P. serrana* after confirmation by phylogenetic analyses based on
DNA-data. However, *P. ernstiae* and *P. serrana* are not chemically distinguishable in Fennoscandia as earlier believed (Thell *et al.* 2008). All three studied species are increasing in frequency and spreading northwards in Fennoscandia. Both morphology and BLAST searches of the ITS-sequences revealed which species the specimens belonged to, with one exception: the BLAST search of one *P. sulcata* specimen (KX961402) provided a better match with *P. encryptata*, but the species specific part of the sequence, ACCCGT, found at c. position 120 (Molina *et al.* 2011: 593), ultimately determined it as *Parmelia sulcata*.

Acknowledgements

The Almborn Foundation is thanked for financial support, and Tassilo Feuerer for reading and improving the manuscript.
Table 1. Investigated specimens.

<table>
<thead>
<tr>
<th>Species</th>
<th>Specimen voucher</th>
<th>GenBank-ID</th>
<th>Chemistry (TLC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. ernstiae</td>
<td>Sweden. Skåne Prov. Stehag par., Värlinge. 55°53’33”N, 13°22’52”E. On Sorbus aucuparia. 09.06.2016, A. Thell & E. Åsegård 16-005 (LD1884191)</td>
<td>–</td>
<td>consalazinic, salazinic, lobaric, protolichesterinic and lichesterinic acids, atranorin</td>
</tr>
<tr>
<td>P. ernstiae and P. saxatilis – mixed sample</td>
<td>Denmark. Eastern Jutland. South of Hadsund, Vindblæs parish, on granite stones of the stone fence surrounding churchyard. 56°40’25.2”N, 10°8’38.0”E. 20.08.2015, A. Thell DK1501 (LD1760880)</td>
<td>–</td>
<td>P. ernstiae: consalazinic, salazinic, lobaric, protolichesterinic and lichesterinic acids, atranorin P. saxatilis: consalazinic, salazinic and lobaric acids, atranorin</td>
</tr>
<tr>
<td>P. ernstiae and P. serrana – mixed sample</td>
<td>Sweden. Skåne Prov. Billinge par., 55°57’32.5”N, 13°20’8.9”E. On Acer platanoides in SE corner of churchyard. 09.06.2016, A. Thell & E. Åsegård 16-002 (GSU)</td>
<td>KX961401</td>
<td>both species: consalazinic, salazinic, lobaric, protolichesterinic and lichesterinic acids, atranorin</td>
</tr>
<tr>
<td>P. saxatilis</td>
<td>Sweden. Skåne Prov. Örkened par., Tulla-Pellas, at the base of N side of a large Fagus sylvatica, N of barn. With apothecia! 01.11.2016, A. Thell 16-009 (LD1894843).</td>
<td>KY419142</td>
<td>consalazinic, salazinic, and lobaric acids, atranorin</td>
</tr>
<tr>
<td>P. serrana</td>
<td>Denmark. Jutland. Romo. E of Bollimark, on Pinus mugo. 55°9’16”N, 8°32’55.5”E, 05.04.2014, A. Thell 1201 (LD1575208)</td>
<td>–</td>
<td>consalazinic, salazinic, lobaric, protolichesterinic and lichesterinic acids, atranorin</td>
</tr>
<tr>
<td>P. serrana</td>
<td>Denmark. Zealand. Grib Skov Distr. Tisvildeleje, northernmost part of Tisvilde Hegn forest, c. 50 m south of parking area, 3 m E of coastal path, on Pinus mugo 60 m from the beach. 56.0545°N, 12.0569°E. 27.08.2016, A. Thell 16-006 (LD1899143)</td>
<td>KX961399</td>
<td>consalazinic, salazinic, lobaric, protolichesterinic and lichesterinic acids, atranorin</td>
</tr>
<tr>
<td>P. serrana</td>
<td>Sweden. Östergötland. V. Tollstad. Omberg, Hjässatorget, on bases of large Fagus sylvatica near parking area. 58°18’37.3”N, 14°39’17.0”E. 25.04.2013, A. Thell, I. Kärnefelt & A. Nordin (LD1637783)</td>
<td>KX961398</td>
<td>consalazinic, salazinic, lobaric, protolichesterinic and lichesterinic acids, atranorin</td>
</tr>
<tr>
<td>P. sulcata</td>
<td>Sweden. Skåne Prov. Billinge par., 55°57’32.5”N, 13°20’8.9”E. On Acer platanoides in SE corner of churchyard. 09.06.2016, A. Thell & E. Åsegård 16-002</td>
<td>–</td>
<td>consalazinic and salazinic acids, atranorin</td>
</tr>
</tbody>
</table>
References

