Production and secretion of collagen-binding proteins from Aeromonas veronii

Ascencio, F; Hirst, T R; Wadström, Torkel

Published in:
Journal of Applied Microbiology

DOI:
10.1046/j.1365-2672.2000.01157.x

2000

Citation for published version (APA):
Production and secretion of collagen-binding proteins from Aeromonas veronii

F. Ascencio1, T.R. Hirst2 and T. Wadström3

1Department of Marine Pathology, Center for Biological Research, La Paz, Mexico, 2Department of Pathology and Microbiology, University of Bristol, UK, and 3Department of Medical Microbiology, University of Lund, Sweden

2000: received 21 February 2000, revised 30 May 2000 and accepted 7 June 2000

F. ASCENCIO, T. R. HIRST AND T. WADSTRÖM. 2000. Collagen-binding protein (CNBP) synthesized by Aeromonas veronii is located conserved within the subcellular fraction. The results of this study show that 98% of the total CNBP produced by Aer. veronii is present in the extracellular medium, and that the remaining CNBP is distributed either on the cell surface, within the periplasm or anchored on the outer membrane. CNBP is specifically secreted from Aer. veronii into the culture medium, because all the β-lactamase activity was located in the cells and could be released by polymixin B extraction of periplasmic proteins. CNBP was produced at growth temperatures from 12°C to 42°C, but not at 4°C. The findings indicate that the level of CNBP in the medium increases during the exponential growth phase and reaches a maximum during the early stationary phase. There was less CNBP production in poor nutrient MMB medium than in the rich LB nutrient medium. CNBP secretion, in contrast to aerolysin secretion, was unaffected by the exeA mutation of Aer. hydrophila. It is concluded that CNBP secretion from Aer. veronii must be achieved by a mechanism different from that reported for aerolysin secretion.

INTRODUCTION

Aeromonas veronii causes a variety of human infections, including arthritis, gastroenteritis, meningitis, septicemia, and wound infections (Hsueh et al. 1998; Janda and Abbott 1998; Steinfeld et al. 1998), and is also reported as a pathogen of cold-blooded vertebrates (Trust 1986; Pasquale et al. 1994; Sugita et al. 1995; Simmacco et al. 1998). Aeromonas veronii has been reported to produce a variety of biologically-active extracellular products which may be involved in the pathogenesis of Aeromonas infections. Among these products are cytotoxins or haemolysins (Stelma et al. 1988; Neves et al. 1990), enterotoxins (Honda et al. 1985; Neves et al. 1990), and a number of proteolytic and glycosidic enzymes (Allan and Stevenson 1981; Gobius and Pemberton 1988; Leung and Stevenson 1988). Aeromonas veronii produces several adhesion factors, some of them components of pili (Carrello et al. 1988; Kirov et al. 1995; Kirov and Sanderson 1996) or expressed on the cell surface (Kostrzynska et al. 1992). Other Aeromonas lectins are also recovered from the extracellular medium (Stewart et al. 1986). However, it is still unknown how these non-fimbrial putative adhesins are anchored on the cell surface, how soluble adhesins and lectins are secreted into the surroundings, and what their biological significance is in infectious processes.

In previous work, a number of Aeromonas strains, isolated from the environment and from human infections, were screened for collagen-binding activity. The results showed that collagen-binding is a common property among Aeromonas species (Ascencio et al. 1991). The pathogenicity of Aer. veronii in infectious diarrhoea in humans is probably not derived from a single or even a few traits, but from the cumulative or combined contribution of multiple virulence factors (Hoepelman and Tuomanen 1992). From this perspective, adhesion of bacteria is an early process in the development of an infection that involves binding of bacterial adhesins and lectins to gastrointestinal mucosal receptors. As antigens from Aer. veronii with affinity for mucosal constituents and collagenous proteins have recently been found to stimulate the mucosal immune system of rabbit
MATERIALS AND METHODS

Chemicals

Water-soluble, rat skin collagen type I was purchased from Serva Feinbiochemica GMBH & Co. (Heidelberg, Germany). Peroxidase-conjugated immunoglobulins and OPD (1,2-phenylenediamine) tablets were from Dakopatts A/S (Glostrup, Denmark). 2-[N-morpholino]ethanesulfonic acid (MES), 1,4-piperazinediethanesulfonic acid (Pipes), and protease from Staphylococcus aureus were purchased from Sigma. Culture media and individual culture media ingredients were purchased from Difco. Immobilon-PVDF membranes were from Millipore Corp. (Bedford, MA, USA).

