Validating the existence of the supercraton Vaalbara in the Mesoarchaean to Palaeoproterozoic

Gumsley, Ashley

2017

Document Version:
Publisher’s PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Gumsley, A. (2017). Validating the existence of the supercraton Vaalbara in the Mesoarchaean to Palaeoproterozoic Lund: Lund University, Faculty of Science, Department of Geology, Lithosphere and Biosphere Science

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Validating the existence of the supercraton Vaalbara in the Mesoarchaean to Palaeoproterozoic

One of the earliest known potential crustal configurations is that of Vaalbara, which incorporates ancient crust in southern Africa and Western Australia. In this thesis, six papers are presented that have tested the validity of the existence of Vaalbara using new temporal and spatial constraints from the geological record of anonymously large, short-lived volcanic provinces. We achieved this by sampling many of these ancient volcanic units in South Africa and Australia, and made age determinations which were complemented by paleomagnetic studies. The principle conclusion is that these data provide little support for a direct connection between these two ancient pieces of crust from 3 to 2 billion years ago. Instead, it is proposed that these pieces of crust that formed Vaalbara was part of a much larger continent in the middle Archean to early Proterozoic. This continent or supercontinent included pieces of ancient crust in the U.S.A., Canada, Finland, Russia, Ukraine, as well as in India, and to which herein is referred to as ‘Supervaalbara’.

The author, Ashley Gumsley, is a geologist trained at both Lund University in Sweden and the University of Johannesburg in South Africa. He has worked as an exploration geologist looking for economic deposits of copper and gold in Botswana and Tanzania before deciding to pursue a career in research. Ashley's academic interests are in Precambrian geology, utilizing mostly geochronologic and paleomagnetic tools to solve fundamental problems in our knowledge (or lack thereof) of the history Earth, its origin and evolution.
Validating the existence of the supercraton Vaalbara in the Mesoarchaean to Palaeoproterozoic

Ashley Gumsley

Lithosphere and Biosphere Science
Department of Geology

DOCTORAL DISSERTATION
by due permission of the Faculty of Science, Lund University, Sweden.
To be defended in Pangea, Department of Geology, Sölvegatan 12, Lund,
on the 22nd of September 2017 at 13:15.

Faculty opponent
Professor Richard Hanson
Texas Christian University
In this thesis, the longevity and continuity of the Vaalbara supercraton is addressed in six papers aimed at placing new temporal and spatial constraints on the supercraton in the Mesoarchean to Paleoproterozoic. It has been speculated since the 1960s that the Kaapvaal Craton in southern Africa, together with the Pilbara Craton in Western Australia existed as a single landmass during the Precambrian – the Vaalbara supercraton. Many studies have demonstrated the geological similarities between the cratons, particularly in terms of their Mesoarchean to Paleoproterozoic unconformity-bounded sequences. These unconformity-bounded sequences have continuously been refined and developed, especially since the 1990’s. The first main stratigraphic similarities lie in the volcanic and sedimentary successions found in the Neaorarchean Fortescue Group and Ventersdorp Supergroup basins on the Pilbara and Kaapvaal cratons, respectively, along with other associated basins. The unconformably overlying Hammersley (and Turke Creek) Group and Transvaal Supergroup on the Pilbara and Kaapvaal cratons, respectively, also show many stratigraphic similarities, and both host world-class deposits of hydrothermally-upgraded iron formations. However, no marker beds or precise age matches have yet been made, especially in the extensive Mesoarchean to Paleoproterozoic mafic dyke swarms and sill provinces present in each craton from the time interval discussed in this thesis. Regardless, the geological discussions have been aided by geochronological and paleomagnetic studies, which have both credited and discredited the existence of the Pilbara and Kaapvaal cratons as nearest neighbours for the time interval between ca. 2.87 Ga and ca. 2.65 Ga.

In this thesis, the so-called magmatic barcode record of large igneous provinces (LIPs), which are extensive and short-lived volcanic events, of the Kaapvaal Craton is presented together with that of the Pilbara Craton in conjunction with previous geochronological and paleomagnetic studies. This magmatic barcode record refines temporal, and through paleomagnetism, spatial constraints, and invalidates the existence of Vaalbara as a distinct continuous supercraton. Mafic and paleomagnetic linkages between the 2.99-2.98 Ga Usushwana Complex on the Kaapvaal Craton and the ca. 2.87 Ga Millindinna Complex on the Pilbara Craton are shown to be incorrect with new ages for the Usushwana Complex and Badplaas dyke swarm presented in Gumsley et al. (2015). Extensive mafic dyke swarms associated with Neaorarchean Fortescue volcanoism on the Pilbara Craton and Ventersdorp volcanoism on the Kaapvaal Craton also show less similarities from new paleomagnetic and geochronological constraints. These constraints are presented in Gumsley et al. (2016) and Evans et al. (2017) for the newly identified White Mfolozi and Black Range mafic dyke swarms, respectively, on the Kaapvaal and Pilbara cratons. Gumsley et al. (2017) and Kampmann et al. (2015) also present a new LIP, the Ongeluk, on the Kaapvaal Craton which has not been identified on the Pilbara Craton. This new LIP is composed of the Ongeluk Formation in the Transvaal Supergroup on the western margin of the Kaapvaal Craton, as well as the Westerberg Sill Province and a north-trending mafic dyke swarm. The Ongeluk LIP appears to break some of the stratigraphic comparison between the upper Transvaal Supergroup on the Kaapvaal Craton and the Turke Creek Group on the Pilbara Craton. In addition, a new late Paleoproterozoic mafic dyke swarm, the Tsining swarm, is presented for the western Kaapvaal Craton in Alebouyeh Semami et al. (2016), which is correlated with Hartley Formation volcanoism in the Olifantshoek Supergroup. This magmatic event may also define a new LIP on the western Kaapvaal Craton. This mafic dyke swarm and its associated volcanoism has also not been documented on the Pilbara Craton.

Instead, it is proposed that the Pilbara and Kaapvaal cratons were part of a much larger continent or supercontinent in the Neaorarchean to Paleoproterozoic. This large crustal block likely included the Wyoming, Superior and Hearne cratons of North America, together with the Kola-Karelia Craton located between Russia and Finland, as well as possibly the Singhbhum Craton of India and the Samartia terrane of Russia and Ukraine. This continent or supercontinent, termed ‘Supervaalbara’ here, allows for the Kaapvaal and Pilbara cratons to share many geological similarities without being nearest neighbours, along possibly the same passive margin. The geological evolution of all these cratons is very similar, particularly in the Paleoproterozoic, and which may have been driven by global processes. These global processes may include true polar wander, the submergence and subsequent remergence of continents with sea-level rise and fall, as well as atmospheric oxygenation and global glaciation. Paleomagnetic studies provide further continuity supporting the existence of Supervaalbara, which appears geologically distinct from the Rae family of cratons, suggesting perhaps two different continents in the early Paleoproterozoic before the assembly of the supercontinent Columbia (Nuna) in the late Paleoproterozoic.
KOCHAM CIE
Contents

LIST OF PAPERS

1. INTRODUCTION

2. LIPS AS TEMPORAL AND SPATIAL MARKERS

3. TOOLS OF THE TRADE: U-PB GEOCHRONOLOGY

4. TOOLS OF THE TRADE: PALEOMAGNETISM

5. VAALBARA
 5.1. Introduction
 5.2. The Paleo- and Mesoarchean
 5.3. The early Neoarchean
 5.4. The late Neoarchean and Paleoproterozoic
 5.5. Paleomagnetism and configuration of Vaalbara

6. DISCUSSION

7. OUTLOOK AND REFLECTION

8. SUMMARY OF PAPERS
 8.1. Paper I, Gumsley et al. 2015 (Precambrian Research)
 8.2. Paper II, Kampmann et al. 2015 (Precambrian Research)
 8.3. Paper III, Gumsley et al. 2016 (GFF)
 8.4. Paper IV, Alebouyeh Semami et al. 2016 (GFF)
 8.5. Paper V, Gumsley et al. 2017 (Proceedings of the National Academy of Sciences of the United States of America)

9. ACKNOWLEDGMENTS

10. REFERENCES

SVENSK SAMMANFATTNING
Validating the existence of the supercraton Vaalbara in the Mesoarchaean to Palaeoproterozoic

List of papers

This dissertation is based on six appended papers, which are listed below. Papers I and II have been reproduced with permission from Elsevier. Papers III, IV and VI have been reproduced with permission from the Taylor & Francis Group. Paper V has been reproduced with permission from the Proceedings of the National Academy of Sciences of the United States of America.

Paper I:

Paper II:

Paper III:

Paper IV:

Paper V:

Paper VI:
1. Introduction

On the 6th of January 1912, Alfred Wegener presented his hypothesis on the movement of the continents through geological time, and proposed that they were once connected in a hypothetical supercontinent which later became known as Gondwana (e.g., Wegener, 1929). Despite drawing evidence from the geological and fossil records, as well as the apparent fit of continents such as Africa and South America, Alfred Wegener garnered very little scientific support for his ideas. He lacked a mechanism to support his ‘continental drift hypothesis’. It was not until the 1960’s that scientific community began to take the continental drift hypothesis seriously with the advent of paleomagnetic studies. Paleomagnetic studies could predict the placement of the continents on Earth as a particular time for a particular event, and it soon became evident that India, for example, was not always in its present location. Additionally, in the 1960’s, the theory of plate tectonics was born out of the continental drift hypothesis. The mapping of the sea floor using a variety of geophysical methods revealed the existence of oceanic ridges and trenches which could be linked to seafloor spreading and subduction zones. These features presented direct evidence for the collision and separation of the continents presented in the Wilson Cycle (Wilson, 1963). The Wilson Cycle was the mechanism necessary to compliment Alfred Wegener’s continental drift hypothesis. This was further supported in the 1990’s with the launch of the global positioning system of satellites, which have been able to directly record the movement of the continents directly down to millimeter scales.

With the ability to be able to reconstruct Earth’s youngest supercontinent, it soon became evident with developments in geochronology and paleomagnetism that absolute and relative temporal and spatial constraints could be placed on the continents throughout geological time. It also became known through these studies that the process of supercontinent formation and dispersal was actually a cycle, and that (possibly) many supercontinents existed before Pangea. This supercontinent record, however, becomes increasingly fragmentary back in deep time, as oceanic (and to a much lesser extent, continental) crust is either created or destroyed continuously. Destruction includes both subduction and erosion, and many pieces of crust are also altered and overprinted through deformation and metamorphism during orogenesis. The likeliness of orogenesis occurring on ancient crust increases with time.

On the present day Earth, there are approximately thirty-five relatively well-preserved ancient pieces of Archean crust preserved globally, called cratons (Figure 1; e.g., Bleeker, 2003). These cratons form the nucleus of the present-day continents, and are a ‘window’ back into the environments of the early Earth. In addition, there is a less defined number of poorly preserved slivers of Archean crust. Clues to supercontinents before the extensively studied Pangea, although continuously refined (e.g., Domeier et al., 2012), become increasingly speculative and conceptual, especially with a fragmentary record which has often been altered. This is also due to the lack of matches of near-complete sedimentary and volcanic strata with a known fossil record. This also includes the lack of a puzzle piece-like fit between the continents, and the loss of preserved oceanic crust. However, the amalgamation and separation of the continents through time became the first natural beacons in spatial paleogeography. This paleogeographic process is aided using temporal frameworks guided by geochronology to match deeply eroded mountain belts (orogenic belts) together, for example, the SAMBA (South America and Baltica) model of Johansson (2009). A global compilation of U–Pb ages of zircon from these orogenic belts, felsic plutons and batholiths, as well as provenance studies display a number of peaks reflecting periods of crustal preservation and/or production. Peaks in preservation and/or production age spectra are thought to correlate with periods of supercontinent assembly, whereas troughs reflect continental dispersal (e.g., Condic, 1998; Condic and Aster, 2010; Hawkesworth et al., 2009; 2010). Although the exact configuration of these Precambrian supercontinents (or supercratons) still remains conjectural (e.g., Reddy and Evans, 2009), there is growing evidence for the existence of at least two supercontinents before Pangea. Precambrian supercontinents include the Neoproterozoic Rodinia (e.g., Li et al., 2008), and the Paleoproterozoic Nuna/ Columbia (e.g., Hoffman, 1997; Rogers and Santosh, 2002), and the less accepted Paleoapangea of Piper (2010). These supercontinents are clearly reflected in the zircon production/preservation record (e.g., Hawkesworth et al., 2010). Additionally, zircon age spectra clearly point toward either a Neoarchean supercraton, or supercontinent (Condic, 1998; Condic and Aster, 2010; Hawkesworth et al., 2009; 2010). Bleeker (2003) sought to address this by proposing the existence of either a single supercontinent, termed Kenorland by Williams et al. (1991), or clans of cratons or supercratons. The original Kenorland concept comprises the Archean provinces of North America (e.g., Williams et al., 1991), although Aspler and Chiarenzelli (1998) proposed the inclusion of Siberia and Baltica into the Kenorland configuration. Aspler and Chiarenzelli (1998) also proposed the existence of a second Neoarchean supercontinent: Zimvaalbara, which includes the Zimbabwe, Kaapvaal, Pilbara and São Francisco cratons, and possibly other cratonic blocks of present-day India. The single large Archean supercontinent proposed by Bleeker (2003) was thought to have included all these crustal blocks as an end-member solution. However, Bleeker (2003) also proposed a second end-member solu-
Validating the existence of the supercraton Vaalbara in the Mesoarchaean to Palaeoproterozoic

Validating the existence of the supercraton Vaalbara in the Mesoarchaean to Palaeoproterozoic

... tion that may have included clans of cratons, namely Superia, Sclavia and Vaalbara (Figure 1). The term Vaalbara was first proposed by Cheney (1996), building on the early work by Trendall (1968) and Button (1979), and the existence of Vaalbara forms the focus of this thesis. Sclavia and Superia, and more recently, Zimgarn, however, have been the subject of a number of much more recent studies (e.g., Bleeker, 2003; Bleeker and Ernst, 2006; Nilsson et al., 2010; French and Heaman, 2010; Smirnov et al., 2013).

2. LIPs as temporal and spatial markers

Many cratons show rifted or faulted margins, which infers that they are were fragments of larger ancestral landmasses. On many of these cratonic margins, large igneous provinces (LIPs) are preserved. LIPs are commonly linked to a mantle plume which may trigger supercontinental break-up into fragments (e.g., Courtillot et al., 1999; Storey, 1995). LIPs are anonymously high volume volcanic eruptions (with flood basalts that may extend several thousand kilometers) that are short-lived (usually less than ten million years) (Coffin and Eldholm, 1994; Ernst, 2014). Flood basalts associated with LIPs are temporal markers in the stratigraphic record, but are typically weathered and eroded away in Precambrian supracrustal rock successions. However, the deep-seated plumbing system of LIPs is typically well-preserved in the underlying basement terrane. This feeder plumbing system is composed of large-scale mafic dyke swarms and sill provinces, as well as layered intrusions. These intrusions can now be dated with precision and accuracy using isotope dilution-thermal ionization mass spectrometry (ID-TIMS) on the geochronometer baddeleyite (Heaman and LeCheminant, 1993; Krogh et al., 1987). The geochronometer zircon is rarer in mafic rocks. These mafic dyke swarms, sill provinces and layered intrusions are commonly preserved on conjugate margins of cratons that have been rifted apart. Numerous Phanerozoic LIPs have been documented, including continental flood basalts, dykes and sills of the ca. 130 Ma Paraná-Etendeka provinces preserved across present-day South America and Africa in Brazil and Namibia, for example. The formation of these LIPs has been linked to various causal mechanisms in both the lithosphere and asthenosphere, extending all the way down through the mantle to the core-mantle boundary. Mantle plumes are commonly evoked, with hot spot volcanism being the site at the Earth’s surface for thermal upwelling from deep within the mantle (Morgan, 1971). However, there is much debate on both the existence and mechanics of mantle plumes (e.g., Foulger and Natland, 2003; McHone, 2000).
Well-exposed and preserved Archean cratons and cratonic fragments typically display numerous episodes of mafic dyke and sill intrusions associated with LIPs, and therefore a well-defined rock record of mafic magmatism (and LIPs) is recorded. Bleeker and Ernst (2006) introduced the concept of a magmatic ‘barcode’ record of mafic magmatism through time for specific cratonic blocks which can be easily visualized (Figure 2). Each mafic magmatic event from a mafic dyke swarm, sill province, layered intrusion or indeed a continental flood basalt province is defined by a temporal line in the barcode. Biases in this record can include both sampling bias as well as poor age constraints on the LIP event. However, with the recent advances in both separations of baddeleyite (e.g., Söderlund and Johansson, 2002) and dating of these mafic events (e.g., Chamberlain et al., 2010; Heaman and LeCheminant, 2014; Wohlgemuth-Ueberwasser et al., 2015), the magmatic barcode record continues to be refined and developed for each craton. An assessment of a common history between various cratons and terranes is provided by the ability to match up barcode lines of more than one mafic magmatic event (or LIP), to assess whether they were contiguous crustal fragments or nearest neighbours over the time interval of the barcode (Figure 2). Together with geological and geochronological similarities, mafic dyke swarm geometries, geochemistry and importantly, paleomagnetic studies, paleogeographic reconstructions back in time can now be evaluated robustly using this multi-proxy approach. Paleomagnetic studies on these mafic rocks provide records of remnant magnetization recorded by magnetic minerals such as magnetite. These ferromagnetic minerals preserve inclination and declination directions of the magnetic moment preserved in the rocks relative to Earth’s magnetic field at a particular time and place. These inclinations and declinations can in turn be converted into paleopoles with paleo-latitudes and paleo-longitudes back in time for a crustal block at a specific time.

3. Tools of the trade: U-Pb geochronology

Several minerals allow us to determine the age of an igneous or metamorphic rock, and these include zirconium-bearing minerals that take up uranium in their crystal lattice, but only allow for trace amounts of initial lead. These minerals include zirconium silicate or zircon (ZrSiO₄) and zirconium oxide or baddeleyite (ZrO₂), among others, and they are important accessory minerals that can now be routinely separated from coarse-grained igneous rocks. This allows us to employ U-Pb geochronology to both accurately and precisely date an igneous rock using mass spectrometry. U-Pb geochronology utilizes the radioactive decay series of ²³⁸U to ²⁰⁶Pb and ²³⁵U to ²⁰⁷Pb. The rate of radioactive decay from parent to daughter isotopes over time is constant. This constant, known as half-life, was determined by Jaffey et al. (1971) for ²³⁸U and ²³⁵U, and is different for both uranium isotopic systems. Therefore, the ratios of ²⁰⁶Pb/²³⁸U, ²⁰⁷Pb/²³⁵U as well as ²⁰⁷Pb/²⁰⁶Pb are unique at a set time, enabling an age to be determined by mass spectrometry, which measure the intensities and relative concentrations of ²³⁸U, ²³⁵U, ²⁰⁷Pb and ²⁰⁶Pb. The Pb/U isotopic ratios can be plotted in concordia diagram with ²⁰⁶Pb/²³⁸U versus ²⁰⁷Pb/²³⁵U (Figure 3). If an analysis of a sample is determined along a concordia curve (and is deemed concordant) of either ²⁰⁶Pb/²³⁸U against ²⁰⁷Pb/²³⁵U (Wetherill, 1956) as shown in Figure 3.

