Desflurane results in higher cerebral blood flow than sevoflurane or isoflurane at hypocapnia in pigs.

Holmström, Anders; Rosén, Ingmar; Åkeson, Jonas

Published in:
Acta Anaesthesiologica Scandinavica

DOI:
10.1111/j.0001-5172.2004.00361.x

2004

Citation for published version (APA):
Desflurane results in higher cerebral blood flow than sevoflurane or isoflurane at hypocapnia in pigs

A. HOLMSTROM1, I. ROSEN2 and J. ÅKESON1
Departments of 1Anaesthesia and Intensive Care, Experimental Research and 2Clinical Neurophysiology, Malmö University Hospital, Lund University, Malmö, Sweden

Background: In clinical neuroanaesthesia, the increase in cerebral blood flow (CBF) and intracranial pressure caused by the cerebral vasodilative effects of an inhalational anaesthetic agent is counteracted by the cerebral vasoconstriction induced by hypocapnia. Desflurane and sevoflurane may have advantages over the more traditionally used isoflurane in neuroanaesthesia but their dose-dependent vasodilative effects at hypocapnia have not been compared in the same model using truly equipotent minimal alveolar concentrations (MACs).

Method: Desflurane, sevoflurane and isoflurane were administered in a randomized order to six pigs at 0.5 and 1.0 MAC. The intra-arterial xenon clearance technique was used to calculate CBF. Blood pressure was invasively monitored. Cerebral and systemic physiological variables were recorded first at normocapnia (PaCO2 5.6 kPa) and then at hypocapnia (PaCO2 3.5 kPa). Electroencephalographic (EEG) activity was continuously recorded.

Results: None of the three agents abolished cerebrovascular reactivity to hyperventilation, and at 0.5 MAC all had similar effects on CBF at hypocapnia. Desflurane at 1.0 MAC was associated with 16% higher CBF (P = 0.027) at hypocapnia than isoflurane, and with 24% higher CBF (P = 0.020) than sevoflurane. There was no seizure activity in the EEG.

Conclusion: More cerebral vasodilation at hypocapnia with high doses of desflurane than with sevoflurane or isoflurane indicates that desflurane might be less suitable for neuroanaesthesia than sevoflurane and isoflurane.

Accepted for publication 5 January 2004

Key words: Anaesthesia; cerebral blood flow; cerebrovascular reactivity; desflurane; inhalational; isoflurane; sevoflurane; swine.

Materials and methods

The Ethics Committee of Animal Studies at Lund University approved the study protocol, and the experiments were carried out at the Department of Experimental Research, Malmö University Hospital, Lund University, Sweden.

Procedures

Six juvenile pigs of Swedish domestic breed (mean weight ± SEM, 20.3 ± 0.8 kg) were used. The pigs were fasted over night but had free access to water.