Bacteria and culture conditions

Aeromonas veronii strain A186 isolated from a human infection at the Hospital of the University of Lund, Sweden, and which is a high binder for collagen type I and IV (Ascencio et al. 1991), was taxonomically identified according to its fatty acid profile by Dr J. McNroy at Auburn University, Alabama, USA. Aeromonas hydrophila wild type strain Ah65, and its derived pleiotropic secretory mutants, n5-m and n5-1, containing a transposon Tn5, were kindly provided by Prof. S. Peter Howard from the University of Regina, Canada. All strains were grown at 32°C and harvested by centrifugation when the culture reached the stationary phase, usually after 18 h. The cell pellet was collected and stored at –80°C until use. Other experiments included the growth of cells in a biphasic medium, consisting of a solid phase with 1.5% agarose, 100 μg ml⁻¹ collagen type I in 50 mmol l⁻¹ Tris–HCl buffer (pH 7.5) containing 5 mmol l⁻¹ CaCl₂ and a liquid phase containing a minimal medium broth (Mevarech and Werczberger 1985) adjusted to 0.15 mol l⁻¹ NaCl. An alternative biphasic medium was made of 100 μg ml⁻¹ collagen type I in LB agar for the solid phase and LB broth for the liquid phase. After incubation overnight at 32°C, the liquid phase was centrifuged and the supernatant fluids were stored at –80°C until use.

Preparation of subcellular fractions

Aeromonas cells were grown in LB broth at 32°C and harvested by centrifugation when the culture reached the stationary phase, usually after 18 h. The cell pellet was washed once with PBS and suspended in PBS containing 200 U ml⁻¹ polymyxin B sulphate to liberate the periplasmic space proteins (Leece and Hirst 1992). After 4 h incubation in an ice-bath, bacterial cells were centrifuged (8000 g at 4°C for 30 min) and the supernatant fluid dialysed during 24 h, with three changes of PBS. Cell-associated proteins were removed by treating the bacterium with 0.2 mol l⁻¹ glycine buffer, pH 3.3, for 30 min incubation in an ice-bath (Dooley et al. 1988), or by simply washing the cells with PBS. Outer membrane proteins (OMPs) were extracted by treating the cell envelope with 0.5% sodium laurylsarcosine (Filip et al. 1973). The cytoplasmic content was released by disrupting the cells with three 30 s sonication bursts (Howard and Buckley 1983).

Production of anti-serum against the Aer. veronii CNBP

Anti-serum to the purified 98 kDa CNBP was obtained from adult New Zealand White rabbits injected with 30 μg CNBP emulsified in Freund’s incomplete adjuvant. Booster doses of 20–30 μg protein in Freund’s incomplete adjuvant were given 15 and 30 days after the initial immunization. On day 40, the rabbits were bled and the serum was collected and stored at –80°C. Western blot analysis of whole-cell lysates of Aer. veronii strain A186 showed that the anti-sera were specific to the CNBP (data not shown).
Electrophoresis

The separation of proteins by sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE) was done using the discontinuous buffer system of Laemmli (Laemmli 1970). The pooled fractions comprising the peaks that inhibited collagen-binding activity were stacked in 4.5% (w/v) acrylamide and separated in 12.5% (w/v) acrylamide. Electrophoresis was run in a Protean II xi apparatus (Bio-Rad Laboratories, Richmond, CA, USA) at 20 mA (constant current) initially, and at 30 mA when the tracking dye entered the separating gel. Molecular weights were determined from a plot of the logarithm of the Mr using SDS-PAGE protein molecular weight standards (Bio-Rad).