Figure: 2. A hypothetical magmatic ‘barcode’ (left), illustrating ages of magmatic events in cratons A to D after Nilsson (2016). Cratons A and D show multiple individual matches at T3, T4, T5 and T7. This suggests that these cratons shared a common history in an ancestral landmass between T3 and T7. A hypothetical paleogeographic reconstruction of cratons A and D (right) is show using the geometry of coeval dyke swarms and sill provinces.
Validating the existence of the supercraton Vaalbara in the Mesoarchaean to Palaeoproterozoic

or with $^{206}\text{Pb}/^{238}\text{U}$ against $^{207}\text{Pb}/^{206}\text{Pb}$ (Tera and Wasserburg, 1972), it implies that the two decay systems in the sample have not been disturbed through loss or gain of either uranium or lead. However, deviation above or below the concordia curve in the concordia diagram reflects disagreement in the two isotopic systems, and is termed discordant, also shown on Figure 3. In very young samples, this can reflect the presence of short-lived intermediate daughter isotopes in the decay chain before equilibrium is reached. In zircon, this discordance is often attributed to Pb loss through metamorphism. In baddeleyite, metamorphism produces a zircon rim on the baddeleyite core, resulting in a mixture of primary baddeleyite and secondary zircon which produces this discordance (Heaman and LeCheminant, 1993). Discordance above the concordia curve however is not well understood, and is sometimes attributed to analytical artifacts or incomplete homogenization between sample and tracer solution.

Baddeleyite is used to date coarse-grained silica-under-saturated rocks (e.g., gabbro), which are key components of the feeder system of mafic dykes and sills present in LIPs (e.g., Heaman and LeCheminant, 1993). Baddeleyite is more sensitive to metamorphism than zircon, and readily transforms to secondary polycrystalline zircon in response to changes in temperature, pressure and fluid activity (Heaman and LeCheminant, 1993; Söderlund et al., 2013). Secondary and xenocrystic baddeleyite is rare, and therefore the interpretation of Pb/U baddeleyite dates of mafic rocks is straight forward, providing the igneous crystallization ages of rocks. Age determinations for baddeleyite typically employ either ID-TIMS (isotope dilution-thermal ionisation mass spectrometry), LA-ICP MS (laser ablation-inductively coupled plasma mass spectrometry) or SIMS (secondary ion mass spectrometry) on separated grains, with certain advantages and disadvantages inherent in each analytical technique (e.g., Schaltegger et al., 2015). The ID-TIMS analytical technique typically yields ages with a precision better than 0.1% at 95% confidence intervals (2 sigma). However, the technique is time consuming, and as whole grains are analyzed even the slightest amount of isotopic disturbance, for instance in Pb-loss along margins, will be recorded (i.e., yielding a discordant analysis). The SIMS and LA-ICP MS spot dating techniques offer the ability to restrict analysis to the inner (and usually undisturbed) domain of a baddeleyite grain. Both these techniques can yield ages at sensitivities of approximately 1% precision (2 sigma), with SIMS being more time consuming than LA-ICP MS. Spot sizes can be made down to 5 µm on a SIMS, with the ability to use the aperture to filter out erroneous mass counts and focus the ion beam on the centre of the grain. LA-ICP MS has the advantage of speed, although spot sizes can only realistically be made down to 10 µm. There are many complications inherent to both these spot dating techniques (e.g., down-hole fractionation, matrix affects, mass interference, common Pb, crystal orientation effects, etc.) that require various types of corrections. Therefore, the age of a sample is usually taken from the measured $^{207}\text{Pb}/^{206}\text{Pb}$ ratio.

Figure 3. Wetherill concordia diagram. Left: the concordia curve is an exponential curve composed of $^{207}\text{Pb}/^{235}\text{U}$ and $^{206}\text{Pb}/^{238}\text{U}$ ages from the present time to 4.6 Ga. This diagram allows graphical visualization of discordance. In this example, fraction 3 is the only concordant analyses whereas fractions 1 and 2 are variably discordant. A best-fit regression (discordia) line through all three analyses define two intercepts. The upper intercept is where the discordia intersects the concordia curve is usually taken as the age of the sample. The lower intercept reflects the age discordance developed, for instance by Pb-loss or isotopic mixing. In this case, the lower intercept age is 0 Ma. The $^{207}\text{Pb}/^{206}\text{Pb}$ age is defined by the intersection between the concordia curve and a discordia line for the individual fraction. In the case of normal discordance, a $^{207}\text{Pb}/^{206}\text{Pb}$ age represents a minimum age of the sample. For the concordant fraction 3, $^{207}\text{Pb}/^{235}\text{U}$, $^{206}\text{Pb}/^{238}\text{U}$ and $^{207}\text{Pb}/^{206}\text{Pb}$ ages are statistically identical (i.e. concordant).
4. Tools of the trade: Paleomagnetism

Most rocks, and in particular mafic igneous rocks are magnetic and can preserve a record of Earth's magnetic field through time, termed remnant magnetization. These minerals lock-in a direction and intensity of the magnetic moment at which they formed. This magnetic moment can be used to understand either the past behaviour of the Earth's magnetic field, or provide spatial constraints on the location of an igneous or metamorphic rock at its time of formation. Paleomagnetic studies have been made possible due to ferromagnetic minerals such as magnetite. However, the size and presence of single or multiple domains of the magnetic mineral is also important when evaluating magnetism. When magnetic minerals cool after crystallization, they preserve the direction of Earth's magnetic field through the Curie temperature of a specific mineral. This occurs at approximately 580°C in the case of single domain and chemically pure magnetite. The minerals do not physically rotate into the Earth's magnetic field, which occurs at crystallization temperatures, but record the orientation of the field at the Curie temperature. Remnant rock magnetism allows us to establish paleomagnetic poles for different continents (or cratons), at different times. This is done by using magnetism to establish both inclination and declination vectors of the magnetism, which allows us to determine a paleo-latitude and paleo-longitude or virtual geographic pole (VGP). A statistically relevant series of VGPs allow us to average out paleosecular variation of the magnetic north and south poles, and present a specific paleopole at a specific time.

Using different paleomagnetic poles through time for a fixed piece of Earth's crust (i.e., a craton or continent), allows us to present the motion of the crust relative to a fixed point, either to the southern or northern hemisphere geographic poles. This creates a path which the craton has moved along through time, and is known as an apparent polar wander path (APWP) after Creer et al. (1954). It is important to keep these ‘paths’ relative to a fixed point, which is labelled a 'Euler pole'. This process is relatively straight forward for the last 200 million years, with a good record of oceanic crust preserved since the breakup of Pangaea. However, further back in time, many complications arise in the analysis of such rocks. Paleomagnetic poles require quality criteria that assess their reliability, as defined by van der Voo (1990). Sampling requires the determination of magnetic components present at a number of sites (usually above twenty to balance out paleosecular variation of the magnetic field). Sampling at each site must be statistically reproducible (usually a minimum of at least five specimens per site), with each specimen oriented using both a sun and magnetic compass to correct for human error and sample error imposed by magnetism of the rocks. Geological field tests require either a baked contact, fold or conglomerate/breccia test, in addition to recording a magnetic reversal (Buchan, 2013; van der Voo, 1990) to test the primary nature of the principal magnetic component. The analysis itself also requires that the magnetic component vectors determined in the remnant magnetic field display a mean angle of deviation less than 10°, and for the age of magnetization to equate to the age of crystallization (usually determined in conjunction with the field tests). This also usually requires that there is no paleomagnetic similarity to younger magmatic or metamorphic events in the vicinity which may have overprinted the primary direction obtained. Satisfying all these requirements allows a paleomagnetic pole to become a key paleomagnetic pole as defined by Buchan (2013). Paleomagnetic poles not meeting sufficient quality criteria should be termed virtual geomagnetic poles (VGP).

Rock analyses are made on a magnetometer, which enables the measurement of magnetic moments in both x, y and z directions. Rocks are successively demagnetized using alternating field, thermal and chemical demagnetization techniques in a near-zero magnetic field, until the Curie temperature is reached. Using the principal component analysis of Kirschvink (1980), Zijderveld diagrams (Zijderveld, 1967) can be used to determine a number of magnetic components which may be preserved in a rock, and can equate to either primary or secondary magnetizations. The final component measured is located usually at high temperatures, trending toward the origin in the Zijderveld diagram, preserving the primary magnetic component, and thus the remnant paleomagnetic direction.

5. Vaalbara

5.1. Introduction

The recognition of Vaalbara as either a supercontinent or a supercraton began with the recognition of similar stratigraphic units between the Kaapvaal Craton in southern Africa and the Pilbara Craton in Western Australia during the Neoarchean to Paleoproterozoic (Figure 4). The Kaapvaal and Pilbara cratons are the only two cratons to preserve relatively pristine 3.6 Ga to 2.7 Ga crust represented by similar granitoid(gneiss)-greenstone terranes, and are thought to be among the first to stabilize as micro-continents. It was Trendall (1968) who first identified the geological similarities based on the presence of large-scale Neoarchean-Paleoproterozoic iron formations in each craton. This was expanded by Button (1979) to
Validating the existence of the supercraton Vaalbara in the Mesoarchaean to Palaeoproterozoic

Figure 4. The geology of the Pilbara Craton (left) and the Kaapvaal Craton (right), against an outline of the respective craton margins. Denoted rock units include the underlying Archean basement in each craton, as well as the overlying Mesoarchean to Paleoproterozoic supracrustal successions. This includes the Neoarchean Fortescue and Ventersdorp basins on the Pilbara and Kaapvaal cratons, respectively, followed by the Hammersley (and Tureek Creek and Wyloo) and Transvaal basins. Inset: the localities of the Kaapvaal Craton within southern Africa and the Pilbara Craton within Western Australia.

include the larger Mesoarchean-Paleoproterozoic unconformity-bounded successions. Vaalbara was proposed to be part of a single long-lived supercontinent (e.g., Piper, 1974), of which Rogers (1996) called ‘Ur’. Using sequence stratigraphy, however, Cheney (1996) proposed that the Kaapvaal and Pilbara cratons were connected using the unconformity-bounded 2.7 Ga to 2.1 Ga supracrustal successions in each cratonic block, and formalized the term ‘Vaalbara’. Other similarities exist between the cratons in the 3.5 Ga to 1.8 Ga terranes, basins and mineral deposits (e.g., Anhaeusser et al., 1969; Beukes, 1984; Button, 1979; 1973b; Cheney, 1996; Martin et al., 1998; Nelson et al., 1992; Zegers et al., 1998), although some of these have been attributed to global processes (e.g., Bekker and Kaufman, 2007; Nelson et al., 1999; 1992), especially in older continental configurations such as ‘Ur’ which place the Kaapvaal and Pilbara cratons far apart (e.g., Rogers, 1996). Button (1979), however, described the Mesoarchean to Paleoproterozoic basins as being separate but broadly coeval. Since these early contributions, abundant new data have become available that can both support and discredit the concept of Vaalbara. In general, this new data necessitates the revision of some of the Cheney (1996) sequence stratigraphic correlations and the paleogeographic reconstruction of the relative positions of the Kaapvaal and Pilbara cratons through time. A definition of Vaalbara or any supercraton/supercontinent pairing in the Precambrian thus should require the following elements:

1. Knowledge of the timing of formation and stabilization of the cratonic cores.

2. Studies on the post-stabilization history of the cratons, including the stratigraphy of the supracrustal successions, and provenance studies, etc.

3. Timing of rifting, orogenesis, as well as the emplacement of large igneous provinces and their association intrusions.

4. Paleogeographic reconstructions, using a synthesis of the above techniques coupled with paleomagnetism.

In meeting these components, a more in-depth understanding of the paleogeography can be made, and whether it fits to just a single craton, or a supercraton/continent/supercontinent as a whole. It is important to address all these pieces of crust separately. These fragments of crust may be thought of as puzzle-pieces, which are needed in order to assemble the puzzle, even if it is well known that some of the puzzle-pieces may be missing.
5.2. The Paleo- to Mesoarchean

The connection between the Pilbara and Kaapvaal cratons begins with a comparison between the geology and geochronology of both cratons, and the parallel development of the Neoarchean-Paleoproterozoic stratigraphy that is the core of the Vaalbara hypothesis. Cheney (1996) defined a number of sequence stratigraphic Neoarchean to Paleoproterozoic units for the Kaapvaal and Pilbara cratons, which have been developed by Beukes and Gutzmer (2008), among others. However, it was Zegers et al. (1998) and Nelson et al. (1999) who extended the arguments of Cheney (1996) back into the Paleo- and Mesoarchean. Using the data available, there appears to be have been cycles of magmatic activity in the Archean basement granitoid(gneiss)-greenstone terrane of the Kaapvaal Craton at 3580-3430 Ma, 3250-3220 Ma, 3120-3090 Ma, 2990-2970 Ma, 2870 Ma, with additional well-dated episodes at 2780-2770 Ma and 2730-2720 Ma (e.g., Nelson et al., 1999). On the Pilbara Craton basement terrane, magmatic events have been identified at 3470-3400 Ma, 3330-3290 Ma, 3270-3230 Ma, 3140-3090 Ma, 3030-2990 Ma, as well as at 2950-2910 Ma and 2760 Ma (e.g., Nelson et al., 1999).

It becomes apparent that these magmatic cycles before the stabilization of the crust in both cratons show little temporal similarity between each other. This lack of similarity becomes especially apparent within the short-lived events, which includes the 2990-2970 Ma, 2870 Ma and 2780-2770 Ma magmatic events, which can be linked to the Pongola Supergroup and early Ventersdorp Supergroup on the Kaapvaal Craton, and the 2760 Ma magmatic event in the Fortescue Group on the Pilbara Craton (Nelson et al., 1999).

Events after 3090 Ma formed on more stabilized crust in the Kaapvaal Craton, and it is from where the updated magmatic barcode presented in this study begins (Figure 5). Zegers et al. (1998) drew comparison between the ca. 2860 Ma Usushwana Complex (Kaapvaal Craton) and the ca. 2860 Ma Millindinna Complex (Pilbara Craton) using both ages and paleomagnetism, noting the geological similarity both temporally and spatially. The Usushwana Complex however was subsequently dated in this thesis work to be between 2990 Ma and 2978 Ma (Event 6 in Figure 5; Gumsley et al., 2015), which invalidates any connection between the two layered complexes, and indeed the cratons themselves at that time. It was noted that the bulk of the Piet Retief Suite of the Usushwana Complex was composed of 2990-2978 Ma gabbros (Gumsley et al., 2015), with the lesser group of Hlagothi Suite granophyres dated to 2871 ± 30 Ma (Hegner et al., 1984). As the crust stabilized on the Kaapvaal Craton after 3090 Ma, the Mesoarchean Dominion Group, Witwatersrand Supergroup and Pongola Supergroup supracrustal successions began to form, into which the Usushwana Complex was emplaced, along with the 290 Ma to 2966 Ma Badplaas mafic dyke swarm from 2980 Ma (Olsson et al., 2010; Gumsley et al., 2015). On the Pilbara Craton, craton stabilization commenced after 2910 Ma, almost 200 million years later than on the Kaapvaal Craton. This cratonic stabilization renders comparisons between the Lalla Rookh and Whim Creek basins on the Pilbara Craton with the Witwatersrand and Pongola basins arguable, although all appear to show similar ages, and all appear to be upward coarsening. Gumsley et al. (2013) drew possible comparison between the 2866 ± 2 Ma Hlagothi Complex (Event 8 in Figure 5) and associated intrusions, with that of the Zebra Hills dyke swarm on the Pilbara Craton. The Zebra Hills dyke swarm intrudes into the 3015-2925 Ma Mnunni Munni Complex (Event 1 in Figure 5; Barnes and Hoatson, 1994), and is overlain by the ≤2765 Ma Hardey Formation sandstone (Hoatson and Sun, 2002). However, recent unpublished U-Pb age constraints (Gumsley, unpublished data) place the Zebra Hills dyke swarm as intruding at ca. 2.91 Ga into the Pilbara Craton, invalidating any further comparison (Event 1 in Figure 5).

5.3. The early Neoarchean

The Neoarchean Ventersdorp Supergroup and broadly coeval units form the most extensive predominantly volcanic supracrustal successions on the Kaapvaal Craton. The Ventersdorp Supergroup has been compared with Neoarchean Fortescue Group on the Pilbara Craton, which is also predominately volcanic. Neoarchean volcanism
Validating the existence of the supercraton Vaalbara in the Mesoarchean to Paleoproterozoic

commences on the Kaapvaal Craton with the eruption of the 2782 ± 5 Ma Derdepoort Belt basalts in the central Kaapvaal Craton in South Africa (Wingate, 1998), with its feeders (e.g., the Modipe Complex) dated to 2784 ± 1 Ma (Denysyn et al., 2013) (Event 9 in Figure 5). The Derdepoort Belt volcanic pile is bimodal, with the rhyolites dated to 2781 ± 5 Ma (Wingate, 1998), and can is coeval with that of the nearby Kanye and Lobatse volcanic rocks in Botswana, as well as the granites of the ca. 2783 Ma Gaborone Complex (Grobler and Walraven, 1993; Moore et al., 1993). The Derdepoort Belt basalts were correlated with the Klipriviersberg Group flood basalts at the base of the Ventersdorp Supergroup further to the south (e.g., Grobler and Walraven, 1993, and references therein), which conformably overlies the Witwatersrand Supergroup in the central Kaapvaal Craton (e.g., van der Westhuizen et al., 1991). However, this correlation was challenged by age determinations on the Klipriviersberg Group flood basalts that were dated to 2714 ± 8 Ma (Armstrong et al., 1991), although this age was questioned by Wingate (1998) and de Kock et al. (2012). Further doubts have been raised by U-Pb ages on baddeleyite from mafic sills dated to ca. 2.78 Ga immediately beneath the Klipriviersberg Group in Witwatersrand Supergroup strata (Stamsjnijder, unpublished data).