The animals were anaesthetized with 200 mg of propofol and 8 mg of vecuronium intravenously (i.v.), endotracheally intubated and ventilated with an oxygen-nitrogen mixture containing 40% of oxygen in a rebreathing anaesthesia circuit fitted with a soda lime absorber and a bag-in-bottle ventilator. Desflurane was administered with an Ohmeda Tec 6 vaporizer (Ohmeda, Helsinki, Finland), whereas sevoflurane and isoflurane were administered with an Ohmeda Tec 6 vaporizer (Ohmeda, Helsinki, Finland).
Signals were amplified (amplification factor: 10^4), fil-
electrode inserted subcutaneously in the neck. The
ions of the cerebral hemispheres, with a ground
inserted subcutaneously over frontal and occipital
nal NaI scintillation detector. Unless some artefact
tainted the washout curve, only one injection of tracer
washout pattern of the tracer as recorded by an exter-
B Simonsen Medical AS, Denmark) from the cerebral
of Medical Technology, Malmö University Hospital,
ected (high pass: limit 0.5 Hz; low pass: limit 30 Hz),
perature was measured.
haemodynamics were invasively monitored, and tem-
continuously recorded and digitally stored. Systemic
was made at each measure point. The reliability of this
was an equilibration period (60 min). The inhalational agents were
iation had been long enough to reduce the
difference between inspired and expired concentra-
tions of each study drug at the desired MAC level to
no more than 0.3\% for desflurane and to no more than
1.0 or 1.0
1 of vecuronium. Each animal was given all
three drugs in a predetermined even crosswise order
(Table 1) after exposure to 1.0—1.3 MAC of the first agent
also used for anaesthesia during surgical preparation.
Table 1
The order in which each of the six animals was exposed to the study drugs.
<table>
<thead>
<tr>
<th>Experimental animal number</th>
<th>Study drug administered during</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>first exposure</td>
</tr>
<tr>
<td>1</td>
<td>sevoflurane</td>
</tr>
<tr>
<td>2</td>
<td>sevoflurane</td>
</tr>
<tr>
<td>3</td>
<td>desflurane</td>
</tr>
<tr>
<td>4</td>
<td>desflurane</td>
</tr>
<tr>
<td>5</td>
<td>isoflurane</td>
</tr>
<tr>
<td>6</td>
<td>isoflurane</td>
</tr>
</tbody>
</table>
and isoflurane were administered with Penlon vapor-
izers (Penlon, UK). Inspiratory and expiratory contents
of oxygen, carbon dioxide and inhalational agent were
monitored with an Ohmeda 5250 RGM side-stream
agent monitor (Ohmeda, Helsinki, Finland). Vaporizers
and agent monitor were calibrated by the Department
of Medical Technology, Malmö University Hospital,
before the experiments. An external Warmtouch™
heating device (Mallinckrodt, Northampton, UK) was
used to keep body temperature within a physiological
range (38.1 ± 0.1°C) throughout experiments. Muscle
paralysis was maintained by i.v. infusion of 1.0 mg
kg\(^{-1}\) h\(^{-1}\) of vecuronium. Each animal was given all
three drugs in a predetermined even crosswise order
(Table 1) after exposure to 1.0—1.3 MAC of the first agent
also used for anaesthesia during surgical preparation.
The MAC values used here – 13.8 ± 0.4\% for
desflurane, 4.4 ± 0.1\% for sevoflurane and 2.7 ± 0.1\%
for isoflurane – had been determined in a previous
investigation (2).
Surgical preparation has recently been extensively
described (2) and is reported briefly here. The internal
carotid artery was cannulated for intra-arterial injection
of tracer substance (\(^{133}\)Xe) for measurements of
CBF, which was calculated (Novo Cerebrograph 10a,
B Simonsen Medical AS, Denmark) from the cerebral
washout pattern of the tracer as recorded by an exter-
nal NaI scintillation detector. Unless some artefact
tainted the washout curve, only one injection of tracer
was made at each measure point. The reliability of this
model for repeated measurements of CBF with the
xenon washout technique has previously been veri-
ified (5, 6). Bipolar electroencephalographic (EEG) sig-
nals were recorded by two pairs of needle electrodes,
inserted subcutaneously over frontal and occipital
regions of the cerebral hemispheres, with a ground
electrode inserted subcutaneously in the neck. The
signals were amplified (amplification factor: 10^6), fil-
tered (high pass: limit 0.5 Hz; low pass: limit 30 Hz),
continuously recorded and digitally stored. Systemic
haemodynamics were invasively monitored, and tem-
perature was measured.
Infusion of 500 ml of a 6\% solution of hydroxyethyl
starch (Haes-steril, Meda, Sweden) was given i.v. during
preparation to compensate for surgical blood loss and
optimize haemodynamic stability, and a further 250 ml
was infused during the rest of the experiment. In addi-
ton, a balanced 2.5\% glucose solution was infused at a
rate of 4–5 ml kg\(^{-1}\) h\(^{-1}\) during the entire experiment.
All animals were given all three agents in sequence
(Table 1, Fig. 1) and received first 0.5 and then 1.0
MAC of the present agent. Each series of measure-
ments was preceded by a 60-min equilibration period
with 0.5 MAC of the intended agent and normoventi-
lation with 6 l min\(^{-1}\) of fresh gas flowing through the
anaesthesia circuit. Measurements were made when
equilibration had been long enough to reduce the
difference between inspired and expired concentra-
tions of each study drug at the desired MAC level to
no more than 0.3\% for desflurane and to no more than
0.1\% for sevoflurane or isoflurane. Measurements
were made first at normocapnia and then at hypocap-
nia induced by increasing ventilation by 50\% for at
least 15 min. Ventilation was titrated according to
blood gas analyses to achieve the desired level of
\(\text{PaCO}_{2}=5.6\ \text{kPa}\) for normocapnia and 3.5 kPa for
hypocapnia. Experiments lasted between 9 and 11 h.