Western blot analysis

The separated proteins (under denaturing or non-denaturing conditions) were electrophoretically transferred to immobilon-PVDF membranes in a trans-blot cell. Additional binding sites were blocked by incubating the membranes with 3% bovine serum albumin in 10 mmol l⁻¹ Tris-HCl-0.15 mol l⁻¹ NaCl, pH 7.2, for 1 h at 22 °C. Membranes were washed 3 times with 10 mmol l⁻¹ Tris-HCl-0.15 mol l⁻¹ NaCl, pH 7.2, containing 0.05% Tween-20 (TNT), at 22 °C. The membranes were probed with horseradish peroxidase (POD)-labelled collagen type I (Hudson and Hay 1989) in 10 mmol l⁻¹ Tris-HCl-0.15 mol l⁻¹ NaCl (pH 7.2) for 2 h at 22 °C. After washing 3 times with TNT, the reactive bands were visualized with diaminobenzidine as POD substrate.

ELISA to quantify soluble CNBP

ELISA plates (Nunc, Denmark) were coated with 100 µl of a solution of collagen type I (CnI) in 0.1 mol l⁻¹ sodium carbonate buffer (pH 8.1) containing 0.15 mol l⁻¹ NaCl (10 µg of CnI well⁻¹). Plates were washed 4 times with TNT after 16 h of incubation at 4 °C. Supernatant fluids (100 µl) were added to each collagen-coated well and incubated for 1 h at 37 °C. Wells were washed 4 times with TNT, and 100 µl rabbit polyclonal antibodies raised against purified CNBP (1:1000) were added to each well. After 2 h, wells were washed 4 times with TNT, and 100 µl POD-labelled goat IgG specific for rabbit IgG (diluted 1:5000) were added to each well and incubated at 37 °C for an additional 90 min. Then, the plates were washed 4 times with TNT, a substrate solution of 0.3 mg ml⁻¹ OPD in 50 mmol l⁻¹ sodium citrate (pH 5) was added to each well (100 µl well⁻¹), and the plate was incubated for 30 min. The A₄₉₂ value of each well was then determined. The CNBP is expressed in Units, where one U is equivalent to one O.D. unit at 492 nm. These values were corrected for non-specific binding (less than 10%).

Determination of proteolytic activity

Extracellular proteolytic activity in the supernatant fluids was determined using latex beads coated with¹²⁵I-labelled collagen type I (Ascencio and Wadstrom 1994). Briefly, portions (100 µl) of the sample to be assayed were mixed with 100 µl 50 mmol l⁻¹ Tris buffer (pH 7) containing 0.15 mol l⁻¹ NaCl, 0.5 mmol l⁻¹ CaCl₂ (TBS) and 10 µl¹²⁵I-protein-coated latex-bead suspensions (specific activity of 8.5 × 10⁶ cpm ml⁻¹ latex bead suspension diluted to 5 × 10⁵ cpm ml⁻¹) in 96 well (V form) microtitre plates. After 1 h at 37 °C, the incubation mixtures were centrifuged in the plate (2000 g at 4 °C for 12 min), and the radioactivity of the supernatant fluids (which contained the¹²⁵I-labelled peptides released from the coated latex beads) was measured in a Gamma counter (Clini Gamma, WALLAC, Abo, Finland). Positive controls were tested with purified protease from *Staphylococcus aureus* strain V8. To correct for non-enzymatic hydrolysis of the substrates, the coated latex beads were incubated with the incubation buffer (TBS or unincoculated broth instead of the protease-containing samples). Proteolytic activity is expressed as the percentage of¹²⁵I-label released from the¹²⁵I-protein-coated latex beads.