On the Pilbara Craton, supracrustal volcanism commenced with the eruption of 2775-2663 Ma Mount Roe Formation flood basalts and the Black Range mafic dyke swarm unconformably on to the basement granitoid(gneiss)-greenstone terrane at the base of Fortescue Group (Event 2 in Figure 5; Arndt et al., 1991; Evans et al., 2017; Wingate, 1999). This magmatism may almost temporally correlate with the Derdepoort Belt, despite an approximate 10 million years difference in age. The Makwassie Formation in the Platberg Group, which unconformably overlies the Klipriviersberg Group in the Ventersdorp Supergroup basin has been dated to 2709 ± 4 Ma (Event 10 in Figure 5; Armstrong et al., 1991). The Makwassie Formation is a quartz porphyry underlain by the sedimentary rocks of the Kameeldoorns Formation, and which is overlain by the volcanic Rietgat Formation (e.g., van der Westhuizen et al., 1991). The Hartwater Group, one of the Platberg Group equivalent basins on the western Kaapvaal Craton, however, have been dated to 2733-2724 Ma (de Kock et al., 2012; Poujol et al., 2005), which directly challenges the ca. 2714 Ma Klipriviersberg Group basin age (Armstrong et al., 1991). Instead it has been proposed that the Klipriviersberg Group flood basalts are ca. 2.78 Ga (de Kock et al., 2012; Wingate, 1998).

Unconformably overlying the Mount Roe Formation flood basalts is the Hardey Formation on the Pilbara Craton, which is composed of sandstones and smaller volcanic units (i.e., the Spinaway and Bamboo quartz porphyries) within the larger basin that have been dated to 2768-2750 Ma (Event 2 in Figure 5; Arndt et al., 1991; Blake et al., 2004; Hall, 2005; Pidgeon, 1984). These ages appear to make the Hardey Formation older than the Platberg Group, but younger than the Derdepoort-Kanye-Lobatse-Gabarone magmatic event on the Kaapvaal Craton. The 2750-2745 Ma Sylvania mafic dyke swarm (Wingate, 1999) is temporally linked to volcanism within the Hardey Formation. The conformably overlying Kylena Formation basalts on the Pilbara Craton have not been dated, but the conformably overlying Maddina Formation basalts have been dated between 2718-2713 Ma (Blake et al., 2004). Several quartz porphyries located between the Kylena and Maddina basalts have been dated to 2724-2721 Ma, and are termed the Tubiana Formation according to Blake et al. (2004). These quartz porphyries may be related to volcanism within the Platberg Group, although no exact age match is yet to be made. The Platberg Group is unconformably overlain by the Bothaville Formation sandstones and Allanridge Formation flood basalts in the central and western Kaapvaal Craton (e.g., van der Westhuizen et al., 1991). The Bothaville and Allanridge formations have not been dated, but are bracketed between ca. 2709 Ma Makwassie Formation age (Armstrong et al., 1991) and 2664 ± 1 Ma (Bar- ton et al., 1995), the age of the sedimentary and volcanic Buffelsfontein Group beneath the Transvaal Supergroup (Eriksson et al., 2006). This volcanic event is broadly coeval with mafic dykes across the eastern and southeastern Kaapvaal Craton which were emplaced between 2.70 Ga and 2.65 Ga (Event 11 in Figure 5; Olsson et al., 2010; 2011; Gumsley et al., 2016).

5.4. The late Neoarchean and Paleoproterozoic

Structurally above the Ventersdorp Supergroup successions on the Kaapvaal Craton, follows the sandstones and conglomerates of the 2643 ± 3 Ma Vryburg Formation (Walraven et al., cited in Nelson et al., 1999) in the western Griqualand West sub-basin of the Transvaal Supergroup (e.g., Eriksson et al., 2006). Further to the east on the centre and eastern side of the Kaapvaal Craton, the Black Reef Formation was deposited as the equivalent of the Vryburg Formation in the Transvaal sub-basin of the Transvaal Supergroup. In both the Griqualand West and Transvaal sub-basins, conglomerates, and then sandstones gradually give way to shallow marine carbonates of the Ghaap and Chuniespoort groups in both sub-basins, respectively (e.g., Eriksson et al., 2006). Tuffs have been dated from within these carbonates, and identify that the carbonates were deposited approximately between approximately 2588 Ma (Altermann and Nelson, 1998) to 2521 Ma (Sumner and Bowring, 1996) in the Ghaap Group, and from 2588 Ma (Martin et al., 1998) in the
Chuniespoort Group and onwards. On the Pilbara Craton, Jeerinah Formation sandstones, at the base of the Hammersley Group, are dated to 2684 ± 6 Ma (Trendall et al., 2004). These sandstones are over lain conformably by Wittenoom Formation carbonates which are dated to approximately between 2629 Ma to 2565 Ma (Trendall et al., 2004). They are the lithological equivalent of the lower Transvaal Supergroup, although the Jeerinah Formation is slightly older. On both the Kaapvaal and Pilbara cratons, iron formations conformably overlie the carbonates, and represent the further drowning of both the cratons. Iron formations in the Griqualand West sub-basin consist of the Kuruman and Griquatown formations, and are dated to approximately 2460 ± 5 Ma (Pickard, 2003), whereas iron formations in the Transvaal sub-basin are dated to approximately 2480 ± 6 Ma Penge Formation (Trendall et al., cited in Nelson et al., 1999). The Brockman and Weeli Wooli iron formations of the Hammersley Group, Pilbara Craton, are dated to approximately 2481 ± 4 Ma and 2461 ± 5 Ma (Trendall et al., 2004), and correlate well with the Kuruman and Griquatown formations of the Kaapvaal Craton.

The new deviation in the stratigraphic correlation between the Kaapvaal and Pilbara cratons in the Transvaal and Hammersley basins occurs with the bimodal basalts and rhyolites of the 2449-2445 Ma Woongarra Formation of the Pilbara Craton (Event 3 in Figure 5; Blake et al., 2004), which has no temporal equivalent on the Kaapvaal Craton. Mafic sills and dykes, however, occur in the iron formations of both cratons, which were thought to be feeders to the Woongarra Formation. These volcanic and plutonic rocks were dated to 2449 ± 3 Ma on the Pilbara Craton (Blake et al., 2004), and to 2441 ± 6 Ma and 2426 ± 1 Ma on the Kaapvaal Craton (Kampmann et al., 2015) in the Westerberg Sill Province, and were originally thought to be coeval. Iron formations then begin to be replaced by sandstone and shale in the Griqualand West sub-basin in the Koegas Group, above the Griquatown Formation. Meanwhile, in the Transvaal sub-basin, shale and carbonate sedimentation in the Tongwane Formation began (e.g., Eriksson et al., 2006). The same transition is observed in the Bolgedra Formation of the Pilbara Craton. Above the Koegas Group, a sea-level fall associated with a global glaciation (e.g., Evans et al., 1997; Polteau et al., 2006) led to the removal of stratigraphy above the Koegas Group in the Griqualand West sub-basin. Further deposition is preserved only 200 million years later in the Makganyene Formation glacio-marine diamictites. This is followed by the conformable 2222 ± 13 Ma Ongeluk Formation flood basalts (Cornell et al., 1996), which were also deposited sub-aqueously. Deposition in the Transvaal Supergroup, however, was preserved above the unconformity at the top of the Tongwane Formation in the Duitschland Formation of the Transvaal sub-basin. Deposition continued with the Rooihooget Formation. On the Pilbara Craton, an unconformity is also developed on top of the Hammersley Group, with deposition of glacial diamictites of the Turee Creek Group called the Meteorite Bore. Dating in the study by Gumsley et al. (2017) demonstrated that the Ongeluk Formation flood basalts erupted at 2426 ± 3 Ma (Event 13 in Figure 5), 200 million years earlier than previously thought by Cornell et al. (1996), and also revised the 2441 ± 6 Ma age by Kampmann et al. (2015) to 2428 ± 4 Ma. This meant that sub-volcanic mafic sills (the Westerberg Sill Province) and dykes in the underlying iron formations on the Kaapvaal Craton were linked to the Ongeluk LIP, and not the Woongarra mafic dykes and sills which are approximately 20 million years older. This new age constraint also breaks the correlation between Meteorite Bore Member and Duitschland Formation diamictites, and makes the Meteorite Bore Member and Makganyene Formation diamictites potentially coeval, in a deviation from the traditionally accepted stratigraphic correlation (e.g., Beukes and Gutzmer, 2008; Cheney, 1996).

Deposition, however, continued up from the Ongeluk Formation basalts into the alternating iron- and manganese formations of the Hotazel Formation, before deposition of the Mooidraai Formation carbonates at 2392 ± 23 Ma (Bau et al., 1999; Fairey et al., 2013) in the Griqualand West sub-basin. Although the isolated Hotazel and Mooidraai formations are not observed beneath the Duitschland Formation, the Mooidraai Formation may correlate with carbonates in either the Kazput or Kungara formations of the Turee Creek Group on the Pilbara Craton. Above the Mooidraai Formation, a large unconformity exists before further deposition is preserved approximately 300 million years later in the Olifantshoek Supergroup on the western Kaapvaal Craton. Above the Rooihoogte Formation in the eastern Kaapvaal Craton, however, the shales and sandstones of the conformably overlying Timeball Hill Formation are preserved, and have been dated to 2316-2256 Ma (Hannah et al., 2004; Rasmussen et al., 2013; Schröder et al., 2016). This is followed by the Boshoek Formation, which then gives way to the flood basalts of the subaerial Hekpoort Formation (e.g., Eriksson et al., 2006), which are ±2250-2240 Ma (Event 14 in Figure 5; Schröder et al., 2016). The Hekpoort Formation volcanic rocks were long thought to be correlated with the Ongeluk Formation volcanic rocks (e.g., Cornell et al., 1996), however this is now shown to be incorrect. Instead, Hekpoort Formation may be related to 2209-2207 Ma mafic sills in the Pilbara Craton (Event 4 in Figure 5; Müller et al., 2005), which in turn may be related to the Cheela Springs Formation basalts of the lower Wyloo Group.

The upper parts of the Transvaal Supergroup in the main Transvaal sub-basin may be correlated with parts of the lower Olifantshoek Supergroup further west, and to the Turee Creek (and Wyloo) Group on the Pilbara Craton.
Validating the existence of the supercraton Vaalbara in the Mesoarchaean to Palaeoproterozoic

No vestiges of the 2056-2055 Ma Bushveld Complex (Event 15 in Figure 5; Zeh et al., 2015) and its related volcanic rocks on the Kaapvaal Craton are found on the Pilbara Craton. The same can be seen for the ca. 2.02 Ma Vredefort Impact and Limpopo and the Kheis orogenies on the Kaapvaal Craton, and for the Ophthalmian, Glenburgh and Capricorn orogenies on the Pilbara Craton. In addition, the newly identified 1923 ± 6 Ma Tsing maﬁc dyke swarm on the western Kaapvaal Craton has not been identified on the Pilbara Craton (Event 16 in Figure 5; Alebouyeh Semami et al., 2016), along with the emplacement of the large-scale dyke swarms and sill provinces dated to 1880-1830 Ma on the Kaapvaal Craton (Event 18 in Figure 5; Olsson et al., 2016; Hanson et al., 2004). This appears to indicate deﬁnite divergence of the cratons before these events.

5.5. Paleomagnetism and conﬁguration of Vaalbara

Originally, the Pilbara Craton was positioned juxtaposed next to the southwestern margin of the Kaapvaal Craton in what is now known as the ‘Cheney-fit’ (Figure 6; Cheney, 1996). The Zimbabwe and Yilgarn cratons were originally included in this conﬁguration with respect to the Kaapvaal and Pilbara cratons in the deﬁnition of Vaalbara by Cheney (1996). The Grunehogna Craton of eastern Antarctica can also be included in this conﬁguration (Jones et al., 2003). However, paleomagnetically, a comparison between the Kaapvaal Craton and Pilbara Craton at 2.78-2.77 Ga failed in the study by Wingate (1998) using the Derdepoort and Mount Roe paleopoles. However, an updated paleomagnetic comparison by Strik et al. (2003) made a direct ﬁt more feasible, based on paleo-latitude constraints, which mostly increased the error margins of the allowable ﬁt. This was subsequently discredited in Denyszyn et al. (2013) when paleomagnetic constrictions from the coeval Modipe Complex gabbros were added to the Derdepoort paleopole. The conﬁguration of Zegers et al. (1998) was allowable based on ca. 2.87 Ga paleomagnetic comparisons between the Usushwana Complex (Layer et al., 1988) on the Kaapvaal Craton, and the Millindinna Complex (Schmidt and Embleton, 1985) on the Pilbara Craton, and with the alignment of supposed structural trends (e.g., lineaments and shear zones) in the cratonic blocks that divide the terranes. This ﬁt, known as ‘Zegers-fit’, placed the Pilbara Craton toward the east of the Kaapvaal Craton (Figure 6). The east-northeast-trending lineaments of the older eastern terrane on the Kaapvaal Craton are truncated by younger north-trending lineaments of the western terrane at approximately ca. 2.7 Ga (de Wit et al., 1992; Eglington and Armstrong, 2004; Schmitz et al., 2004). The Pilbara Craton is shown to be divided by north-northeast to northeast trends dated to between 2.96 Ga and 2.93 Ga from west to east (Zegers et al., 1998), with the oldest rocks also preserved in the eastern terranes (Krapez and Barley, 1987). The progression from early thrusting to later strike-slip deformation and broadly coeval ages suggested a common history according to Zegers et al. (1998). However, with the updated age constraints provided by Gumsley et al. (2015), the comparison between the Usushwana Complex and Millindinna Complex is now shown to be invalid. The Usushwana Complex, as already described, is shown to be a composite intrusion dated between 2990 Ma and 2978 Ma for the Piet Retief SUite gabbros, as well as younger intrusions dated to between 2874 Ma and 2866 Ma, which makes these rocks coeval with the Hlagothi Complex (Gumsley et al., 2015; 2013).

Several authors (Denyszyn et al., 2013; Strik et al., 2003; Wingate, 1998; Zegers et al., 1998) used a method of single-age pole comparison. Single-age paleopole comparison, however, does not provide longitudinal constraints, and thus it may mean that the cratons being compared were far apart along their respective lines of latitude. Cratons may also have been positioned in the opposite hemisphere due to the geomagnetic polar ambiguity. The
paleomagnetic comparison performed by de Kock et al. (2009) between the Kaapvaal and Pilbara cratons utilizing the Derdepoort-Mount Roe and Allanridge-Kylena flood basalts of the Neoarchean Venterdsorp Supergroup and Fortescue Group, however, allows for a better estimate of the distances between paleopoles from the two cratons. This is done through a better constrained time interval using two near-coeval pairs of paleopoles from the two cratons, and provides better longitudinal constraints. This configuration is known as the ‘de Kock-fit’ (Figure 6; de Kock et al., 2009), and utilizes modern demagnetization techniques, and presents field tests which are paleomagnetically plausible as suggested by van der Voo (1990). This paleomagnetic comparison can be updated to include the paleomagnetic constraints on the coeval Modipe Complex by Denyszyn et al. (2013) and the Black Range dykes by Evans et al. (2017). However, the smaller uncertainties surrounding the Derdepoort paleopole using the coeval Modipe Complex paleomagnetic data show no overlap with the Black Range mafic dykes on the Pilbara Craton. The Black Range dykes of the Pilbara Craton, with which the Derdepoort-Modipe pole of the Kaapvaal Craton are compared, has been complemented by further age and paleomagnetic constraints by Evans et al. (2017). The study by Evans et al. (2017) builds on the work by Wingate (1999) and Embleton (1978), and invalidates any similarity paleomagnetically between the magmatic events. In addition, although the Allanridge Formation is paleomagnetically well-studied, age constraints between 2708 Ma and 2664 Ma should negate any comparison with the ca. 2717 Ma flood basalts in the upper Fortescue Group due to the large age span. The 2.70-2.66 Ga Rykoppees mafic dyke swarm on the Kaapvaal Craton has also been paleomagnetically studied by Lubnina et al. (2010). Without firmer age constraints though, this paleopole lacks the clarity to resolve the paleomagnetic direction and remains a VGP.

In the Hammersley and Transvaal basins, no firm paleomagnetic constraints exist from the Allanridge Formation at the top of the Venterdsorp Supergroup until the ca. 2426 Ma Ongeluk Formation flood basalts. This key paleomagnetic pole on the Ongeluk LIP places the Kaapvaal Craton at equatorial paleo-latitudes at this time (Evans et al., 1997; Gumsley et al., 2017; Kampmann et al., 2015; Lubnina et al., 2010). Further paleomagnetic constraints of mafic rocks in the Transvaal Supergroup basin have recently been made by Humbert et al. (2017), who studied the Hekpoort Formation. The Hekpoort Formation paleopole shows paleomagnetic differences with the Ongeluk Formation with which it was previously correlated (Humbert et al., 2017). This paleomagnetic difference further validates the distinction between these two volcanic units, although the Hekpoort Formation paleopole remains a VGP. In the Pilbara Craton, no documented paleomagnetic studies have been performed on rocks younger than the Fortescue Group until the studies on the Capricorn orogenesis at approximately 1.80 Ga.

6. Discussion

Although there appears to be little geochronological and paleomagnetic similarities between the Kaapvaal Craton and the Pilbara Craton outside of the late Neoarchean to early Paleoproterozoic stratigraphy of both cratons, there is growing evidence for the existence of a much larger continent or supercontinent in this time frame. This land mass, which was originally termed Kenorland by Williams et al. (1991), has been geologically and paleomagnetically evaluated by Personen et al. (2003) and Bleeker (2003). However, the original hypothesis infers that the Churchill Province of the Canadian Shield with the Rae Craton being part of Kenorland appears invalid according to Perhrsson et al. (2013). Bleeker (2003) noted the distinct geological differences between cratons, leading to the proposal of two distinct clans of cratons. As defined by Bleeker (2003), the Superior Craton represents one of the larger and better preserved fragments of the supercraton ‘Superia’, which is fundamentally different from the ‘Sclavia’ supercraton which includes the Slave Craton. The Superior Craton underwent progressive ‘rift-and-drift’ throughout the Paleoproterozoic, leading to deposition of the Huronian Supergroup, a supracrustal succession which can be compared with the upper Transvaal Supergroup and Hamersley Group basins (e.g., Gumsley et al., 2017). Along with the Kola-Karelia Craton in Finland and Russia, all these cratons appear to preserve early Paleoproterozoic strata (e.g., Hoffman, 2013), with evidence of several episodes of glaciation along with multiple large igneous provinces (e.g., Gumsley et al., 2017). Superia, however, began to break apart in the later Paleoproterozoic, forming the many cratonic fragments that have since dispersed. Previous work has also demonstrated the similarity between Wyoming (Kilian et al., 2016), Hearne (Ernst and Bleeker, 2010) and a number of other cratons proposed to form Superia along with the Superior Craton. Salminen et al. (2014) appeared though to invalidate the Kola-Karelia Craton connection with Superia at ca. 2339 Ma using paleomagnetic studies. Several studies now appear to highlight a geological similarity between the Kaapvaal Craton and the Pilbara Craton with that of Superia (Bleeker et al., 2016), which is aided by the near-equatorial paleo-latitudes of the ca. 2426 Ma Kaapvaal Craton (Evans et al., 1997), with that of the Superior Craton at ca. 2460 Ma (Bates and Halls, 1990; Bleeker et al., 2015). All these cratons form the core of a newly proposed supercraton, which we term ‘Supervaalbara’. This supercraton incorporates Superia and Vaalbara, which share a similar granitoid (granitic gneiss)-greenstone terrane of the eastern Kaapvaal Cra-
Validating the existence of the supercraton Vaalbara in the Mesoarchean to Palaeoproterozoic

numerous other geological similarities exist between the cratons in the Supervaalbara landmass, and include the 2713-2703 Ma Stillwater Complex (Premo et al., 1990) on the Wyoming Craton, which can be compared with dykes within the Rykoppies mafic dyke swarm in the Kaapvaal Craton (Olsson et al., 2011, 2010). This dyke swarm is related to volcanism within the upper Ventersdorp Supergroup (Armstrong et al., 1991). The massive amount of volcanism, preserved in LIPs across the Supervaalbara Craton in the 2510-2440 Ma time interval may be related to deposition of banded iron formation preserved in the Kaapvaal, Pilbara and Sarmatia cratons in the 2440-2420 Ma time interval (e.g., Konhauser et al., 2017). This is due to Supervaalbara straddling the equator at this time, and undergoing weathering and erosion of the LIPs (e.g., Bleeker et al., 2016; Gunsley et al., 2017). Layers of tuffs within both the iron formations of the Kaapvaal Craton and that of the Pilbara Craton provide evidence of Matachewan LIP magmatism from the lower Huronian Supergroup on the Superior Craton. All these terranes share a fundamentally similar geochronological and paleomagnetic similarity between the Kaapvaal Craton with that of Singhbhum Craton in India at 2.81-2.77 Ga. This demonstrates that the Singhbhum Craton was also likely part of Supervaalbara at this time. Another potential part of Supervaalbara is the Sarmatia Block (Savko et al., 2017), which shares many geological similarities, and does not make the Kaapvaal Craton to Pilbara Craton connection necessarily unique, but part of a much larger geological framework.

