Synthesis of O-galactosyl aldoximes as potent LacNAc-mimetic galectin-3 inhibitors.

Tejler, Johan; Leffler, Hakon; Nilsson, Ulf

Published in:
Bioorganic & Medicinal Chemistry Letters

DOI:
10.1016/j.bmcl.2005.02.079

2005

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The following pages constitute the final, accepted and revised manuscript of the article:

Publisher: Elsevier.

Use of alternative location to go to the published version of the article requires journal subscription.

Alternative location:
http://dx.doi.org/10.1016/j.bmcl.2005.02.079
Synthesis of \(O \)-galactosyl aldoximes as potent LacNAc-mimetic galectin-3 inhibitors

Johan Tejler\(^a,b\), Hakon Leffler\(^b\), Ulf J. Nilsson\(^a\)

\(^a\) Organic Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden

\(^b\) Section MIG, Department of Laboratory Medicine, Lund University, SE-223 62 Lund, Sweden

Abstract—A panel of anomic oxime ether derivatives of \(\beta \)-galactose were synthesized via the reaction of \(O \)-\(\beta \)-D-galactopyranosylhydroxylamine with aldehydes. The oxime ethers were evaluated as inhibitors against galectin-3 in a competitive fluorescence polarization assay. The best inhibitor, \([E]-O-(\beta-D-galactopyranosyl)-indole-3-carboxaldehyde (E-52)\), had a \(K_d \) value of 182 \(\mu M \), which is 24 times better than methyl \(\beta \)-D-galactopyranoside (\(K_d = 4400 \) \(\mu M \) and in the same range as methyl lactoside (\(K_d = 222 \mu M \)). ©2000 Elsevier Science Ltd. All rights reserved.

Galectin-3\(^1\) is a member of a family of so far 14 mammalian cytosolic proteins (12 known in humans) defined in 1994\(^2\) as follows: “Membership in the galectin family requires fulfillment of two criteria: affinity for \(\beta \)-galactosides and significant sequence similarity in the carbohydrate-binding site…”. Galectin-3 is an intracellular lectin with a correlation of expression and functional implication in inflammation\(^3\) and the aggressiveness and metastatic potential of cancer\(^4\). Galectin-3 appears to mediate most of its functions via interaction of its carbohydrate recognition domain (CRD) with glycoproteins (extracellular and at cell surface), and also non-glycosylated molecules (intracellular). The CRD of galectin-3 is a 130 aa beta-sandwich with a groove on one side that fits about a tetrasaccharide and can be described as four subsites—A, B, C and D\(^6\). Subsite C is built from most of the conserved amino acids characteristic for galectins and binds galactose with many interactions. In natural saccharides, the galactose residue glycosylates another pyranoside that in turn occupies subsite D. The residue in subsite D is typically (1\(\rightarrow\)4)-linked Glc or GlcNAc or (1\(\rightarrow\)3)-linked GlcNAc or GalNAc. Natural saccharides have been proposed as inhibitors of galectins. However, they are difficult to synthesize, sensitive to hydrolysis and they are typically too polar to be used as drugs. One approach to circumvent these disadvantages of glycosides is to prepare inhibitors of galectins in which the saccharide in site D is replaced by simpler and less polar structures. This is reasonable as site D interacts only with a small part of the bound saccharide and therefore might accommodate other structures. Within this context, we herein report the synthesis of anomic aldoxime derivatives of \(\beta \)-galactose via the reaction of \(O \)-\(\beta \)-D-galactopyranosyl hydroxylamine\(^6\) (1) with aldehydes. Non-anomic carbohydrate aldoxime ethers were recently reported as inhibitors of mucin-type \(O \)-glycosylation\(^7\). The anomic oxime ethers are expected to possess improved stability against enzymatic hydrolysis and are relatively stable at physiological pH. In addition, more hydrophobic aldoximes may have improved cell membrane permeability. Hence, a panel of 51 oxime ethers 2-52 were prepared in good to excellent yields by reacting 1\(^6,8\) with different aldehydes of varying size, polarity and geometry\(^9\) (Scheme 1). The lower yields obtained for some of the aldoximes are mainly due to lower purities of starting aldehydes, which resulted in uncharacterized by-products.