RESULTS

Production and cellular distribution of CNBP

The distribution of CNBP between the extracellular medium and the cells, and within the different subcellular compartments, was determined using a CNBP-specific ELISA (Table 1). It was found that 98% of the total CNBP produced by *Aer. veronii* was present in the extracellular medium and the remaining CNBP was distributed either on the cell surface or within the periplasm. It is concluded that under these growth conditions, CNBPs are extracellular proteins.

To examine whether the CNBP was specifically secreted or non-specifically released as a result of cell lysis, besides the release of CNBP, the distribution of a periplasmic marker enzyme, β-lactamase, was also examined. As shown in Table 2, the β-lactamase activity was located inside the cells as it could be released to the same extent by either polymyxin B extraction of periplasmic proteins or by sonication treatment (Table 2). It is therefore concluded that CNBP is specifically secreted from *Aer. veronii* into the culture medium.

The cellular distribution of CNBP in *Aer. veronii* strain A186 was also examined by a collagen-blotting technique.
SDS–PAGE analysis of the medium and total cell lysates showed that the medium contained only a few proteins, but when the same fractions were tested by the collagen blot technique, most of the CNBP was present in the extracellular fraction. It is concluded that growth of *Aer. veronii* in LB broth at 32°C results in the production and secretion of extracellular CNBP.

Effect of growth conditions on the production of CNBP

Growth temperature has been shown to influence the expression of virulence factors from a variety of pathogenic micro-organisms (Kabir and Ali 1983; González et al. 1988). To examine whether the growth temperature influenced the production of CNBP by *Aer. veronii*, strain A186 was cultured at 32°C for 18 h, then sub-cultured into fresh broth and maintained at growth temperatures ranging from 4 to 42°C. CNBP was produced at all growth temperatures from 12°C to 42°C, but not at 4°C (Fig. 2).

At 42°C, it was observed that the level of CNBP in the medium increased during the early stationary phase, then decreased rapidly over the next 2 h of growth. One explanation for this may be the production of proteinases which might degrade CNBP (Allan and Stevenson 1981; Ascencio and Wadstrom 1991). Therefore, the level of extracellular proteinases produced during growth at different temperatures was also examined. There appeared to be a relationship between the level of CNBP and the level of extracellular proteases in the medium (Fig. 2).

Table 1 Production and distribution of CNBP in subcellular fractions by *Aeromonas veronii* strain A186

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Total protein (mg)</th>
<th>CNBP (U)</th>
<th>Specific activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extracellular (culture supernatant fluid)</td>
<td>14</td>
<td>5130</td>
<td>71</td>
</tr>
<tr>
<td>Cell-associated (glycine extract)</td>
<td>0.2</td>
<td>33</td>
<td>145</td>
</tr>
<tr>
<td>Periplasmic (polymyxin B treatment)</td>
<td>0.1</td>
<td>27</td>
<td>205</td>
</tr>
<tr>
<td>Cytoplasmic (lysed cells by sonication)</td>
<td>0.4</td>
<td>50</td>
<td>125</td>
</tr>
</tbody>
</table>

Bacterial cells grown overnight at 32°C in a 1 litre flask containing 300 ml LB broth to an O.D.₆₀₀ nm of approximately 2.0 were harvested, and subcellular fractions obtained as described in Material and Methods. CNBP was quantified in each fraction and the specific activity is expressed as the amount of CNBP (U) presented in 1 mg of protein.

Table 2 Release of periplasmic proteins from *Aeromonas veronii* A186 treated with Polymyxin B sulphate

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>CNBP (U)</th>
<th>Total protein (mg)</th>
<th>β-Lactamase activity (A₄₉₂ nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Polymyxin extraction</td>
<td>Sonication</td>
<td>Polymyxin extraction</td>
</tr>
<tr>
<td>10</td>
<td>44.2</td>
<td>23.8</td>
<td>0.53</td>
</tr>
<tr>
<td>30</td>
<td>53.2</td>
<td>21.1</td>
<td>0.61</td>
</tr>
<tr>
<td>120</td>
<td>48.5</td>
<td>28.6</td>
<td>1.06</td>
</tr>
<tr>
<td>240</td>
<td>52.1</td>
<td>29.1</td>
<td>1.92</td>
</tr>
<tr>
<td>960</td>
<td>65.6</td>
<td>22.8</td>
<td>10.02</td>
</tr>
</tbody>
</table>