7. Outlook and reflection

Within the advances since the 1990’s of geochronological methods and techniques, the ability to establish accurate and precise crystallization ages of mafic rocks is steadily improving. Innovative in-situ techniques to date smaller and smaller crystals of baddeleyite and zircon are also now being employed. With the addition of multi-proxy approaches, including detrital zircon provenance studies as well as other geological and paleomagnetic constraints, the puzzle-pieces of Earth’s cratons are increasingly being refined in terms of their paleogeography, even into the Neoarchean and Paleoproterozoic. This time period reflects the now known reasonable limit for most reliable paleogeographic reconstructions. However, with these new analytical developments, an increasing complexity is also being realized in our geological and paleogeographic understanding. As one door closes, another two (or three) open, so to speak.

The existence of LIPs, for example, as traditionally defined by Coffin and Eldholm (1993) is now routinely challenged through increasing amounts of accurate high precision geochronological data. Some dyke swarms and sill provinces thought to be associated with short-lived LIPs are now known thought to be more long-lived magmatic events. An obvious example is the Matachewan mafic dyke swarm on the Superior Craton. The Matachewan dyke swarm is sufficiently large enough to be a LIP, but is now known to have intruded over a 50-million-year time interval from 2500 Ma to 2450 Ma. It likely in-
cludes bi-modal volcanic rocks located at the base of the Huronian Supergroup (Bleeker et al., 2015). Short-lived LIPs still exist, with for instance the Bushveld, Umkondo and Karoo LIPs all standing up to the better chronological test of time on the Kaapvaal Craton. However, only better age constraints, matched with geochemical and numerical modelling can help us better understand all such mafic magmatic events, and what makes a dyke or sill event either long- or short-lived, and whether it is a reflection of underlying mantle dynamics. Also, dyke swarms of a single geographical orientation (trend) have, for example, been demonstrated to be composite in age (e.g., Jourdan et al., 2006), with up to three generations of dykes present in a single swarm. The overall trend of a dyke swarm is still crucial to know, however, as structural features such as lineaments in the basement may control the local trend of a single dyke, without invalidating the general trend. This can be observed through use of satellite images, for example. Studying such composite dyke swarms is challenging but necessary in order to further the science. By combining geochemistry and paleomagnetism with increasing amounts of geochronological data can help to address these complexities, and also addresses the petrogenesis of LIPs themselves. This remains another controversial point, especially whether LIPs are generated by mantle plumes or not, but can be further addressed in more research on LIPs. Mantle plumes form another debate, and although they may be long-lived, they are also transient and generate hot spot tracks. This usually cannot be observed in the geological record, but it can be assumed that a plume only records short-lived magmatic pulses in one locality before migrating due to the movement of the overriding tectonic plates.

Increasingly, geochemical and paleomagnetic studies in mafic dyke swarms and sill provinces without age constraints can yield complex and meaningless results as the data set might contain a mixture of unrelated magmatic events or periods. This complication occurs because of either contamination from the host rock (e.g., Gumsley et al., 2016) or more likely by combining geochemical studies unknowingly of dykes or sills of different ages. Paleomagnetically, overprinting of the primary magnetic component of a dyke generation by dykes of a younger generation within the same swarm can also lead to confusing or complex sets of results (e.g., Lubnina et al., 2010). A good strategy moving forward would be to sample a representative number of mafic dykes and sills for quick reconnaissance age dating. With knowledge of the different generations of dyke swarms and sill provinces present, complete high-precision age dating can be made on selected mafic dykes and sills of each generation. This can then finally be followed up with complimentary geochemical or paleomagnetic studies on the wider swarm, depending on how composite it is in nature.

Mafic dykes and sills can also be linked with volcanic successions preserved within the stratigraphy, and can assist in providing direct high-precision ages to that succession if they can be definitively linked, and not just relative age relationships. Such a study was presented by Gumsley et al. (2017), with a combination of ID-TIMS dating on the volcanic feeders and in-situ SIMS analysis on the volcanic succession itself for the Ongeluk Formation of the Kaapvaal Craton. This was further complimented with paleomagnetic studies, which further demonstrated the linkage. Such age dating can be important with sequence stratigraphy, with very far-reaching implications. In addition, mafic dykes and sills as essential components of LIPs, which can be linked to environmental catastrophies ranging from mass extinctions to global glaciations and the rise of both atmospheric oxygenation and multi-cellular life. All appear to be built into the Supercontinent Cycle, and will become better and better understood with time with further new geochronological constraints to validate its relationship with true polar wander.

As for the existence of Vaalbara, although it is not immediately obvious as to whether it existed, it now appears more likely that a large continent was present during the Neorarchean to Paleoproterozoic, which we term herein, Supervaalbara. This large continent appears fundamentally different from the ‘Rae’ continent of Pehrsson et al. (2013), and appears, at least in part, to support the existence of the ‘clans of cratons’ proposed by Bleeker (2003).

With the aid of new databases, including PALEOMAGIA (Veikkolainen et al., 2014), and the variety of geospatial databases, conclusions are beginning to be made aided by high-precision ages and paleomagnetic constraints, which have been realized in projects like the Supercontinent Project (www.supercontinent.org) and IGCIP 648. These projects aim to test new limits of supercontinents, their paleogeography, and the links both with mantle dynamics, as well as with the evolving Earth system. However, such databases are only as strong as the data within them, and strict quality criteria are now needed both for geochronological and paleomagnetic data, which is not as commonly implemented as it should. Reliability criteria is needed for geochronological data in a similar way that has already been defined for paleomagnetic data (e.g., van der Voo, 1990; Buchan, 2013).

With the realization of these goals, it should be possible to retrieve at least a partial picture of Earth’s first supercontinent, or clan of cratons. With this, a better understanding of the world that exists today will begin to emerge, and the processes that led to its formation.
8. Summary of papers

The following papers form the basis of this dissertation. They are arranged in chronological succession, and each paper is accompanied by a summary of central results and conclusions.

8.1. Paper I

This paper presents new geochronological data from the Usushwana Complex. It is established than the Usushwana Complex is almost 130 million years older than previously thought, and is actually composed of two separate mafic magmatic events related to either the Pongola Supergroup magmatic event from 2990-2960 million years ago, and the Hlagothi Complex at 2870 million years ago. The new ages have implications for the Pongola Supergroup on the Kaapvaal Craton, with magmatism appearing to be dispersed in two main pulses in the Nsuze Group (Pongola Supergroup).

8.2. Paper II

In this paper, the first identification of 2441-2426 Ma magmatic rocks on the western Kaapvaal Craton is presented from the Westerberg Sill Province in the Transvaal Supergroup. These rocks were studied paleomagnetically and geochronologically, and it is speculated whether the Westerberg Sill Province is related to the Ongeluk Formation owing to similar paleomagnetic characteristics. Also, similarities to the Woongaara large igneous province on the Pilbara Craton are discussed, with more questions than answers.

8.3. Paper III

This paper presents geochronological and geochemical constraints on a newly recognized dyke swarm on the southeasternmost Kaapvaal Craton, the White Mfolozi mafic dyke swarm. This new swarm appears to intrude into the craton in the waning stages of another radial dyke swarm located further to the north on the eastern margin of the Kaapvaal Craton which intruded 2.70-2.66 billion years ago. However, the geochemistry of this dyke swarm differs significantly from the radial dyke swarm located further north. It has more primitive chemical signatures, unlike those further north, which is more enriched, with enrichment quite likely due to contamination from the basement host rock.

8.4. Paper IV

This paper presents a new mafic dyke swarm on the western Kaapvaal Craton, termed the Tsineng dyke swarm, which intruded 1.92 billion years ago. This dyke swarm is coeval with the Hartley Formation volcanic rocks and establishes a possible new large igneous province, aided by detrital zircon provenance studies, which are also presented in this paper. Refined geochronologic and paleomagnetic constraints presented in this paper for the Hartley Formation refine the late Paleoproterozoic apparent polar wander path of the Kaapvaal Craton, with implications for red bed successions across the craton at this time.

8.5. Paper V

This paper provides geochronological and paleomagnetic constraints on the newly identified Ongeluk large igneous province. This includes both ID-TIMS and SIMS U-Pb mass spectrometry on baddeleyite, both on separated material and in-situ on thin sections. The new results make the Ongeluk Formation nearly two hundred million years older than previously thought at 2.43 billion years ago, and demands a stratigraphic revision of the Transvaal Su-
8.6. Paper VI

This paper presents new geochronology and paleomagnetic constraints on the Black Range mafic dyke swarm in the Pilbara Craton. The new temporal and spatial constraints show that the Black Range dykes both intrude and cross-cut the Mount Roe flood basalts, demanding new revisions to either the stratigraphy or geological mapping of the lower Fortescue Group. The new paleopole established for the Black Range dykes establishes a new apparent polar wander path for the Pilbara Craton as it transitions from the equator and across the pole regions in the Neoarchean.

9. Acknowledgements

A doctoral thesis is the accumulation of a large amount of data, and in the case of Sweden, is the accumulation of papers in several sub-projects which aim to resolve the much bigger hypothesis which needs to be tested. Such projects are not possible without the help and assistance a doctoral candidate receives over his or her past four years.

To start with, I wish to thank Ulf Söderlund, my principal supervisor. I cannot stress how much help I have received from you. You have been the best possible supervisor, both in providing assistance and encouragement, as well as giving me a lot of freedom to pursue my own ideas and collaborations, and for that I am very grateful. You also always kept up the pressure of on me in the most constructive of ways. Ulf, you will always be a good men-

I also wish to thank Michiel de Kock, my co-supervisor and friend in South Africa. You have been increasingly busy with both family and administration over the last four years, but you were always available for my calls, and to share ideas about geology with, and to provide some up-to-date thoughts on what is happening in our world of the Kaapvaal Craton. You inspired me throughout my master's and doctoral work, and I hope for many more years of successful collaboration, both with yourself and Ulf. Thank you! I also have to thank David Evans from Yale University who has really assisted me with everything related to the Pilbara Craton, as Michiel did for the Kaapvaal. He helped me in both the field and the laboratory, and welcomed me into his own home during my stay at Yale, for which I was really grateful. In many ways, you felt like a co-supervisor to me, even if it was only unofficially, and I really appreciate all the brilliant ideas you have.

I have also had the privilege to co-operate with some of the leading scientists in the large igneous province community and beyond, including among others, Martin Klausen, Axel Hoffman, Wouter Bleeker, Kevin Chamberlain, Richard Ernst, Alexey Smirnov, Herwe Wabo and Andrey Bekker. You have all assisted me a lot in my various projects and I really couldn't have asked for a nicer community to work with!

From the Department of Geology in Lund, I have to send my thanks to all the staff from the bedrock and quater-

I also wish to thank students and staff at UCLA, Yale, UJ and UWA for all the support and assistance they provided, as well as the staff at the Department of Geosciences at the Swedish Museum of Natural History. My work up at the museum would not have been possible without you. Thank you! I must not forget the master's students I co-supervised along the way: Farnaz, Johan, Emilie, and Joan, who become good friends, and aided in my work. Lastly, many thanks to all the financial, administrative and technical staff at the Department of Geology at Lund University, who were always willing to help, and without who life in the Department would have been much.
Validating the existence of the supercraton Vaalbara in the Mesoarchaean to Palaeoproterozoic

My thesis work has also would not have been possible without financial support. I am indebted to both the Swedish Research Council through a grant to Ulf Söderlund, and the Royal Physiographic Society in Lund provided me with grants and travel grants which made this work possible. I am also grateful to both the Bokelunds Foundation which administers travel grants to the Faculty of Science in Lund, as well as the Nordic Council and European Union who provided funds for various conferences, courses and summer schools I was lucky enough to have been financed for in my time as a student at Lund University.

10. References

Ernst, R., Bleeker, W., 2010: Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present. *Canadian Journal of Earth Sciences* 47, 695–739.

Validating the existence of the supercraton Vaalbara in the Mesoarchean to Palaeoproterozoic

Heaman, L.M., Klausen, M., 2003: Palaeomagnetic results from the ca. 1130 Ma Borgmassivet intrusions in the Ahlman-

Layer, P.W., Kröner, A., McWilliams, M., Burghele, A., 1988: Palaeomagnetism and age of the Archean Usu-shwana Complex, southern Africa. *Journal of Geo-

Validating the existence of the supercraton Vaalbara in the Mesoarchaean to Palaeoproterozoic

Olsson, J.R., Söderlund, U., Klausen, M.B., Ernst, R.E., 2010: U–Pb baddeleyite ages linking major Archean dyke swarms to volcanic-rift forming events in the Kaapvaal craton (South Africa), and a precise age for the Bushveld Complex. *Precambrian Research* 183, 490–500.

Det är allmänt känt att kontinenter under Jordens historia har separerat och kolliderat i ett cykliskt förlopp vilket har lett till existensen av större landmassor, superkontinenter eller superkratoner under vissa tidsperioder. En av de tidigaste föreslagna superkratonerna är Vaalbara, som sedan 1960-talet har ansetts bestå av Kaapvaalkratonen i södra Afrika och Pilbarakratonen i västra Australien. I denna avhandling har jag testat validiteten av Vaalbara med radiometriska och paleomagnetiska studier av magmatiska och mantelderiverade bergarter. Många tidigare studier har visat på geologiska likheter i arkeisk till proterozoisk berggrund, som Kaapvaal och Pilbara domineras av. Dessa inkluderar både vulkaniska och sedimentära bergarter, såsom återfinns i Fortescue- och Hammersleybassängerna i Pilbara och motsvarande bergarter Ventersdorp- och Transvaalbassängerna i Kaapvaal. Några exakta överensstämmelser av åldrar för basiska bergarter har hittills inte kunnat påvisas. I detta doktorandprojekt har jag med nya åldersbestämningar försökt identifiera möjliga matchningar genom undersökningar av regionala diabasgångsvärmar, och även utfört paleomagnetiska studier på vissa av de bergarter som åldersbestämts. Den generella slutsatsen är att de nya resultaten utgör ringa stöd för att Kaapvaal- och Pilbarakratoner var i direkta kontakt med varandra under tidsperioden från 2,99 till 1,92 miljarder år sedan. I stället föreslår jag att dessa kratoner under denna tidsperiod ingick en betydligt större kontinent, vilken dessutom inkluderade block från dagens Nordamerika (USA och Kanada), Finland, Ryssland, Ukraina och Indien. Denna slutsats styrks av att samtliga dessa krustala block delar många geologiska, geokronologiska och paleomagnetiska likheter under denna tidsperiod. Detta stöder hypotesen om att två landmassor existerade från arkeikum till första delen av paleoproterozoikum, där Kaapvaal och Pilbara utgjorde delar av en av dessa, vilken jag valt att kalla “Supervaalbara”.

Svensk sammanfattning

Det är allmänt känt att kontinenter under Jordens historia har separerat och kolliderat i ett cykliskt förlopp vilket har lett till existensen av större landmassor, superkontinenter eller superkratoner under vissa tidsperioder. En av de tidigaste föreslagna superkratonerna är Vaalbara, som sedan 1960-talet har ansetts bestå av Kaapvaalkratonen i södra Afrika och Pilbarakratonen i västra Australien. I denna avhandling har jag testat validiteten av Vaalbara med radiometriska och paleomagnetiska studier av magmatiska och mantelderiverade bergarter. Många tidigare studier har visat på geologiska likheter i arkeisk till proterozoisk berggrund, som Kaapvaal och Pilbara domineras av. Dessa inkluderar både vulkaniska och sedimentära bergarter, såsom återfinns i Fortescue- och Hammersleybassängerna i Pilbara och motsvarande bergarter Ventersdorp- och Transvaalbassängerna i Kaapvaal. Några exakta överensstämmelser av åldrar för basiska bergarter har hittills inte kunnat påvisas. I detta doktorandprojekt har jag med nya åldersbestämningar försökt identifiera möjliga matchningar genom undersökningar av regionala diabasgångsvärmar, och även utfört paleomagnetiska studier på vissa av de bergarter som åldersbestämts. Den generella slutsatsen är att de nya resultaten utgör ringa stöd för att Kaapvaal- och Pilbarakratoner var i direkta kontakt med varandra under tidsperioden från 2,99 till 1,92 miljarder år sedan. I stället föreslår jag att dessa kratoner under denna tidsperiod ingick en betydligt större kontinent, vilken dessutom inkluderade block från dagens Nordamerika (USA och Kanada), Finland, Ryssland, Ukraina och Indien. Denna slutsats styrks av att samtliga dessa krustala block delar många geologiska, geokronologiska och paleomagnetiska likheter under denna tidsperiod. Detta stöder hypotesen om att två landmassor existerade från arkeikum till första delen av paleoproterozoikum, där Kaapvaal och Pilbara utgjorde delar av en av dessa, vilken jag valt att kalla “Supervaalbara”.