![Fig. 1. The experimental procedure. After intravenous induction with propofol, surgical preparation ('Surg prep') was performed and after a 60-min equilibration period ('Eq'), measurements were started with the first inhalational anaesthetic agent ('Agent 1'). Between each of the three inhalational agents ('Agent 1', 'Agent 2', 'Agent-3') there was an equilibration period (60 min). The inhalational agents were given one at a time with the administered dose being a fraction (0.5, 1.0 or 1.0—1.3) of the minimal alveolar concentration (MAC) value for that agent. Cerebral blood flow (CBF) and systemic haemodynamic pressures were recorded (measuring points indicated by arrows) at both normocapnia (N) and hypocapnia (H).](image-url)
Invasive intracranial measurements were avoided in the present study to avoid possible interference with normal intracranial compliance.

At each point of measurement, CBF, mean arterial blood pressure (MAP) and core temperature were measured. Corresponding EEG recordings were analyzed for potential patterns of seizure activity or burst suppression.

Statistical methods

Statistical power analysis, using paired comparisons, showed that six animals would be required to detect a 10–15% difference in CBF between the study drugs at hypocapnia with a power of 80% and a probability of 95%.

Results are given as mean ± 1 standard error of the mean (SEM). A repeated measure ANOVA with Bonferroni-correction was used for comparisons between agents. Paired *t*-test with Bonferroni-correction was used for comparisons of hypocapnic data to normcapnic data. The level of statistical significance was *P* < 0.05. Statistical analyses were made with the SPSS for Windows software, release 11.5.1 (SPSS Inc, Chicago, IL).

Results

For all three drugs CBF (Fig. 2) was significantly lower at hypocapnia compared with normocapnia at both 0.5 and 1.0 MAC. MAP (Fig. 3) was not significantly different between the two PaCO2 levels for any of the three drugs.

![Fig. 2. Cerebral blood flow (CBF) at normocapnia and hypocapnia (mean ± SEM, n = 6) at 0.5 and 1.0 minimal alveolar concentrations (MACs) for the three studied inhalational agents desflurane, sevoflurane and isoflurane. Significant differences (*P* < 0.05) between normocapnia and hypocapnia are indicated by *, between desflurane and isoflurane by +, and between desflurane and sevoflurane by ‡.](image_url)

The agents did not differ significantly in their effect on CBF (Fig. 2) at hypocapnia at 0.5 MAC. However, at hypocapnia and 1.0 MAC, CBF with desflurane was 16% higher than with isoflurane (*P* = 0.027) and 24% higher than with sevoflurane (*P* = 0.020). Sevoflurane and isoflurane did not differ significantly in effects on CBF.

With desflurane, MAP (Fig. 3) was 22% lower at 0.5 MAC (*P* = 0.020) and 17% lower at 1.0 MAC (*P* = 0.030) than with sevoflurane, whereas no other significant differences in effects on MAP were found between the study drugs.

There was no seizure activity in the EEG for any study drug at any ventilation modality. At 1.0 MAC, but not at 0.5 MAC, there were burst suppression patterns for all study drugs in all animals.

Discussion

Experimental design

Isoflurane is the ideal agent for reference when studying newer inhalational agents since it is often the inhalational agent of choice in clinical neuroanaesthesia (3, 4). Desflurane and sevoflurane have been compared to isoflurane in various neuroanaesthesiological aspects (1, 2, 7–9), but discussion continues regarding desirable and undesirable effects (3, 4). Negative side-effects of inhalational agents such as cerebral vasodilation and attenuation of vasoreactivity to hypocapnia are dose-dependant (1, 9, 10), and reliable comparison between agents of these effects...
with the level of anaesthesia defined by MAC consequently requires equipotent MAC values. Since MAC is highly method- and species-dependent, with values varying considerably (2, 11—13), comparable MAC values for the three drugs compared here had been obtained in a recent study (2).