Bacterial cells grown overnight at 32°C in a 1 litre flask containing 300 ml LB broth to an O.D.₆₀₀ nm of approximately 2.0 were harvested and then treated with Polymyxin B sulphate as described in Material and Methods. β-Lactamase activity was determined using the Nitrocefin kit, based on a chromogenic cephalosporin, according to the instructions of the manufacturer (Glaxo Research Limited), and the results expressed in O.D. units at 492 nm.
The reason why CNBP is not present in the medium at 4°C is not because of its inability to be secreted, since an analysis of the cell growth at this temperature did not show any cell-associated CNBP (Fig. 2), but generally, the level of CNBP in the medium increased during exponential growth and reached a maximum during the early stationary phase (Fig. 2).

To investigate whether the composition of the growth medium affected CNBP production and secretion, *Aer. veronii* was cultured in two culture systems: (i) minimal broth medium supplemented with collagen or deprived of collagen or any other carbon source; and (ii) LB broth supplemented with collagen or without collagen (Table 3). It was found that *Aeromonas* cultures in LB broth gave a greater number of cells. However, CNBP were produced in similar proportions in both minimal and rich media cultures, and the level was not influenced by the presence of collagen in the culture media (Table 3).

Mechanism of CNBP secretion

The mechanism of extracellular protein secretion by *Aer. hydrophila* has been extensively studied by Howard and co-workers (Howard and Buckley 1983, 1985; Jiang and Howard 1991), who recently demonstrated that the secretion of aerolysin and other proteins is dependent on the *exeA* gene (Jiang and Howard 1991). To assess whether CNBP are present in *Aer. hydrophila* culture supernatant fluid, and to compare whether CNBP secretion is dependent on *exeA*, the cellular distribution of CNBP in *Aer. hydrophila* strain AH65 and an isogenic mutant, C5.84, with a transposon insertion in *exeA*, was examined (Jiang and Howard 1991) (Fig. 3). CNBP secretion, in contrast to aerolysin secretion, was unaffected by the *exeA* mutation of *Aer. hydrophila*. It is concluded that CNBP secretion from *Aer. hydrophila* must be achieved by a mechanism different from that reported for aerolysin secretion. Because *Aer. hydrophila* CNBP has a molecular weight homologous to the *Aeromonas* CNBP, it may be possible that both *Aeromonas* species use similar secretory mechanisms for CNBP secretion.

DISCUSSION

On-going studies in this laboratory focused on the use of *Aer. veronii* antigens as immunogenic and immunoprotective agents against infections produced by *Aeromonas* species in marine fish. As adhesion factors are most important for the establishment of the pathogen in a host, especially during the early stages of an infection process, the possibility of using adhesins and lectins as vaccine candidates is attractive. In fact, extracellular proteins from *Aer. veronii* with affinity for mucin, lactoferrin, IgG and collagen type I have recently been found to stimulate the mucosal immune system of rabbit (Ascencio et al. 1995), and are considered as vaccine candidates for *Aeromonas* infections in fish farming as they also stimulate the mucosal immune system of the spotted sand bass, *Paralabrax maculatofasciatus* (Merino-Contreras et al., personal communication).