Validating the existence of the supercraton Vaalbara in the Mesoarchaean to Palaeoproterozoic
Precise U-Pb baddeleyite age dating of the Usushwana Complex, southern Africa – Implications for the Mesoarchaean magmatic and sedimentological evolution of the Pongola Supergroup, Kaapvaal Craton

Ashley Gumsley a,*, Johan Olsson a, Ulf Söderlund a,b, Michiel de Kock c, Axel Hofmann c, Martin Klausen d

a Department of Geology, Lund University, Sölvegatan 12, Lund, 223 62, Sweden
b Department of Geosciences, Swedish Museum of Natural History, P.O. Box 50, 104 05, Stockholm, Sweden
c Department of Geology, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa
d Department of Earth Sciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa

A R T I C L E I N F O
Article history:
Received 24 November 2014
Received in revised form 17 June 2015
Accepted 23 June 2015
Available online 2 July 2015

Keywords:
Usushwana Complex
Pongola Supergroup
Dolerite dykes
Dolerite sills
U-Pb baddeleyite
ID-TIMS

A B S T R A C T
The Usushwana Complex of the south-eastern Kaapvaal Craton (South Africa and Swaziland), intrudes the ca. 3.6–3.1 Ga basement of the craton, as well as the Mesoarchaean volcanic and sedimentary cover succession of the Pongola Supergroup. New high-precision U-Pb dating of gabbros belonging to the Piet Retief Suite of the Usushwana Complex yield ages of 2989 ± 1 Ma, 2990 ± 2 Ma and 2978 ± 2 Ma. The Piet Retief Suite represents part of an intricate magmatic feeder to a major volcanic event which gave rise to the oldest known continental flood basalts on Earth, the Nsuze volcanic rocks. Broadly coeval SE-trending dolerite dykes of the Barberton-Badplaas Dyke Swarm in the larger region of the south-eastern Kaapvaal Craton formed along the same structural trend as the Usushwana Complex. One such dyke is dated herein to 2980 ± 1 Ma. Using the high-precision U-Pb geochronological data, the Nsuze volcanic rocks can now be resolved into at least two magmatic episodes which can be correlated with parts of the Pongola Supergroup. The first episode at ca. 2.99–2.98 Ga is broadly coeval with the Pypklipberg (Nhlebela) volcanic rocks, whereas the second at ca. 2.97–2.96 Ga was near synchronous to the Agatha volcanic rocks. A dolerite sill intruding into the Mozaan Group of the Pongola Supergroup, thought to be part of the Usushwana Complex, was dated to 2869 ± 5 Ma, and is instead coeval with the Hlagothi Complex further to the south, and provides a new minimum age for deposition of the Mozaan Group.

1. Introduction
The reconstruction of tectonic, sedimentological and magmatic events that shaped the Kaapvaal Craton in the Meso- to Neoarchaean is increasingly being aided by high-precision U-Pb geochronology of zirconium minerals (e.g., Gumsley et al., 2013; Mukasa et al., 2013; Olsson et al., 2010, 2011). U-Pb baddeleyite age dating of mafic dykes and sills help in establishing magmatic ‘barcodes’ and assist with continental reconstructions (e.g., Ernst et al., 2010, 2013; Bleeker & Ernst, 2006 and references therein). Additionally, emplacement ages of dolerite dykes and sills constrain the ages of supracrustal successions using cross-cutting relationships.

The Usushwana Complex in the south-eastern Kaapvaal Craton (South Africa and Swaziland), is a ‘layered’ intrusion of Archaean age (Anhaeusser, 2006; Hunter and Reid, 1987; Hammerbeck, 1982). We present new U-Pb baddeleyite ID-TIMS ages for the Usushwana Complex and related dolerite dykes and sills to further our understanding of the magmatic and sedimentological evolution of the Pongola Supergroup. A revised stratigraphy for the south-eastern

http://dx.doi.org/10.1016/j.precamres.2015.06.010
0301-9268/© 2015 Elsevier B.V. All rights reserved.
Kaapvaal Craton interprets the two suites of the Usushwana Complex, as well as SE-trending dolerite dykes and dolerite sills, as magmatic feeders during separate episodes of Nsuze Group volcanism, as well as possibly to volcanism within the Amsterdam Formation or upper Mozaan Group.

2. Geology

The Pongola Supergroup and the Usushwana Complex play an important part in the Mesoproterozoic geological history of the Kaapvaal Craton in south-eastern South Africa and Swaziland. Summaries of the regional and local geology of the area are presented below, derived from the in-depth work of Hammerbeck (1982), Hunter (1970) and Winter (1965), and shown in Fig. 1, with a summary of previously published ages given in Fig. 2 (with the data in the supplementary material). The reader is referred to Fig. 3 for an idealised summary of the lithological units in cross-section within the Piet Retief-Amsterdam area.

2.1. Basement Granitoid-Greenstone Terrain

The eastern and south-eastern Kaapvaal Craton in South Africa and Swaziland records a geological history starting ca. 3.6 Ga in the Ancient Gneiss Complex (AGC), as summarised in Robb et al. (2013), and is therefore coeval with the quartz porphyry sill. The 2824 ± 6 Ma Mooihoek Pluton is intrusive into, but was also folded together with the Mozaan age limit is provided by a 2837 ± 5 Ma quartz porphyry sill (Maphalala and Kröner, 1993). As described below, derived from the in-depth work of Hammerbeck (1982), Hunter (1970) and Winter (1965), and shown in Fig. 1, with a summary of previously published ages given in Fig. 2 (with the data in the supplementary material). The reader is referred to Fig. 3 for an idealised summary of the lithological units in cross-section within the Piet Retief-Amsterdam area.

2.2. Pongola Supergroup

The Pongola Supergroup is composed of the lower volcanic-sedimentary Nsuze Group, and the upper predominantly sedimentary Mozaan Group (Wilson et al., 2013; Gold, 2006). The Mozaan Group has been correlated lithostratigraphically with the Witwatersrand Supergroup on the central Kaapvaal Craton (Cole, 1994). Upper age constraints for the formation of the Pongola Basin are given by a 3105 ± 3 Ma age of the Mpuiluzi Batholith, forming an eroded peneplane on to which the Pongola Supergroup and Amsterdam Formation were emplaced (Hunter, 1973).

2.2.1. The Nsuze Group

The U-Pb zircon ages from the Nsuze volcanics range from 2985 ± 1 Ma, 2977 ± 5 Ma to 2967 ± 9 Ma (Mukasa et al., 2013; Nhleko, 2003; Hegner et al., 1994). Burger and Coertze (1973) reported the post-Pongola granitic Mhlosheni Pluton in Swaziland has been dated at 2838 ± 10 Ma by Mukasa et al. (2013), and is therefore coeval with the quartz porphyry sill. The 2824 ± 6 Ma Moohoek Pluton is in close proximity to the 2837 ± 5 Ma quartz porphyry sill (Maphalala and Kröner, 1995). As described above, derived from the in-depth work of Hammerbeck (1982), Hunter (1970) and Winter (1965), and shown in Fig. 1, with a summary of previously published ages given in Fig. 2 (with the data in the supplementary material). The reader is referred to Fig. 3 for an idealised summary of the lithological units in cross-section within the Piet Retief-Amsterdam area.

The base of the Nsuze Group is made up of sandstone and volcanic rocks of the Mantonga and Wagendrift formations (Warmbad Subgroup), overlain by the mafic to felsic volcanic rocks of the Bivane Subgroup (Wilson et al., 2013; Gold, 2006).}

2.2.2. The Mozaan Group

- **According to Gold (2006)** and references therein, the Mozaan Group unconformably overlies the Nsuze Group, and is made up of shale and sandstone. Locally developed banded iron formation (BIF), as well as volcanic rocks are preserved towards the top of the succession (Toholsik and Gabela basalts and basaltic andesites).
- In the Piet Retief-Amsterdam area, the Mozaan Group is composed of Skurwerant Formation sandstones and minor shales at the base, followed by shales, iron formations and minor sandstones of the Redcliff Formation (Hammerbeck, 1982). These formations are termed the Sinqeni and Ntombie formations in the larger Pongola Supergroup. A ferruginous shale in this region has been dated at 2860 ± 26 Ma by Walraven and Pape (1994).

2.3. The Thole Complex

The Thole Complex consists of folded layered sills of harzburgite at the base, grading upwards into pyroclastic and, in some instances, into gabbro or norite at the top (Hammerbeck, 1982). According to Hammerbeck (1982), the Thole Complex was emplaced as concordant sills at several levels in the Mozaan Group and the basement. Thole Complex sills are regarded to have preceded magmatism in both the Amsterdam Formation and the Usushwana Complex.

2.4. The Amsterdam Formation

Initially, the whole Amsterdam Formation was considered to be made up of granophyre, but two distinctly different members, the Gobosha and Vaalkop, were distinguished by Hammerbeck (1982). The Gobosha Member unconformably overlies the Pongola Supergroup and consists mainly of dacite and minor rhyolite and associated tuff. In Swaziland, Hunter (1970) identified granophyre which he grouped with the Usushwana Complex. The descriptions and field relationships of these granophyres in Swaziland are characteristic of the Gobosha Member, and could be the same rock unit according to Hammerbeck (1982). The Vaalkop Member however is essentially a rhyolite (Hammerbeck, 1982), but has previously been described as a granophyre, like the Gobosha Member (Hunter, 1970; Winter, 1965; Humphrey and Krige, 1931; Humphrey and Krige, 1931), as well as Hunter (1970) related the granophyre to a composite gabbro-granophyre magma of the Usushwana Complex.
basement. It is subdivided into mafic and felsic suites (Anhaeusser, 2006 and references therein). The mafic suite, or Piet Retief Gabbro Suite, consists predominantly of a variety of gabbros, with minor occurrences of pyroxenite. Geochemically, however, these pyroxenites do not follow the same fractionation trend as the gabbros, and therefore may represent a different pulse of magmatism (Hammerbeck, 1982). A gabbroic phase is also intrusive into the Thole Complex. Granodiorite and micro-granite constitute the ‘granophyre’ of the felsic Hlelo Suite, but considerable textural, mineralogical and chemical differences between the two end-members exist (Hammerbeck, 1982). The Hlelo Suite is associated with the Piet Retief Suite, but it has an intermittent mode of occurrence. The granophyre and gabbro of the two suites may not be part of the same layered complex, however, because the Usushwana Complex lacks characteristic modal and/or cryptic layering (Hammerbeck, 1982). Hammerbeck (1982) also noted that the granophyres of the Hlelo Suite do not differ greatly from the Vaalkop diabase sills, whereas Hammerbeck (1982) assigned them to the Piet Retief Gabbro Suite (Walraven and Pape, 1994). However, this result is contradicted by the fact that the Usushwana Complex is intruded by the Ngwempisi and Sicunusa plutons, which have both been dated at ca. 2720 Ma using Pb-Pb zircon evaporation and U-Pb on zircon (Mukasa et al., 2013; Maphalala and Kröner, 1993). Hence, according to previous isotopic investigations, field and structural evidence (Fig. 3), the gabbros of the Usushwana Complex should not be older than ca. 2860 Ma or younger than ca. 2720 Ma (Hunter and Reid, 1987). Recently, Gumsley et al. (2013) obtained a U-Pb baddeleyite age of 2874 ± 2 Ma on a SE-trending dolerite dyke and 2866 ± 2 Ma on the Hlagothi Complex in the south-easternmost portion of the Kaapvaal Craton. These ages are broadly coeval with granophyres and pyroxenites within the Usushwana Complex.

Several attempts to date the Usushwana Complex have been made using different geochronological techniques (Fig. 2). A Rb-Sr isochron for granophyres, and a combined mineral and whole-rock Sm-Nd isochron for a pyroxenite yielded consistent ages of 2874 ± 30 Ma and 2871 ± 30 Ma, respectively (Davies & Alsopp, 1970; Hegner et al., 1984). The pyroxenite sampled was almost certainly Thole Complex however, as it was sampled in the Thole Complex type area near Amsterdam, and intrudes into the Mozanga Group. Hegner et al. (1984) also obtained a Sm-Nd isochron age of 3124 ± 123 Ma based on whole-rock analyses of nine different gabbro samples of the Usushwana Complex. This surprisingly old age was considered at the time to be invalid due to the inferred intrusive relationship of the Usushwana Complex into the Pongola Supergroup. The Sm-Nd system was regarded to have been affected by either crustal contamination or open-system behaviour. Layer et al. (1998) presented 40Ar/39Ar ages of 2386 ± 58 Ma and 2377 ± 58 Ma for pyroxene separates and 2094 ± 54 Ma for hornblende separates, but found that these samples had been subjected to severe argon loss, which they explained by isotopic re-setting during the intrusion of the ca. 2.06 Ga Bushveld Complex. The most recently published 2671 ± 18 Ma age for the Usushwana Complex was derived from a Pb-Pb isochron on a magnetite layer in the Piet Retief Gabbro Suite (Walraven and Pape, 1994). However, this result is contradicted by the fact that the Usushwana Complex is intruded by the Ngwempisi and Sicunusa plutons, which have both been dated at ca. 2720 Ma using Pb-Pb zircon evaporation and U-Pb on zircon (Mukasa et al., 2013; Maphalala and Kröner, 1993). Hence, according to previous isotopic investigations, field and structural evidence (Fig. 3), the gabbros of the Usushwana Complex should not be older than ca. 2860 Ma or younger than ca. 2720 Ma (Hunter and Reid, 1987). Recently, Gumsley et al. (2013) obtained a U-Pb baddeleyite age of 2874 ± 2 Ma on a SE-trending dolerite dyke and 2866 ± 2 Ma on the Hlagothi Complex in the south-easternmost portion of the Kaapvaal Craton. These ages are broadly coeval with granophyres and pyroxenites within the Usushwana Complex.

2.6. Post-Pongola Event(s)

In the south-eastern Kaapvaal Craton, SE-trending dolerite dykes were dated by Olsson et al. (2010), providing U-Pb...
Fig. 2. Summary of previously published ages on the syn- and post-Pongola Supergroup magmatic events on the south-eastern Kaapvaal Craton from 3000 Ma to 2640 Ma, found as either volcanic units within the Nsuze or Mozaan groups, as mafic or felsic plutons intruding into the basement granitoid-greenstone terrain or the Pongola Supergroup, or as gneisses. Ages are given with 2\(\sigma\) error bars, and the isotopic system used, and whether it was a whole rock or a mineral technique. Geochronological data points are given in the figure, with the following references: 1, Hegner et al. (1994); 2, Mukasa et al. (2013); 3, Wielkow (1994); 4, Nthelo (2003); 5, Hegner et al. (1984); 6, Olsson et al. (2010); 7, Davies et al. (1970); 8, Layer et al. (1968); 9, Gumsley et al. (2013); 10, Olsson et al. (2011); 11, Olsson (2012); 12, Gumsley (2013); 13, Hoffman et al. (2015); 14, Mapalala and Kröner (1993); 15, Reimold et al. (1994); 16, Gutzmer et al. (1999); 17, Eglington and Armstrong (2004); 18, Barton et al. (1983); 19, Schoene and Bowring (2010); 20, Layer et al. (1989); Meyer et al. (1993); Mapalala and Trumbull (1998). Additional data can be found in the supplementary material. Coloured ellipses denote possible age ranges of a magmatic event from the published geochronological data found in the supplementary material.

baddelelyte ages of ca. 2966 and ca. 2665 Ma. Other SE-trending and NE-trending dykes have been preliminarily dated to ca. 2682 Ma and ca. 2652 Ma, respectively (Gumsley, 2013; Olsson, 2012).

A number of granitic plutons crop out in close association with the Pongola Supergroup and are known as post-Pongola granites. The Hlatikulu granite was dated at 2729 ± 1 Ma by Schoene and Bowring (2010). The Kwetta granite has yielded

Fig. 3. An idealised geological cross-section through the Piet Retief-Amsterdam area illustrating the various geological units and their field relationships, combined with geological units and field relationships found in other areas of the south-eastern Kaapvaal Craton (adapted from Hammerschmidt, 1982). Sampling localities within the stratigraphy are also shown.
Precise U-Pb baddeleyite age dating of the Usushwana Complex, southern Africa

several contradictory dates from 2671 ± 3 Ma to 2722 ± 6 Ma (Reimold et al., 1993; Maphalala and Kröner, 1993). The Mswati Suite granitoids have been dated at 2717 ± 11 Ma, 2824 ± 6 Ma and 2822 ± 5 Ma (Mukasa et al., 2013; Maphalala and Kröner, 1993). High-grade ortho- and paragneisses locally occur in southern Swaziland (Hunter and Wilson, 1988). The Nhlangano and Mahamba gneisses, at their type localities have been shown to be ca. 2.99 Ga and 2.95 Ga, and are high-grade metamorphic equivalents of Nsuze Group volcanic, sedimentary and plutonic rock packages according to Hofmann et al. (2015).