Keywords: Galectin-3; aldoxime; inhibitor.

* Corresponding author. Tel.: +46 46 2228218; fax: +46 46 2228209; email: ulf.nilsson@organic.lu.se
and in some cases incomplete reactions.

Dissociation constants for oxime ethers 2-52 (Scheme 1) with galectin-3 were determined by competitive fluorescence polarization\(^9\) and compared to the known reference compounds D-galactose (\(K_d=4400\ \mu M\)), lactose (\(K_d=222\ \mu M\)) and N-acetyllactosamine (\(K_d=67\ \mu M\)) as methyl β-glycosides. The first important overall observation was that the structure of the aldehyde component greatly influenced the affinity of the inhibitors for galectin-3, as several inhibitors were superior to methyl β-D-galactoside and some were equal or even worse. The aminoxo compound 1 (\(K_d=4199\ \mu M\)) and oxime ether 2 (\(K_d=8860\ \mu M\)) had no improved binding as compared to the methyl galactoside. It can thus be concluded that the aminoxo moiety has no or only a minor influence on the \(K_d\) values. Aliphatic moieties (2, 10, 18, 25, 31, 32, 43, 46, 50) had no effect or resulted in even weaker binding as compared to 1. Furthermore, only a minor improvement of binding, as compared to 1, was seen with an unsubstituted phenyl 47 (\(K_d=3473\ \mu M\)). However, a hydroxyl group at ortho (3, \(K_d=1193\ \mu M\)) or meta (11, \(K_d=1835\ \mu M\)) position of phenyl oximes appeared important, while a hydroxyl at para position (19) resulted in slightly weaker binding. Dihydroxylation (26, 33, and 39) further improved the affinity for galectin-3, although the relatively strong inhibition by the 2,4- and 3,4-di-hydroxylated 39

Scheme 1. Synthesis of aldoximes 2-52. Yield and \(K_d\) values (yield/\(K_d\)) given in % and \(\mu M\), respectively.

and 33 is difficult to rationalize as they carry one hydroxy group para to the aldoxime group. However, as natural
ligands position a sugar moiety to form hydrogen bonds in subsite D, it is reasonable to assume that the affinity-enhancing effects of the hydroxylated aldoximes (3, 11, 26, 33, and 39) are due to hydrogen bonding to subsite D. A nitro group in meta position (14, K_d= 527 µM) was important, while a nitro group in ortho (6, K_d= 9263 µM) or para (22, K_d= 2242 µM) position did not result in strong inhibition. Thus, the position of the nitro group was critical for improved binding to galectin-3. An additive effect from hydroxyl and nitro groups was also observed; compare 3 and 14 with 36 (K_d=359 µM). A bromo substituent conferred low K_d values; compare 35 (K_d= 649 µM) with 3 and compound 28 (K_d= 691 µM) with 47. Three of the best inhibitors contained bicyclic aromatic moieties, such as a naphthalene 44 (K_d=369 µM), quinoline 45 (K_d=623 µM) or indole 52 (K_d=331 µM). It is also clear that the carbohydrate should be attached at carbon 1 on naphthalene; compare 44 and 51, or carbon 4 on quinoline 45, i.e. the position next to the second aromatic ring, in order to confer low K_d values. Synthesis of oxime ethers normally yields predominantly the E-isomer and most compounds were obtained as pure E-isomers in this work. However, twelve oxime ethers (7,14, 15, 18, 22, 23, 25, 32, 36, 44, 46, 52) were obtained as mixtures (E/Z 10/1 to 3/1). Assignment of E/Z-conformations were based on chemical shifts of oxime protons. A successful attempt to separate the isomers of the indole-3-carbaldoxime 52 (E/Z 3/1) was made using C-18 RP-HPLC and pure [E]- and [Z]-indole-3-carbaldoxime were isolated. Unfortunately, attempts to separate the E/Z-isomers of 14, 44 and 45 were unsuccessful. The E- and Z-isomers of 52 displayed different K_d values with the E-isomer (K_d=182 µM) being better than the Z-isomer (K_d=549 µM), which suggests that a close contact between the indole ring and galectin-3 binding site confers selectivity towards the E-isomer. In order to exclude the possibility of E/Z-isomerization during biological evaluations, compound E-52 was dissolved in deuterated bioassay buffer (PBS, pH 7.2) and analysed with 1H NMR for 6 days. No E/Z-isomerization could be observed and as inhibitors were dissolved in buffer and evaluated as galectin-3 inhibitors within the same day, we conclude that E/Z-isomerizations do not interfere with evaluation of the pure isomers of 52.