A major 98 kDa protein band present in both the supernatant fluids and associated with the cell surface of *Aer. veronii* was found to play a role in the interaction of *Aer. veronii* with the collagenous extracellular matrix protein collagen type I. The present results provide some insights into the cell signalling and membrane trafficking of this pathogen. Collagen binding protein (CNBP) production by *Aer. veronii* occurred throughout growth. Although cell-associated CNBP was detected throughout the growth per-
Fig. 2 Effect of the culture temperature on bacterial growth (●), and secretion of CNBP (○) and collagenases (▼), by *Aeromonas veronii* strain A186. Bacterial growth is expressed in O.D. units at 540 nm, CNBP is expressed in Units ml⁻¹ and collagenase activity is expressed in percentage of 125I-label released from the 125I-collagen type I-coated latex beads. (a) 4 °C; (b) 12 °C; (c) 22 °C; (d) 32 °C; (e) 37 °C; (f) 42 °C.

iod, CNBP secretion decreased in the stationary phase when protease production reached maximum values.

In a previous study, it was shown that protease inhibitors favour the binding of extracellular matrix proteins (collagens type I and IV, fibronectin and laminin) to *Aer. hydrophila* cells (Ascencio et al. 1991). It seems likely that CNBP, collagenase and protease(s) are separate macromolecules operating at different stages in an infectious process.

It might be suggested that *Aer. veronii* expresses both CNBP (extracellular or cell-associated) and proteolytic

<table>
<thead>
<tr>
<th>Culture media</th>
<th>Total protein (µg ml⁻¹) (CFS/U.B)</th>
<th>Proteolytic activity (U ml⁻¹)</th>
<th>CNBP (U ml⁻¹)</th>
<th>cfu ml⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMB + CN</td>
<td>127/100</td>
<td>69</td>
<td>8</td>
<td>2.3 x 10¹⁰</td>
</tr>
<tr>
<td>MMB</td>
<td>4/4</td>
<td>6</td>
<td>9</td>
<td>2 x 10¹⁰</td>
</tr>
<tr>
<td>MMB w/o C + CN</td>
<td>219/100</td>
<td>51</td>
<td>7</td>
<td>1 x 10¹⁰</td>
</tr>
<tr>
<td>MMB w/o C</td>
<td>3-2/4</td>
<td>0</td>
<td>3</td>
<td>8 x 10⁹</td>
</tr>
<tr>
<td>LB + CN</td>
<td>165/120</td>
<td>69</td>
<td>16</td>
<td>8.1 x 10¹⁰</td>
</tr>
<tr>
<td>LB</td>
<td>179/24</td>
<td>64</td>
<td>13</td>
<td>8 x 10¹⁰</td>
</tr>
</tbody>
</table>

(MMB + CN) biphasic medium made of a solid phase consisting of 1.5% agar and 100 µg ml⁻¹ collagen, and a liquid phase consisting of minimal medium broth; (MMB) minimal medium broth; (MMB w/o C + CN) biphasic medium made of a solid phase consisting of 1.5% agar and 100 µg ml⁻¹ collagen, and a liquid phase consisting of minimal medium broth without any carbon source; (MMB w/o C) minimal medium broth without any carbon source; (LB + CN) biphasic medium made of a solid phase consisting of 1.5% agar and 100 µg ml⁻¹ collagen, and liquid phase consisting of Luria broth; (LB) Luria broth. (CFS/U.B) Culture supernatant fluid/uninoculated broth media.

Table 3 Effect of the culture media on the release of CNBP and proteolytic enzymes into the culture media by *Aeromonas veronii*

Fig. 3 Mechanism of CNBP secretion. (a) SDS–CPAGE of extracellular and sonicate proteins. (b) Western blot analysis of *Aeromonas hydrophila* CNBPs using peroxidase-labelled collagen type I as a probe. I: extracellular proteins; II: sonicate proteins. Lane 1: *Aer. hydrophila* wild strain Ah65; lane 2: *Aer. hydrophila* pleiotropic secretory mutant C5.84; lane 3: *Aer. hydrophila* pleiotropic secretory mutant L1.97

enzymes early in the infectious process when maximum adherence is needed to successfully colonize a host. However, when the pathogen has overcome this problem, it intensifies the biosynthesis and secretion of proteolytic enzymes to assure its nutritional requirements. Although the secretory activity of CNBP is reduced, the pathogen continues to express the cell-associated pool of CNBP because *Aer. veronii* cells bind to collagen at any stage of growth (data not shown).