3. Geochronology

3.1. Sampling

Gabbroic samples from a variety of localities within the Piet Retief Suite of the Usushwana Complex, a dolerite sill intruding the Mozaan Group thought to be of Usushwana Complex equivalent age, as well as a SE-trending dolerite dyke in the vicinity of the complex were collected from six sites (Figs. 1 and 4). Sample BCD3-10 (Fig. 4a), is the only sample gathered from the eastern arm of the Usushwana Complex in Swaziland, where it intrudes directly into basement granitoids. The eastern arm of the Usushwana Complex is assumed from limited geophysical surveys to have intruded as a dyke (Hammerbeck, 1982; Winter, 1965). Sample BCD3-09 was taken from a SE-trending dolerite dyke in Swaziland near BCD3-10 (Fig. 4b). It is intrusive into Mesoarchean Tsawela Gneiss between the eastern and western arms of the Usushwana Complex. The dyke has geochemical affinities to the ca. 2966 Ma Barberton-Badplaas Dyke Swarm (Klausen et al., 2010; Olsson et al., 2010). The western arm of the Usushwana Complex is represented by sample PRG-B (Fig. 4c), taken from where the western arm splits in the vicinity of Amsterdam, forming a sill on each side of a raft of Pongola Supergroup and Amsterdam Formation rocks. PRG-B was sampled from the easternmost flank of this syncline, where the Usushwana Complex is thought to have intruded as

Table 1
U-Pb isotopic data.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Fraction</th>
<th>n(^a)</th>
<th>Th/U(^b)</th>
<th>Pb*/Pbc(^c)</th>
<th>206Pb/238U</th>
<th>± 2σ % error</th>
<th>207Pb/235U</th>
<th>± 2σ % error</th>
<th>Correlation coefficient</th>
<th>207Pb/206Pb</th>
<th>± 2σ % error</th>
<th>Discordance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>measured(^d)</td>
<td>corrected(^e)</td>
<td>[Age, Ma]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCD3-10</td>
<td>A</td>
<td>2</td>
<td>0.019</td>
<td>45.8</td>
<td>2420</td>
<td>17.87</td>
<td>0.352</td>
<td>0.5864</td>
<td>0.3410</td>
<td>0.9446</td>
<td>2062.7</td>
<td>2974.8</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>5</td>
<td>0.038</td>
<td>125.4</td>
<td>6751</td>
<td>17.99</td>
<td>0.418</td>
<td>0.6070</td>
<td>0.4044</td>
<td>0.9839</td>
<td>2939.8</td>
<td>2869.7</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1</td>
<td>0.013</td>
<td>62.9</td>
<td>3399</td>
<td>17.62</td>
<td>0.410</td>
<td>0.5780</td>
<td>0.4067</td>
<td>0.9890</td>
<td>2969.3</td>
<td>2940.6</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>4</td>
<td>0.016</td>
<td>32.4</td>
<td>1767</td>
<td>17.96</td>
<td>0.243</td>
<td>0.5877</td>
<td>0.2373</td>
<td>0.9006</td>
<td>2987.5</td>
<td>2894.2</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>3</td>
<td>0.024</td>
<td>44.2</td>
<td>2300</td>
<td>17.91</td>
<td>0.229</td>
<td>0.5007</td>
<td>0.2230</td>
<td>0.9282</td>
<td>2985.1</td>
<td>2992.1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>6</td>
<td>0.024</td>
<td>23.7</td>
<td>1266</td>
<td>15.18</td>
<td>0.294</td>
<td>0.5022</td>
<td>0.2854</td>
<td>0.9710</td>
<td>2826.7</td>
<td>2823.2</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>4</td>
<td>0.072</td>
<td>8.2</td>
<td>442</td>
<td>17.39</td>
<td>0.504</td>
<td>0.5780</td>
<td>0.4763</td>
<td>0.9420</td>
<td>2956.8</td>
<td>2824.3</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>1</td>
<td>0.099</td>
<td>4.8</td>
<td>270</td>
<td>17.08</td>
<td>1.890</td>
<td>0.5646</td>
<td>1.8515</td>
<td>0.9873</td>
<td>2959.5</td>
<td>2885.5</td>
</tr>
<tr>
<td>BCD3-09</td>
<td>A</td>
<td>4</td>
<td>0.031</td>
<td>106.3</td>
<td>6107</td>
<td>16.16</td>
<td>0.220</td>
<td>0.5465</td>
<td>0.2098</td>
<td>0.9452</td>
<td>2886.4</td>
<td>2760.8</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>3</td>
<td>0.032</td>
<td>109.7</td>
<td>6300</td>
<td>17.19</td>
<td>0.283</td>
<td>0.5681</td>
<td>0.2775</td>
<td>0.9768</td>
<td>2945.7</td>
<td>2899.9</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>3</td>
<td>0.018</td>
<td>37.1</td>
<td>2160</td>
<td>16.90</td>
<td>0.416</td>
<td>0.5582</td>
<td>0.4224</td>
<td>0.9541</td>
<td>2929.2</td>
<td>2859.2</td>
</tr>
<tr>
<td>PRE-B</td>
<td>A</td>
<td>7</td>
<td>0.016</td>
<td>101.2</td>
<td>5392</td>
<td>14.85</td>
<td>0.242</td>
<td>0.4913</td>
<td>0.2335</td>
<td>0.9618</td>
<td>2805.6</td>
<td>2576.3</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>6</td>
<td>0.040</td>
<td>15.0</td>
<td>777</td>
<td>16.54</td>
<td>0.492</td>
<td>0.5443</td>
<td>0.4674</td>
<td>0.9527</td>
<td>2908.5</td>
<td>2801.6</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>5</td>
<td>0.012</td>
<td>68.1</td>
<td>3686</td>
<td>16.91</td>
<td>0.248</td>
<td>0.5558</td>
<td>0.2406</td>
<td>0.9580</td>
<td>2929.6</td>
<td>2849.3</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>1</td>
<td>0.713</td>
<td>40.9</td>
<td>2032</td>
<td>15.13</td>
<td>0.371</td>
<td>0.5006</td>
<td>0.3662</td>
<td>0.9683</td>
<td>2823.7</td>
<td>2616.4</td>
</tr>
<tr>
<td>UW-1</td>
<td>A</td>
<td>1</td>
<td>0.125</td>
<td>41.9</td>
<td>2480</td>
<td>15.75</td>
<td>0.51</td>
<td>0.5557</td>
<td>0.4570</td>
<td>0.8853</td>
<td>2861.7</td>
<td>2848.7</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>2</td>
<td>n.m./</td>
<td>10.5</td>
<td>619</td>
<td>15.71</td>
<td>0.743</td>
<td>0.537</td>
<td>0.7320</td>
<td>0.9699</td>
<td>2859.1</td>
<td>2840.6</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>3</td>
<td>n.m./</td>
<td>23.0</td>
<td>1443</td>
<td>15.51</td>
<td>0.6071</td>
<td>0.5485</td>
<td>0.5999</td>
<td>0.9704</td>
<td>2846.9</td>
<td>2819.0</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>2</td>
<td>0.471</td>
<td>8.9</td>
<td>555</td>
<td>15.42</td>
<td>1.7906</td>
<td>0.5460</td>
<td>1.7794</td>
<td>0.9741</td>
<td>2841.5</td>
<td>2808.6</td>
</tr>
<tr>
<td>PWS-16</td>
<td>A</td>
<td>5</td>
<td>0.088</td>
<td>77.5</td>
<td>4212</td>
<td>15.68</td>
<td>0.345</td>
<td>0.5270</td>
<td>0.3206</td>
<td>0.9261</td>
<td>2857.6</td>
<td>2729.0</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>1</td>
<td>n.m./</td>
<td>37.6</td>
<td>2138</td>
<td>14.96</td>
<td>0.381</td>
<td>0.5622</td>
<td>0.3779</td>
<td>0.9815</td>
<td>2938.1</td>
<td>2875.6</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>4</td>
<td>0.028</td>
<td>89.6</td>
<td>4992</td>
<td>14.99</td>
<td>0.251</td>
<td>0.5006</td>
<td>0.2473</td>
<td>0.9795</td>
<td>2814.7</td>
<td>2616.2</td>
</tr>
</tbody>
</table>

\(\text{a} = \text{number of baddeleyite crystals.}\)
\(\text{b} = \text{Th/U model ratio inferred from } 206\text{Pb}/208\text{Pb} \text{ ratio and age of sample.}\)
\(\text{c} = \text{radiogenic lead; Pbc = total common lead (initial + blank lead).}\)
\(\text{d} = \text{measured ratio, corrected for fractionation and spike.}\)
\(\text{e} = \text{isotopic ratios corrected for fractionation (0.1% per amu for Pb), spike calibration, blank (1 pg Pb and <1 pg U) and residual initial common Pb. Initial common Pb corrected with isotopic compositions from the model of Stacey and Kramers (1975) for the age of the sample.}\)
\(\text{f} = \text{Not measured.}\)
 hailedight
Usushwana Complex (Fig. 4f). The sampling site is near where the gabbro has an intrusive contact into both the Nsuze Group volcanic rocks and basement granitoids.

3.2. Analysis

Baddeleyite (ZrO$_2$) is a well-established mineral used in U-Pb isotope dating of silica-undersaturated rocks (Heaman and LeCheminant, 1993; Krogh et al., 1987). It can now be readily extracted using the water-based separation technique of Söderlund and Johansson (2002), and dated by isotope dilution or even dated in situ by spot techniques (e.g., Ibanez-Mejia et al., 2014; Schmitt et al., 2010). We applied the Isotope Dilution-Thermal Ionisation Mass Spectrometry (ID-TIMS) method for the dating of the samples in this study. Mineral separation was completed at the Department of Geology, Lund University, following the extraction technique of Söderlund and Johansson (2002). Mass spectrometry analysis was done at the Department of Geosciences in the Swedish Museum of Natural History in Stockholm. After handpicking, the best-quality baddeleyite grains from the samples were selected and transferred to Teflon® dissolution capsules using ethanol and handmade micropipettes. The grains were subsequently rinsed repeatedly in 7 N HNO$_3$ and ultraclean water to remove ethanol and dilute the Pb blank. A HF–HNO$_3$ mixture (10:1) was added to the dissolution capsules together with one drop of a 205Pb-233–236U tracer solution before they were put into steel jackets and placed in the oven at 205°C for 3 days until fully dissolved. After dissolution, the samples were dried down on a hot plate at 100°C and redissolved in 6 M HCl, with the addition of a small portion of 0.25 N H$_2$PO$_4$. The samples were left on a hot plate to dry down again at 100°C, leaving a small droplet. The sample droplets were dissolved in 2 μl of silica gel (Gerstenberg and Haase, 1997), and were then loaded on out-gassed single rhenium (Re) filaments using an automatic pipette. The U and Pb isotope intensities were measured on a Finnigan Triton thermal ionisation multi-collector mass spectrometer equipped with Faraday Cups and a Secondary Electron Multiplier (SEM). Intensities of 204Pb, 205Pb, 206Pb and 207Pb were analysed at filament temperatures of 1220–1300°C, while the measurement of 233U, 234U and 238U was done subsequently at filament temperatures exceeding 1350°C. The U and Pb data reduction was done using an in-house excel Isotop macro spreadsheet (written by Per-Olof Persson, Department of Geosciences, Swedish Museum of Natural History) based upon the algorithms of Ludwig (1991), where the initial Pb compositions were taken from Stacey and Kramers (1975). The decay constants for 235U, 234U and 232Th are from Jaffey et al. (1971). Procedural Pb blank levels were determined at the Department of Geosciences in the Swedish Museum of Natural History and are typically at 1.0 pg for Pb and 0.1 pg for U. The isotopic composition of the laboratory blank (errors at 2σ) is: 206Pb/204Pb = 18.5 (2), 207Pb/204Pb = 15.6 (0.2) and 208Pb/204Pb = 38.5 (0). The U-Pb data are presented in Table 1 and the calculated isotopic ages are shown in concordia diagrams in Fig. 5 with the preferred ages. Summaries of the age data are presented in Table 2.

3.3. Results

Baddeleyite extraction of BCD3-10 yielded 100 dark brown, blade-like crystals between 50 and 100 μm in their longest dimension. Regression of four variably discordant (0.7–5.0%) fractions, comprising 1 to 5 baddeleyite crystals each, yields an upper intercept date of 2989 ± 0.8 Ma with a Mean Square of Weighted Deviates (MSWD) of 1.7, and a free lower intercept date of 64 ± 86 Ma.

Sample BCD3-09 yielded ca. 200 dark brown baddeleyite crystals of 50–100 μm in their longest dimension. Regression through one slightly reverse (–0.4%), and three normally (1.8–11.8%) discordant analyses, with 1 to 6 crystals in each fraction, yielded an upper intercept of 2980 ± 0.9 Ma, with a free lower intercept date of 85 ± 24 Ma (MSWD = 0.53).

Sample PKG-B yielded ca. 30 clear, dark-brown baddeleyite grains ca. 50 μm in size and an upper intercept date of 2981 ± 2 Ma gives the minimum date of the sample.

Mineral separation of UW-1 resulted in ca. 50 dark brown baddeleyite grains or fragments thereof. The grains are up to 100 μm in length, and most of them have frosty surfaces of suspected polycrystalline zircon. Grains without visible light rims were selected for geochronology. Regression through four variably discordant (4.5–13.4%) ellipses, representing 1 to 7 crystals each, resulted in upper and lower intercept dates of 2989.8 ± 1.7 Ma and 214 ± 28 Ma (MSWD = 0.99), respectively.

Mineral separation of PWS-16 resulted in approximately 100 clear, dark-brown baddeleyite grains of good quality. Except for some larger grains, most of them were in the range of 40 to 50 μm. One single-grain fraction, and an additional three fractions of 2–3 grains each, were used in a regression resulting in an upper intercept date of 2860 ± 4.8 Ma, with the percentage of discordance varying from 1.3 to 2.5. A locked lower intercept at 0 ± 100 Ma (MSWD = 3.4) was used. A calculated weighted 207Pb/206Pb mean date is 2869 ± 4.8 Ma (MSWD = 3.4).

Sample KB yielded only 20 mottled baddeleyite crystals, mostly less than 50 μm in their longest dimension. Three fractions of 1 to 5 grains in each generated a poorly defined upper intercept date, with variable discordance from 4.1 to 12.1%, and non-linear 207Pb/206Pb ages. The 207Pb/206Pb date from the oldest fraction of 2981.1 ± 1.2 Ma gives the minimum date of the sample.

4. Discussion

4.1. The Usushwana Complex and its relationship with Nsuze volcanism

The most recent U-Pb ion probe zircon ages of the Nsuze volcanics span a range from 2980 ± 10 Ma to 2988 ± 6 Ma across the various stratigraphic intervals within the Hartland Basin of the Nsuze Group (Mukasa et al., 2013). Hegner et al. (1994) also reported a single zircon U-Pb age of 3.1 Ma, and Hegner et al. (2003) an age of 2977 ± 3 Ma also using ion probe on zircon. The new U-Pb ID-TIMS upper intercept baddeleyite dates of BCD3-10 and UW-1 at 2989 ± 1 Ma and 2990 ± 2 Ma, respectively, from the Piet Retief Suite of the Usushwana Complex would attest to the crystallisation ages of this suite being broadly coeval with the oldest dated Nsuze volcanic units. However, it has been observed...
that the Piet Retief gabbro near sample locality PRG-B intrudes into the basal Mantonga sandstone and lower Pypklipberg (Nhlebela) volcanic rocks in the Nsuze Group on the western arm of the complex. Sample PRG-B yields a crystallisation age of 2978 ± 2 Ma that renders the sandstones and volcanic rocks older than 2978 Ma at this locality, but not necessarily as old as 2989–2990 Ma. This suggests a complex set of magmatic feeders which included the Usushwana Complex, which was made up of different magma pulses at different times over at least 10 million years, and which experienced different cooling histories, as well as supplying magma for the volcanic successions within the Nsuze Group.

Sample KB was collected from the most southern arm of the Usushwana Complex. This arm is much less studied, and much further south from where Mukasa et al. (2013) obtained ages on the Nsuze volcanic rocks. Although the baddeleyite in the KB sample was partially altered to polycrystalline zircon, it yielded a minimum 207Pb/206Pb crystallisation age of 2981 ± 1 Ma for this part of the Usushwana Complex, that is broadly coeval with the Nsuze Group volcanic rocks already discussed above. However, in this region, rocks of the Usushwana Complex have also intruded rocks of the Nsuze Group.

The SE-trending dolerite dykes in the Barberton-Badplaas area further north of the study area have been dated by Olsson et al. (2010) to 2986 ± 1 Ma and 2967 ± 1 Ma, respectively. The Usushwana Complex follows the same trend towards the south-east as these dykes, appearing to exploit the same basement structures. The development of the Pongola Supergroup and Usushwana Complex may possibly be attributed to a zone of weakness between contrasting crustal blocks, as was already noted by Mukasa et al. (2013) when assessing the region’s pre-Pongola Supergroup basement. A SE-trending dolerite dyke between the two SE-trending arms of the Usushwana Complex (BCD3-09) is here dated at 2980 ± 1 Ma, within error of two of the dated Usushwana Complex gabbro samples. These ages confirm a geochronological and structural connection between the SE-trending dolerite dykes and the gabbros of the Usushwana Complex, both being broadly coeval to the Usuze volcanic rocks. The magmatic event would have formed during two episodes, however, at ca. 2.99–2.98 Ga and ca. 2.97–2.96 Ga, which correlates with the two broad volcanic stratigraphic packages in the Nsuze Group: the stratigraphically lower Pypklipberg (Nhlebela) Formation and the upper Agatha Formation. This is supported by broadly coeval ages between the Piet Retief Suite gabbros (Usushwana Complex), the SE-trending dolerite dykes and the volcanic rocks in the area of the Nsuze Group.

New age data of 2.99–2.98 Ga for the Usushwana Complex contradicts the interpretations based on field observations and
geochronology presented by Anhaeusser (2006), Walraven and Pape (1994), Layer et al. (1988), Hunter and Reid (1987), Hegner et al. (1984, 1994) and Hammerbeck (1982). These studies used gabbroic sills in the Mozaan Group as evidence for a post-Pongola magmatic event at ca. 2860 Ma, which they attributed to the Usushwana Complex. This study renders the earlier interpretations invalid. The gabbroic sill dated at 2869 ± 5 Ma (FW5-16), which is interpreted as a crystallisation age, is over 100 million years younger than the magmatic events that generated the Piet Retief Suite of the Usushwana Complex, SE-trending dolerite dykes and the Nsuze volcanic rocks, and provides conclusive evidence for two separate magmatic events. This new 2869 Ma age shows that the gabbroic sill is coeval with the Hlagothi Complex, an intrusion much further to the south, which has been dated at 2866 ± 2 Ma (Gumsley et al., 2013). The Hlagothi Complex also intrudes into sandstones of the Pongola Supergroup, indicating this ca. 2870 Ma magmatic event affected a large portion of the south-eastern Kaapvaal Craton. Similar ages have also been reported from the Amsterdam Formation, which was mistakenly referred to as the Hlelo Suite of the Usushwana Complex according to Hammerbeck (1982), with Davies et al. (1970) having reported an age of 2874 ± 30 Ma for a granophyre. A pyroxenite of the Thole Complex intruding into the Mozaan Group was also dated to 2871 ± 30Ma by Hegner et al. (1984) and assigned to the Usushwana Complex. Most ages are at around ca. 2860 Ma (Anhaeusser, 2006 and references therein), and therefore at least parts of the Hlelo Suite most likely cannot be related to the Piet Retief Gabbro Suite.

4.3. The relationship between the Hlelo Suite, Amsterdam Formation, Thole Complex and Hlagothi Complex

The felsic rocks of the Hlelo Suite and the Amsterdam Formation bear similarities. The Hlelo Suite is composed of granodiorites and micro-granites, and the Amsterdam Formation consists of dacies, rhyolites and tuff. It has been shown that the original use of the term granophyre for all these lithologies was too broad and generic, highlighting the difficulty in differentiating between these suites and formations in the field and literature (Hammerbeck, 1982). This becomes particularly apparent in the age data, as many of the granophyres and pyroxenites in the Piet Retief-Amsterdam area appear to be related in age to the Hlagothi Complex, which is unrelated to the Piet Retief Suite of the Usushwana Complex as shown in this study.