In conclusion, through a panel of structurally simple galactosyl oxime ethers, the glucose moiety of lactose has been replaced by less complex organic structures that provide improved affinity (K_d= 182 µM for E-52) for galectin-3 as compared to methyl lactoside (K_d= 222 µM). Furthermore, the indole derivative E-52 show 24 times affinity enhancement for galectin-3 as compared to methyl β-D-galactoside. The use of oxime ethers results in less hydrogen bonding and less polar molecules, possibly with improved stability against enzymatic hydrolysis, and thus constitutes an advancement towards novel galectin inhibitors with improved pharmacological properties as compared to natural ligands. Finally, combination of the present strategy with the previously published targeting of subsite B11,15 might give much stronger binding inhibitors with improved pharmacological properties.

Acknowledgements

This work was supported by the program “Glycoconjugates in Biological Systems” sponsored by the Swedish Strategic Research Foundation, the Swedish Research Council, Lund University Research School in Pharmaceutical Science, and the Swedish Strategic Research Foundation.

References and notes

9. Typical procedure for the synthesis of O-(β-D-galactopyranosyl)-carbaldoximes 2-52: To 1 (15 mg, 77 µmol) and indole-3-carboxaldehyde (13 mg, 88 µM) dissolved in water (0.6 mL) and THF (0.6 mL) was added 0.1 M HCl (76 µL, 0.1 eq.) and the reaction mixture was stirred over night. The mixture was neutralized with 0.1 M NaHCO₃ and concentrated under reduced pressure. The residue was dissolved in H₂O and applied to C-18 silica (5 g). Elution with a gradient of MeOH in H₂O and lyophilization gave 52 (21.5 mg, 87%). HRMS (FAB+) calcd. for C₃H₆NO₄Na [M+Na]⁺ 345.1063 found 345.1071. 1H NMR (300 MHz, CD₃OD) for E isomer: δ 3.61-3.78 (m, 5H, H-2, H-3, H-5, H-6, H-6'), 3.91 (dd, 1H, H-4), 5.04 (d, 1H, J=8.9 Hz, H-1), 7.26-7.31 (m, 2H,
Ar-H), 7.49 (d, 1H, J=7.6 Hz, Ar-H), 7.61 (s, 1H, Ar-H), 7.98 (bd, 1H, J=6.9 Hz, Ar-H), 8.51 (s, 1H, NCH). For Z isomer δ 3.74-3.83 (m, 4H, H-3, H-5, H-6, H-6'), 3.90 (dd, 1H, J=8.2, 1.7 Hz, H-2), 3.99 (dd, 1H, J=3.3 Hz, H-4), 5.11 (d, 1H, J=8.2 Hz, H-1), 7.24-7.34 (m, 2H, Ar-H), 7.55 (bd, 1H, J=7.3 Hz, Ar-H), 7.84 (bd, 1H, J=7.2 Hz, Ar-H), 7.98 (s, 1H, Ar-H), 8.30 (s, 1H, NCH). The O-(β-D-galactopyranosyl)-carboxaldehydes 2-52 were >99% pure as determined by 1H NMR except for 36 (90% pure), 15 (85% pure), 9 (80% pure), 17 (75% pure), and 30 (95% pure).

Synthesis of O-galactosyl aldoximes as potent LacNAc-mimetic galectin-3 inhibitors

Johan Tejler, Hakon Leffler, Ulf J. Nilsson*