The secretion and release of bacterial, cell-associated proteins that bind extracellular matrix components seems to be a common phenomenon among pathogenic microorganisms. It has been shown that culture supernatant fluids of *Staphylococcus aureus*, *Mycobacterium leprae* and *Streptococcus equisimilis* contain released fibronectin-binding proteins (FNBP) (Lindberg et al. 1992; Lindgren 1992; Thole et al. 1992).

Aerolysin secretion by *Aer. hydrophila* has been defined as a general secretory pathway model in this pathogen. Aerolysin has a signal peptide typical of those processed by signal peptidase I; it is rapidly released to the medium (Howard and Buckley 1985, 1986) where the *exeA* gene is required both for the extracellular export and outer membrane assembly, because *Tn*5–751 insertion in the *exeA* gene causes pleiotropic defects in aerolysin secretion as well as marked decreases in the quantities of the most abundant outer membrane proteins (Jiang and Howard 1991). The present findings regarding CNBP secretion in isogenic mutants of *Aer. hydrophila* strains C5.84 and L1.97, with *Tn*5–751 insertions in its *exeA* gene (Jiang and Howard 1991), strains which are deficient in aerolysin secretion but not in CNBP secretion, suggest CNBP secretion in *Aer. hydrophila* and *Aer. veronii* must be achieved by a mechanism different from the general pathway in aerolysin secretion. Further studies using *exeA* mutants of *Aer. veronii* need to be carried out to probe this hypothesis, particularly because of the potential application of *Aer. veronii* extracellular adhesions for developing effective fish vaccines against *Aeromonas* and *Vibrio* infections.

However, the secretion mechanisms, and the biological significance of why these extracellular matrix (ECM)-binding proteins are liberated by pathogenic microorganisms into their milieu, remain unclear. It might be asked why these adhesive proteins, which enable the bacterium to bind extracellular matrix components, are secreted into the surrounding environment. A possible explanation is that these ECM-binding proteins may have multivalent functions like the haemagglutinin-protoase of *Vibrio cholerae* (Finkelstein et al. 1983) or the lectin-toxin (pertussis toxin) of *Bordetella pertussis* (Tuomanen and Weiss 1985). The cell-associated CNBP pool might enable the bacterium to attach onto epithelial surfaces of the mucosal layers, in a manner similar to that in which cytoplasmic lectins from *Pseudomonas aeruginosa* enable the pathogen to adhere to epithelial cells once they are released from lysed bacterial cells (Wentworth et al. 1991). The extracellular CNBP pool may help the bacterium in the transport and assimilation of nutrients. An alternative explanation could be that the extracellular CNBP pool confers on the pathogen mimicry abilities to help it evade the immune barrier of the host while the cell-associated CNBP pool gives the pathogen adhesive capabilities. Homologous mechanisms have been proposed for *Candida albicans* (Gustafson et al. 1991), as extensively discussed by Hoepelman and Tuomanen (1992).

Western blot analysis of sonicate extracts showed that besides the 98 kDa CNBP, there were another protein bands (60, 40 and 15 kDa) which also gave a positive reaction with the POD-labelled collagen. Immunoblotting analysis, using rabbit polyclonal and monoclonal antibodies raised against the 98 kDa CNBP, demonstrated that the three CNBPs are immunologically homologous (data not shown). However, studies on the molecular basis need to be carried out to determine whether the 60, 40 and 15 kDa proteins are related, and what the gene encoding is for the secretion of CNBPs.

ACKNOWLEDGEMENTS

This study was supported by grants from the Swedish Medical Research Council (16X04723), the Medical Faculty of the University of Lund and The Swedish Institute. The authors acknowledge S.P. Howard for the donation of *Aer. hydrophila* strain Ah65 and its pleiotropic secretory mutants C5.84 and L1.97 to T.R.H., and the help of Dr Ellis Glazier for editing the English language text.

REFERENCES