Because exposures in the area where the Usushwana Complex, Pongola Supergroup and Amsterdam Formation are in contact are poor, this makes any differentiation of the units uncertain. It has also been observed that there are different generations of gabbro within the Piet Retief Suite, with Hammerbeck (1982) noting at least three. Hammerbeck (1982) also observed gabbro intruding into the Hlelo Suite, and the Hlelo Suite intruding into gabbro, an apparent contradiction. These uncertainties attest to different magmatic events, at discrete times or to a process of back-veining. A further example is the ca. 2.87 Ga ages from pyroxenites thought to be associated with the Usushwana Complex by Hegner et al. (1984). Outside of the SE-trending arm of the Usushwana Complex in Swaziland, only small isolated occurrences of ultramafic rocks are found associated with the Piet Retief Suite. Rocks of this composition are generally assigned to the Thole Complex, a mafic-ultramafic intrusion which intrudes into Mozaan strata, which was dated to 2871 ± 30 Ma by Hegner et al. (1984). The pyroxenites in Swaziland assigned to the Usushwana Complex are more likely part of the Thole Complex, as are the ultramafic sills occurring sporadically in Mozaan strata. This association may be coeval with the Hlagothi Complex, a layered mafic intrusion dated to 2866 ± 2 Ma (Gumsley et al., 2013).

In conclusion, the Piet Retief Suite of the Usushwana Complex should be seen as a magmatic feeder to the ca. 2.99–2.96 Ga Nsuze Group volcanism in multiple pulses and episodes accounting for its occasional layering, and which was intruded by more magma during a subsequent ca. 2.87 Ga event, which include the Hlagothi Complex, and possibly the Thole Complex, as well as felsic magmas of the Amsterdam Formation and the genetically-related parts of the Hlelo Suite. Other parts of the Hlelo Suite may have been derived during assimilation of the overlying Nsuze Group, as the magmatic feeders of the Piet Retief Suite grew and invaded into the overlying sandstones and volcanic rocks.

4.4. Tectonic Model

Fig. 6 illustrates a tentative tectonic model of the greater Pongola Basin, with the recognition of the 2990–2966 Ma Usushwana Complex, SE-trending dolerite dykes and the Nsuze volcanic rocks, as well as the 2874–2866 Ma Hlagothi Complex and related intrusions as two independent magmatic events. The Usushwana Complex, although broadly coeval with the volcanic rocks of the Nsuze Group, does in places intrude and transgress the lower sandstones and volcanic rocks of the group. This is indicative of the Usushwana Complex representing a series of magmatic feeders that were actively feeding the Nsuze Group volcanism (in the Pypklipberg/Nhlebela and Agatha volcanic successions). At least two magmatic episodes are recorded over a period of 25 million years, accompanied by the emplacement of a number of contemporaneous 2980 to 2966 Ma SE-trending dolerite dykes. We suggest that the Usushwana Complex was emplaced from 2990 to 2978 Ma (Fig. 6a and b), growing with time, invading and assimilating the older Nsuze Group Pyklipberg (Nhlebela) volcanic rocks into it, with some of the early granophyres of the Hlelo Suite forming through assimilation of the country rock at the Piet Retief Suite-Pongola Supergroup interface. A hiatus in magmatism would have led to the deposition of the Nkembe (White Mfolozzi) Formation, before the establishment of more feeder dykes and sills between 2967 and 2966 Ma (Fig. 6b and c). The Agatha volcanic rocks were produced during this later event, and once again with the possible assimilation of the host rock and the production of granophyres. After ca. 2966 Ma, extension, mechanical subsidence and volcanism ended, and thermal subsidence led to deposition of the Mozaan Group. Initially, sedimentary rocks of the Mozaan Group were deposited in an epicontinental sea (Fig. 6d). As magmatism was reactivated during the onset of the Hlagothi event after 2900 Ma, the Pongola Basin was uplifted and sediments of a more fluvial nature were deposited (Fig. 6e). At ca. 2870 Ma, this renewed magmatism within the south-eastern Kaapvaal Craton led to the emplacement of dolerite sills in the Mozaan Group, as well as the Hlagothi Complex itself (Fig. 6f). This event may also include the emplacement of the Thole Complex, although this link remains to be confirmed (Groenewald, 2006). In addition, the Amsterdam Formation (and parts of the Hlelo Suite) may have been the volcanic equivalent of the Thole Complex, if sedimentation of the Mozaan Group had already ceased by this time. Alternatively, volcanic units within the upper Mozaan Group, such as the Tobolsk and Gabela volcanic rocks may be considered as the volcanic equivalent of the Thole and Hlagothi complexes, and related dolerite sills. This interpretation requires that the age of the Tobolsk volcanic rocks of 2994 ± 5 Ma by Mukasa et al. (2013) is too old because of zircon inheritance, and because this age is in fact within error of the age of Agatha volcanism.

One of the arguments raised in this study is a need for better geochronological control of the detailed stratigraphic analyses carried out by Wilson et al. (2013) and Cole (1994). These authors described in detail aspects of the volcanic rock units of the Nsuze Group in its various sub-basins. The volcanic rocks within these
sub-basins vary significantly in thickness and distribution, and in none of the localities there is a complete exposed stratigraphic profile. Facies changes are related to local conditions, and based on the observation of modern systems, it is possible that the complexities in the lava flows may differ substantially, especially over a 25 Myr time frame in which they were deposited. Significant differences could record a shift of magmatic centres and changes in topography. This is especially important for the Pongola Supergroup, because recent geochronology for the Nsuze Group is constrained only by ages within the Hartland Basin, whereas corresponding studies from other areas are lacking. Volcanic sequences in the Bivane Subgroup from the Nsuze Group from different sub-basins cannot easily be assigned to either the Pykklipberg (Nhlbeila) or Agatha volcanic rocks, and there is up to a 25 Myr difference in time between deposition. This is especially true in the absence of what is now recognised as the complete volcano-sedimentary package.

5. Summary

The Usushwana Complex is composed of the gabbroic Piet Retief Suite, and the Hlelo Suite granodiorites and micro-granites. The Piet Retief Suite intruded into Eo- to Mesoproterozoic granitoid-greenstone basement of the south-eastern Kaapvaal Craton and overlying Mesoarchaean Pongola Supergroup. U-Pb baddeleyite ID-TIMS ages obtained in this study show that parts of the Usushwana Complex are up to 130 Myr older than previously thought, with ages of 2980 ± 1 Ma, 2990 ± 2 Ma and 2978 ± 2 Ma from samples of the Piet Retief Suite. These ages are consistent with the gabbroic parts of Usushwana Complex being broadly coeval with Nsuze Group volcanism of the Pongola Supergroup, along with parts of the granophyric Hlelo Suite derived through crustal assimilation and contamination. This connection is confirmed by the presence of a SE-trending dolerite dyke dated in this study using the same techniques to 2980 ± 1 Ma. It follows the same trend as the two broad arms of the Usushwana Complex, as well as the two previously dated ca. 2967–2966 Ma old SE-trending dolerite dykes of the Barberton-Badplaas Dyke Swarm further to the north (Olsson et al., 2010).

The SE-trending lineaments represent zones of weakness that were intermittently under extension during a 25 million year time interval, and thereby acted as pathways for magma that gave rise to Nsuze volcanic rocks of the Pykklipberg (2.99–2.98 Ga) and Agatha volcanic episodes (2.97–2.96 Ga), as well as the sub-volcanic SE-trending dykes and Piet Retief Suite of the Usushwana Complex.

A dolerite sill in the Mozaan Group strata, previously thought to be of Usushwana Complex age, was dated using U-Pb on baddeleyite to 2869 ± 5 Ma. This age is in agreement with previous age determinations of the Usushwana Complex, indicating two independent phases of intrusive magmatic activity, with the latter being coeval to the intrusion of the 2866 ± 2 Ma Hlagothi Complex (Gumsley et al., 2013). This magmatic event may include the Tholeiitic Complex, as well as parts of the Hlelo Suite and Amersfoort Formation. In addition, this new age provides a new maximum and minimum age for the deposition of the Pongola Supergroup, from 2.99 to 2.87 Ga.

Acknowledgements

The authors wish to thank the editor and two anonymous reviewers for helping to improve this manuscript. This study has benefited from the Swedish Research Council, through research grants to UIfl Söderlund, from which field work followed, by sampled processing at the Department of Geology at Lund University and analysis at the Department of Geosciences at the Museum of Natural History in Stockholm has been possible. Special thanks to Per-Olof Persson, Hans Schöberg and Kjell Billström, as well as the rest of the staff at the Department of Geoscience at the Swedish Museum of Natural History in Stockholm for help during ID-TIMS analysis. Axel Hofmann acknowledges support from the National Research Foundation of South Africa. Ashley Gumsley also acknowledges support from the Royal Physiographic Society in Lund for a travel grant.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.precamres.2015.06.010

References

Olsson, J.R., Söderlund, U., Klausing, M.B., Ernst, R.E., 2010. U-Pb baddeleyite ages linking major Archaean dyke swarms to volcanic-rift forming events in the Kaapvaal Craton (South Africa), and a precise age for the Bushveld Complex. Precambrian Res. 183, 490–500.

U–Pb geochronology and paleomagnetism of the Westerberg Sill Suite, Kaapvaal Craton – Support for a coherent Kaapvaal–Pilbara Block (Vaalbara) into the Paleoproterozoic?

Tobias C. Kampmann⁶, Ashley P. Gumsley⁵, Michiel O. de Kock⁷, Ulf Söderlund⁸,⁹

⁵ Department of Geology, Lund University, Sölvegatan 12, Lund 223 62, Sweden
⁶ Department of Geology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
⁷ Department of Geosciences, Swedish Museum of Natural History, P.O. Box 50, 104 05 Stockholm, Sweden

Abstract

Precise geochronology, combined with paleomagnetism on mafic intrusions, provides first-order information for paleoreconstruction of crustal blocks, revealing the history of supercontinental formation and break-up. These techniques are used here to further constrain the apparent polar wander path of the Kaapvaal Craton across the Neoarchean–Paleoproterozoic boundary. U–Pb baddeleyite ages of 2441 ± 6 Ma and 2426 ± 1 Ma for a suite of mafic sills located on the western Kaapvaal Craton in South Africa (herein named the Westerberg Sill Suite), manifests a new event of magmatism within the Kaapvaal Craton of southern Africa. These ages fall within a ca. 450 Myr temporal gap in the paleomagnetic record between 2.66 and 2.22 Ga on the craton. Our older Westerberg Suite age is broadly coeval with the Woongarra magmatic event on the Pilbara Craton in Western Australia. In addition, the Westerberg Suite on the Kaapvaal Craton intrudes a remarkably similar Archean-Proterozoic sedimentary succession to that on the Pilbara Craton, supporting a stratigraphic correlation between Kaapvaal and Pilbara (i.e., Vaalbara). The broadly coeval Westerberg–Woongarra igneous event may represent a Large Igneous Province. The paleomagnetic results are more ambiguous, with several different possibilities existing. A Virtual Geomagnetic Pole obtained from four sites on the Westerberg sills is 18.9° N, 285.0° E, A95 = 14.1°, K = 43.4° (Sample based VGP, n = 34; 16.8° N, 2879.9° E, dp = 4.4°, dm = 7.7°). If primary (i.e., 2441–2426 Ma), it would provide a further magmatic event within a large temporal gap in the Kaapvaal Craton’s Paleoproterozoic apparent polar wander path. It would suggest a relatively stationary Kaapvaal Craton between 2.44 Ga and 2.22 Ga, and ca. 35° of latitudinal drift of the craton between ca. 2.66 Ga and 2.44 Ga. This is not observed for the Pilbara Craton, suggesting breakup of Vaalbara before ca. 2.44 Ga. However, it is likely that the Woongarra paleopole represents a magnetic overprint acquired during the Ophthalmian or Capricorn Orogeny, invalidating a paleomagnetic comparison with the Westerberg Sill Suite. Alternatively, our Westerberg Virtual Geographic Pole manifests a 2.22 Ga magnetic overprint related to Ongeluk volcanism. The similarity between Ongeluk and Westerberg paleopoles however may also infer magmatic connections if both are primary directions, despite the apparent 200 million year age difference.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A fundamental question concerning the arrangement of late Archean continental blocks is whether they were amalgamated into a single supercontinent, Kenorland, or if they were dispersed into several smaller supercratons such as Superia, Sclavia and Vaalbara (e.g., Bleeker, 2003). Paucity of the paleomagnetic record for most Archean continental crust, and a lack of reliable geochronology on units with paleomagnetic constraints are the main problems preventing resolution of this question. Precise emplacement ages from igneous units of different ages, together with paleogeographic studies can be used to construct magmatic barcodes and apparent polar wander paths (APWPs) of these Archean crustal blocks. Similar magmatic barcode and APWPs indicate if the cratons were a part of a common crustal framework, whereas divergent magmatic barcodes and APWPs indicate the

http://dx.doi.org/10.1016/j.precamres.2015.08.011
0301-9268/© 2015 Elsevier B.V. All rights reserved.
cratons were presumably dispersed during this time interval (e.g. Bleeker and Ernst, 2006).

The Kaapvaal Craton of southern Africa has long attracted the attention of research, and it is one of the best-studied Archean cratons. This is partly due to the extraordinary preservation of >2.0 Ga supracrustal successions, such as the Witwatersrand and Transvaal supergroups, as well as the Bushveld Complex, with the associated deposits of gold, iron, diamonds, manganese, platinum, chromium and vanadium (Fig. 1). The most studied connection regarding the Kaapvaal Craton during the Archean and Paleoproterozoic is with the Pilbara Craton of Western Australia. The Neoarchean-Paleoproterozoic continuity of these two cratons (i.e., Vaalbara) was first proposed by Cheney et al. (1988). The exact configuration of the two cratons at this time has since been tested (Smirnov et al., 2013; De Kock et al., 2009a; Strik et al., 2003; Wingate, 1998; Zegers et al., 1998). Vaalbara is currently paleomagnetically well constrained between ca. 2.78 Ga and 2.66 Ga during Ventersdorp volcanism on the Kaapvaal Craton (e.g., De Kock et al., 2009b; Schmidt and Clark, 1994; Li et al., 1993). A primary paleomagnetic record for the lower part of the Ghaap Group and the Hamersley Group has so far proved elusive (De Kock et al., 2009b; Schmidt and Clark, 1994; Li et al., 1993).

This study reports U–Pb geochronology and paleomagnetism for the newly identified Westerberg Sill Suite, which forms semi-continuous outcrops in the Griqualand West sub-basin of the Transvaal Supergroup on the western margin of the Kaapvaal Craton. These mafic intrusions occur in the upper parts of the 2465 ± 6 Ma Kuruman Iron Formation, in the Ghaap Group (Pickard, 2003). If the Westerberg Sill Suite is coeval with the 2449 ± 3 Ma dolerites that intrude the Weeli Wolli Iron Formation near the top of the Hamersley Group on the Pilbara Craton (Barley et al., 1997), the geochronological magmatic “barcode” match and similar stratigraphies could support the existence of Vaalbara as a continuous cratonic block well into the Paleoproterozoic Era. This may also refine relative positions of these cratons using paleomagnetic studies at this time.
2. Geological setting

2.1. Regional geology

The Kaapvaal Craton in southern Africa is composed of ca. 3.6–2.7 Ga granitoid-greenstone basement overlain by ca. 3.1–1.7 Ga supracrustal cover successions. The Neoarchean Venterdorp Supergroup (which provides palaeomagnetic constraints used to support Vaalbara), and the Paleoarchean Tozooma Transvaal Supergroup (that matches the Pilbara Craton temporally and stratigraphically), are two such cover successions that developed across the ca. 3.6 and 2.7 Ga crustal basement (Fig. 1).

Following the extensive volcanism and sedimentation that resulted in the deposition of the Venterdorp Supergroup, deposition of clastic and carbonate sedimentary rocks (with subordinate volcanic rock units) of the Transvaal Supergroup began. The Transvaal Supergroup is today preserved in three ‘basins’ or erosional remnants. These remnants consist of the Transvaal Basin on the central and eastern parts of the Kaapvaal Craton, and the Griqualand West Basin on the western Kaapvaal Craton (both occurring in South Africa), while the isolated and largely Kalahari sand-covered occurrences in Botswana are referred to as the Kanye Basin (Fig. 1). The spatially separated remnants share a similar geological evolution and stratigraphy. Geological units have therefore been defined representing similar lithologies that can span over more than one basin. An estimate for the onset of sedimentation is provided by volcanic rocks in the Vryburg Formation in the Griqualand West Basin, which is dated at 2642 ± 3 Ma (Walraven and Martini, 1995). This is temporally similar to the 2684 ± 6 Ma age reported for the Wolkberg Formation Group to the east (Barton et al., 1996). Deposition of the Transvaal Supergroup sedimentary rocks ended abruptly with the emplacement of the Bushveld Complex (Fig. 1) at ca. 205 Ma.

At ca. 2.10 Ga, the Namaqua-Natal Mobile Belt started to form by successive accretion of terranes to the western margin of the Kaapvaal Craton. Accretion and collision of these terranes with the Kaapvaal Craton continued until approximately 1.02 Ga, according to Eglington and Armstrong (2004), resulting in orogenesis and regional metamorphism along the western and southern margins of the craton (Fig. 1).

2.2. Local geology

The Westerberg Sill near Prieska on the western margin of the Kaapvaal Craton (Prieska study area, Fig. 2b), intruded in close proximity to the region that was thoroughly reworked and metamorphosed between ca. 1.20 and 1.02 Ga during the Namaqua-Natal Orogeny (Figs. 1 and 2; Eglington, 2006). Extensive folding of the Transvaal Supergroup stratigraphy on this western margin of the craton, including the Kuruman Iron Formation and the Westerberg Sill, however, is related to deformation during an older (pre-1.9 Ga) tectonic event. This folding is expressed in the Prieska study area as a large sinclinal structure with a north–south axis and smaller parasitic folds (Altermann and Hahlbich, 1990). Toward the north and east of Prieska (Kuruman study area, Fig. 2a), dolerite bodies that are less deformed and metamorphosed intrude into the cratonic hinterland. These intrusions, now linked in this study to the Westerberg Sill near Prieska, define a more extensive sill suite (Fig. 2), with a regional tilt of bedding <10° to the west.