Invasive intracranial measurements requiring cranial burr-holes and dural incisions were avoided due to the risk of compromising the aim of the study — comparison of the cerebrovascular effects of the three anaesthetic agents at hypocapnia with no other influence on intracranial compliance than from the study drugs themselves. Invasive intraparenchymal monitoring of intracranial pressure (ICP), when performed under less than total sterility in animal experiments, may cause significant changes in ICP over a period of several hours (14).

Since statistically significant changes over time in baseline CBF during inhalational anaesthesia may occur over a period of several hours (15, 16), the order of the three drugs in each experiment was randomized.

Cerebral vasoreactivity to hypocapnia
Effects on MAP must be taken into consideration when comparing CBF values obtained under inhalational anaesthesia, since impairment of cerebrovascular autoregulation may occur with high doses of volatile anaesthetic agents (17—19). Since the differences in MAP between normocapnia and hypocapnia were small, the decline in CBF on hyperventilation indicates that none of the agents abolished CO₂-reactivity at either MAC level although hypocapnia was induced after the intended steady-state concentration of inhalational agent had been achieved. In previous studies, sevoflurane (20, 21) and desflurane (22) have both been reported not to abolish cerebral vasoreactivity to hypocapnia. Sevoflurane has also been found to resemble isoflurane with respect to dose-dependent impairment of hypocapnia-induced cerebral vasconstriction in vitro (7). In contrast to older agents like halothane, isoflurane is known to preserve CO₂-reactivity well enough to enable hyperventilation to reduce the drug-induced cerebral hyperaemia during steady-state exposure to the inhalational agent (23, 24). The present study confirms this finding and also indicates that desflurane and sevoflurane both share this property of isoflurane.

Comparison of CBF at hypocapnia
At hypocapnia, all three agents had similar effects on CBF at lower concentrations. At higher concentrations and hypocapnia, sevoflurane and isoflurane were still similar in their effects on CBF, whereas desflurane was associated with significantly higher CBF. Although MAP was significantly lower with desflurane than with sevoflurane, CBF was still higher with desflurane than with sevoflurane. The present study indicates that the more extensive cerebral vasodilation at normocapnia found to occur with higher doses of desflurane than with equianæsthetic doses of isoflurane or sevoflurane (2) still occurs after hyperventilation.

This more pronounced property of desflurane to increase the cerebral blood volume is in concordance with the findings in a recent study in children (25) where all three agents increased ICP as compared with baseline despite moderate hyperventilation but with a tendency towards higher ICP with desflurane.
Electrocortical activity
Sevoflurane has been reported to cause epileptiform electrocortical activity (26), but in this study none of the studied agents was associated with epileptiform EEG activity. Instead, there was similar dose-dependent suppression of electrocortical activity by all three study drugs with burst-suppression EEG patterns found in all animals exposed to 1.0 MAC of either study drug.

Conclusion
Desflurane and sevoflurane, like isoflurane, do not abolish CO₂-reactivity, and in lower doses they are similar to isoflurane in their cerebral vasodilating effects at hypocapnia. However, in higher doses desflurane induces more vasodilation at hypocapnia than both sevoflurane and isoflurane, which could indicate that desflurane is less suitable for clinical neuroanaesthesia.

Acknowledgements
This study was supported by financial grants from the Medical Faculty at Lund University, Lund, from the Swedish Medical Research Council (grant 084), and from Region Skåne, Kristianstad, Sweden.

We are indebted to Olle Wickström for EEG analysis and to Jan-Ake Nilsson for valuable statistical advice.

References

Address:
Anders Holmström
Department of Anaesthesia and Intensive Care
Malmö University Hospital 04226
SE-205 02 Malmö
Sweden
e-mail: anders.holmstrom@skane.se