The intermittent intrusive dolerite bodies have varying overall thicknesses of 50–200 m, and are composed of fine- to medium-grained gray-green dolerite. Sericitisation of plagioclase is common, indicating a secondary event of alteration which increases with proximity to the craton margin in the south and west. Magnetite occurs throughout the groundmass as small, euhedral crystals ca. 0.1–0.3 mm in diameter. The outer surfaces of the crystals are slightly altered. Almost all primary pyroxenes have undergone varying amounts of uralitisation, although relict pyroxene rafts are occasionally preserved. The BIF that hosts the dolerite shows clear evidence of contact metamorphism up to ca. 0.5 m away from the intrusive contacts. The preservation of the original laminated micritic iron formation of the Westerberg Member in the upper stratigraphic levels of the Kuruman Iron Formation (e.g., the Westerberg Sill near Prieska; Fig. 2). Discontinuous intrusive dolerite sills have been mapped along strike from north-east of Prieska all the way to Kuruman with decreasing occurrences. Iron formations and clastic rocks of the Koegas Subgroup conformably overlie the Griqualand/Daniëlskuil iron formations, and represent the stratigraphic top of the Ghaap Group. These beds are laterally continuous and progressions are progressively cut down into toward the north-east by a regional glacial unconformity overlain by the Magkanyene Formation. Extrusion of the Ongeluk Formation volcanic rocks followed conformably over the Magkanyene Formation at 2222 ± 13 Ma, according to a Pb–Pb whole-rock isochron age by Cornell et al. (1996). The reliability of this age, however, is under debate because of the altered nature of the volcanic rocks, and subsequent whole-rock Pb–Pb and U–Pb isochron age determinations of 2394 ± 26 Ma and 2392 ± 26 Ma, respectively on the overly Moodraal Formation dolomite in the upper Postmasburg Group (Bau et al., 1999; Fairey et al., 2013). This presents an alternative, significantly older, minimum age for the Ongeluk and Magkanyene formations, with implications discussed by Hoffman (2013) and Kirschvink et al. (2000). In addition, a stratigraphic correlation of rocks of the Postmasburg Group with rocks of the Pretoria Group in the Transvaal Basin remains contested (e.g., Moore et al., 2001, 2012). Deposition of the Transvaal Supergroup sedimentary rocks ended abruptly with the emplacement of the Bushveld Complex (Fig. 1) at ca. 205 Ma.

Supporting information

Table S1: U-Pb geochronology of the Westerberg Sill Suite, Kaapvaal Craton
sedimentary layering in the BIF indicates that the intrusion of the sills occurred after the sediments were lithified. Although there have been several studies on the geology of the study area (Fig. 2), none have focused on the dolerite intrusions. Dreyer (1982) interpreted the Westerberg dolerite intrusions as sills, whereas Altermann and Hälbich (1990) described the intrusions as dyke-like bodies intruding at a low angle to the bedding of the host sedimentary rock. A correct classification of the Westerberg intrusions in relation to the host lithology is crucial, since it controls the structural correction used during paleomagnetic studies. As no foliation in the dolerite themselves has been observed, the contact zone to the surrounding BIFs was examined at several outcrops in the Prieska study area. No signs of angular discordance were observed in the field. Columnar jointing of the dolerite perpendicular to bedding of the iron formation in the country rock further confirms that the intrusions should be classified as sills rather than dykes.

3. Methodology

3.1. Baddeleyite ID-TIMS U–Pb geochronology

The center of the Westerberg dolerite (sample M03WA, collected on the Naauwte Farm in the Prieska study area; Fig. 2b), was sampled for U–Pb geochronology, along with sample TGS-01 further to the north in the Kuruman study area (Fig. 2a). Sample processing and dissolution were done at Lund University, Sweden. The highest quality baddeleyite grains were identified under the
optical microscope and divided into five fractions from each sample, comprising 1–5 grains each. Further details on the water-based separation technique used in this study are given in Söderlund and Johansson (2002).

Mass spectrometry analysis was done using a Finnigan Triton Thermal Ionization Mass Spectrometer in the Department of Geo-sciences at the Swedish Museum of National History in Stockholm. Regressions were carried out using Isoplot (Ludwig, 1991), with U decay constants taken from Jaffey et al. (1971). The initial common Pb correction was done using the isotopic compositions from the global common Pb evolution model by Stacey and Kramers (1975). Further details on the methodology are given in Olsson et al. (2010).

3.2. Paleomagnetic studies

Samples were drilled and collected from two localities (three sites) in the Westerberg Sill itself along the banks of the Orange River in the Prieska study area (Figs. 2 and 3), and from two sites further to the north-east in the Kuruman study area (Fig. 2). One of the localities in the Prieska study area is located in the vicinity of the abandoned asbestos mining village of Westerberg, where two parallel sills intrude the Kuruman Iron Formation, where two parallel sills intrude the Kuruman Iron Formation (Fig. 3a). Samples were collected from the thick interior of a sill outcropping in the Orange River, and from its finer-grained upper contact (TKWA). Additional samples were collected from a second sill that intrudes stratigraphically higher in the succession and outcrops along the R383 provincial road above the river (TKWB/TKWE/M03WD). Samples from this locality constitute two sites on the western limb of a north-east plunging syncline (Fig. 2). The remaining sample specimens from the Prieska study area were from outcrops situated east of Westerberg on the Naauwe Farm, and are representative of a single thick sill (Fig. 3b). These constitute one site on the eastern limb of the same syncline. As shown (Fig. 3), samples were also collected from near the fine-grained basal contact of the sill (TKWD), from its coarser central portion (TKWC/M03WC/M03WA), as well as from its finer-grained upper contact with the iron formation (M03WB). Sampling along these two limbs allows for evaluation of the paleomagnetic fold test. From the Kuruman study area (Fig. 2a), samples were collected from medium-grained dolerite bodies forming scattered outcrops on the Simbambala Game Farm (FYL), and from the Kranzkop Farm (MDK03).

Core samples were collected using a portable petrol-powered drill and oriented using both a magnetic and a sun compass. Attitudes of the intrusions were derived from bedding of the host BIF, and determinations of paleo-vertical from columnar cooling joints in the sill were plotted on a stereographic projection. All measurements of magnetic remanence were made by using the superconducting rock magnetometer at the University of Johannesburg (a vertical 2G Enterprises DC-4K magnetometer), and at Yale University (a vertical 2G Enterprises DC SQUID magnetometer), both equipped with similar automatic sample changers (Kirschvink et al., 2008). Selected specimens were submerged in liquid nitrogen before further demagnetization was undertaken. All specimens were exposed to stepwise demagnetization including an alternating-field (AF) pre-treatment from 2 to 10 mT, followed by thermal demagnetization using an ASC Model TD48 shielded oven in 12 steps from 100°C to 550°C in decreasing temperature intervals. Specimens from sites FYL and TGS-03 were demagnetized...
via stepwise AF demagnetization from 2 to 100 mT. The process was abandoned when sample intensity dropped below instrument noise level (below ca. 1 pAm²), or when samples started to show altered behavior.

Magnetic components were quantified via the least-squares component analysis of Kirschvink (1980), and using the software Paleomag 3.1b2 (Jones, 2002). Linear fits were included in subsequent analyses if they had a Mean Angle Deviation (MAD) < 10°. Additional digital handling was conducted with the PmagPy software of Tauxe (2010). Paleomagnetic pole calculations are based on the assumption of a geocentric axial-dipole field, and a stable Earth radius throughout geological time that equals the present day radius. Visualization of pole positions and paleogeographic reconstructions was achieved with GPlates (Williams et al., 2012).

4. Results

4.1. U–Pb geochronology

Extracted baddeleyite grains from M03WA were ca. 30–50 μm in length, elongated and brown in color. The grains have ‘frosty’ surfaces when viewed under the optical microscope, indicative of partial replacement of baddeleyite by zircon as a result of later or post-magmatic reaction of baddeleyite with a silica-rich melt or fluid (e.g., Heaman and LeCheminant, 1993; Söderlund et al., 2013). Back scattered electron microscopy reveals the presence of zircon in ca. 0.5 μm thick semi-continuous rims and also in fractures (Fig. 4). Baddeleyite grains extracted from sample TGS-01 are >50 μm in length, dark brown and crystalline, without any signs secondary zircon. Data is presented in Table 1 with Concordia diagrams shown in Fig. 4.

For M03WA, the 207Pb/206Pb dates of five fractions range from 2405.8 ± 1.8 to 2420.2 ± 1.9 Ma and plot 2–4% discordant (Fig. 4). The 207Pb/206Pb date of the “oldest” fraction (2420.2 Ma) is taken as the minimum age of this sample. Free regression including all fractions yields an upper intercept age of 2441 ± 6 Ma (MSWD = 2.9). For various reasons discussed below, a forced lower intercept of 1100 ± 100 Ma is preferred in the regression, which results in a slightly older age of 2441 ± 6 Ma (MSWD = 2.9).

The 207Pb/206Pb dates for five fractions of TGS-01 range from 2424.1 ± 4.9 to 2426.5 ± 1.7 Ma, and all fractions plot less than 1% discordant. Using a free regression yields a lower intercept of ~230 Ma. We prefer to use the weighted mean of 207Pb/206Pb dates, which is 2626.0 ± 1.2 Ma (MSWD = 0.35), as the best age estimate of this intrusion (Fig. 4).

4.2. Paleomagnetism

4.2.1. Demagnetization result(s)

A summary of the demagnetization results is provided here. All components are given in geographic (not tilt-corrected) coordinates. During demagnetization there was a clear distinction in the behavior of coarse-grained dolerite from the central parts of the thick sills (Fig. 5a and c), and that of samples from the finer grained contact zones or medium-thinner sills and intrusive bodies (Fig. 5b, d and e). Identified components are summarized in Table 2.

In the Prieska study area, coarse-grained samples from the lower sill at Westerberg (samples TKWA 1–8) are poor magnetic recorders and rapidly demagnetize to lose all significant magnetization by a demagnetization step as low as 350 °C. However, in some cases magnetization persists up to 545 °C. Besides a very low-coercivity random component of magnetization removed from these samples in the first couple of AF demagnetization steps, they are dominated by randomly oriented single linear components of magnetization that demagnetize toward the origin (Fig. 5a). The eight samples from this site are thus not given any further attention. Demagnetization of samples from near the upper contact of the lower sill, as well as from the stratigraphically upper sill at Westerberg proved to be more successful. Here once again a low-coercivity component of magnetization was removed from most samples (Fig. 5b). While being quite scattered, these low-coercivity components form a poorly constrained south-westerly cluster of data. After removal of this component, samples demagnetize along linear trajectories toward the origin, and are labeled “HIG” according to their higher stability. These trajectories generally define a moderate negatively inclined, north-northwesterly magnetization in geographic coordinates (Fig. 6b). This component is comparable to characteristic components seen in two samples from the lower sill (Decl. = 281.8°, Inc. = ~55.1° seen in Fig. 6b). Characteristic components from samples TKWB 1 to 7 define significantly steeper and more scattered set of directions (average inclination = ~76.0°; Fig. 6a), and there exists a distinct, but untested possibility that the nearby north-west trending dyke magnetically affected these samples (Fig. 3a). It is also possible that these samples have experienced greater alteration due to modern weathering compared to other samples, and that they may represent a present field-like magnetization. These components are labeled “PF” despite their persistence at high temperature demagnetization steps. Exclusion
Fig. 5. Representative demagnetization behavior of selected coarse-grained and fine-grained samples from the investigated sites in the Kuruman (north-east) and the Prieska (south-west) study areas.
of these components (i.e., TKW 1–7) from the HIG components identified in other samples yields a tight clustering mean for the upper sill in geographic coordinates (Decl. = 296.6°, Incl. = 39.1°, k = 39.4, α95 = 6.4°, n = 14; Fig. 4b). Samples MO3WD 7–9 are the exception to the behavior described above. These samples display single linear, north-westerly and upward directed magnetic components, not seen in any other of the samples, and were removed during demagnetization up to 570°C. These anomalous, possibly lightning-induced magnetizations are excluded from further evaluation.

On the Naauwte Farm (Prieska study area), coarse-grained dolerite samples appeared to be poor recorders of the Earth's past magnetic field. Samples collected here were from the interior of the sill (MO3WA/MO3WC/TKW; Fig. 3b). As was the case at Westerberg, these coarse-grained samples generally lost their magnetization quite rapidly (Fig. 5c). These samples can be characterized by randomly directed low-coercivity components, and randomly directed linear components that are not evaluated further (Fig. 5c). Again, finer-grained dolerite in proximity of the contact with the iron formation yielded better results. Samples MO3WB 1–8 were collected from more weathered exposures from the track along the hillside above the Orange River, while samples TKWD 1–8 were collected from a fresh exposed outcrop within the river bed itself (Fig. 3b). Samples from both outcrops displayed randomly directed low-coercivity components during low-field AF demagnetization (Fig. 5d). The samples from the track exposure displayed narrowly and upward directed linear components that demagnetized toward the origin. These PF components are near parallel to the present-day magnetic field of the Earth at the locality (Fig. 6a), and probably were acquired during recent

Table 1

<table>
<thead>
<tr>
<th>Component</th>
<th>In situ coordinates</th>
<th>Tilt-corrected coordinates</th>
<th>Concordance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site</td>
<td>Region</td>
<td>n/N</td>
<td>Decl. in°</td>
</tr>
<tr>
<td>PF</td>
<td>TKWB</td>
<td>7/7</td>
<td>333.2</td>
</tr>
<tr>
<td></td>
<td>TKWD/MO3WB</td>
<td>15/15</td>
<td>14.2</td>
</tr>
<tr>
<td>INT</td>
<td>MDKB3</td>
<td>6/6</td>
<td>83.9</td>
</tr>
<tr>
<td>HIG</td>
<td>MO3WD/TKWE (a)</td>
<td>14/17</td>
<td>296.6</td>
</tr>
<tr>
<td></td>
<td>TKWA</td>
<td>2/10</td>
<td>281.8</td>
</tr>
<tr>
<td></td>
<td>TKWD (b)</td>
<td>6/7</td>
<td>300.2</td>
</tr>
<tr>
<td></td>
<td>FYL</td>
<td>5/6</td>
<td>275.2</td>
</tr>
<tr>
<td></td>
<td>MDKB3</td>
<td>5/6</td>
<td>282.2</td>
</tr>
<tr>
<td>Combined samples</td>
<td>n = 34</td>
<td>–37.4 7.8</td>
<td>11</td>
</tr>
<tr>
<td>Combined as sites</td>
<td>N = 44</td>
<td>–34.5 20.6</td>
<td>12.9</td>
</tr>
<tr>
<td>VGP based on 6 tilt-corrected samples</td>
<td>2.8 N</td>
<td>275.5° E</td>
<td>271.1° E</td>
</tr>
<tr>
<td>MO3WD (b)</td>
<td>Naauwte sill</td>
<td>6/7</td>
<td>300.2</td>
</tr>
<tr>
<td>MDKB3</td>
<td>FYL</td>
<td>5/6</td>
<td>275.2</td>
</tr>
<tr>
<td>MDKB3</td>
<td>MDKB3</td>
<td>5/6</td>
<td>282.2</td>
</tr>
<tr>
<td>Combined samples</td>
<td>n = 34</td>
<td>–37.4 7.8</td>
<td>11</td>
</tr>
<tr>
<td>Combined as sites</td>
<td>N = 44</td>
<td>–34.5 20.6</td>
<td>12.9</td>
</tr>
</tbody>
</table>

Site coordinates: MO3WD, TKWA, TKWB & TKWD = 29.3° S 22.3° E; MO3WB, TKWC & TKWD = 29.4° S 22.6° E; MO3KA = 28.0° S 23.4° E; FYL = 27.8° S 23.4° E.

Abbreviations: Decl. = declination, Incl. = inclination, α95 = radius of 95% confidence about the mean direction, k = precision parameter for direction, VGP = virtual geomagnetic pole, dp and dm = semi-axes of 95% confidence about the mean pole, K = precision parameter for pole. Sample based VGP was calculated for site coordinates at 28.5° S 23.0° E.
weathering. Samples TKWD 1–7 also display similar northerly present field-like (or PF) components within the 200 °C to 500 °C stepwise demagnetization range (Figs. 5d and 6a), but here a third magnetic component (HIG) is identified at demagnetization steps above 500 °C, as shallow easterly zero-seeking demagnetization trajectories in six of the seven samples (Fig. 5d). A mean was calculated for these six samples at Decl. = 300.2 °, Incl. = −12.4 °, k = 116.2, α95 = 6.2 °, n = 6 (Fig. 6b).

Samples from sites FYL and MDK03 in the Kuruman study area behaved similarly during demagnetization (Fig. 5e). Samples from both sites displayed randomly directed low-coercivity components that were removed during the first couple of demagnetization steps. Hereafter all samples displayed a magnetic component of medium- to low-coercivity (7.5–30 mT). In samples from FYL, these components were randomly directed, but for samples from MDK03 these intermediate components form an easterly and downward directed cluster labeled “INT” (Decl. = 83.9 °, Incl. = 31.6 °, k = 10.07, α95 = 20.07 °, n = 6; Fig. 6a). The INT component is near antipodal to the HIG component identified elsewhere, but it is clearly of lower coercivity. At demagnetization steps above 30 mT, and up to 85 mT (i.e., high-coercivity), samples from both sites revealed easterly and upward directed characteristic remanence directions. These directions are similar to that seen at the southern localities, and thus labeled HIG (Fig. 6b).

4.2.2. Structural correction, paleomagnetic fold test and pole calculation

A consistent characteristic remanence (i.e., component HIG) was identified from sites TKWA and TKWE/M03WD along the western limb of a gently north-east plunging syncline. Only two samples from site TKWA yielded the HIG component, while 21 samples recorded the HIG component at TKWE/M03WD. In addition, the HIG component was identified from two sites from the Kuruman study area. In order to restore bedding to paleo-horizontal, the
regional fold axis (i.e., azimuth = 19.1° and plunge = 19.4°) in the Prieska study area first had to be restored to horizontal, and all identified components from the Westerberg and Nauwte areas had to be corrected accordingly. The plunge-corrected bedding data for samples from the Prieska study area (Westerberg and Nauwte), and the bedding data for samples from the Kuruman study area (FL and MK03) was then used to restore all components to horizontal (Fig. 6b). Means of structurally corrected components were then calculated and are shown in Table 2.

The PF directions from the Prieska study area (Westerberg and Nauwte), become more disparate during the unfolding as set out above (Fig. 6). This suggests that the acquisition of this magnetization occurred after folding. Formal evaluation of the fold test of McFadden and Jones (1981) is not possible because the two groups do not share a common precision. We therefore make use of the bootstrap evaluation of the fold test from Tauxe et al. (1991) instead (Fig. 6a). This shows clearly that the PF component from the 22 samples was acquired after folding because 95% confidence limits on the degree of untilting required for maximizing concentrations of the data (i.e., maximum eigenvalue of r1 of the orientation matrix), include 0% unfolding. The maximum concentrations of data are reached between −10% and 24% unfolding (Fig. 6a).

A slight visual improvement of grouping of HIG components is observed during unfolding (Fig. 6b). The HIG groups from the western limb (from the Westerberg upper sill), and the eastern limb (site TKWD at Nauwte Farm) in the Prieska study area do not share a common precision. We thus again use the bootstrap evaluation of the fold test following Tauxe et al. (1991) for all identified HIG components. The HIG component from 34 samples appears to have been acquired prior to folding because 95% confidence limits on the degree of untilting required for maximizing fits of the data (i.e., maximum eigenvalue of r1 of the orientation matrix) occurs between 70% and 149% unfolding (Fig. 6a).

A VGP calculated for 34 tilt-corrected samples is situated at 16.8°N, 27.9°E (dp = 4.4°, dm = 7.7°). The tilt-corrected site-based (N = 4) is comparable at 18.9°N, 285.0°E, Ag = 14.1, K = 43.4.

5. Discussion

5.1. Emplacement age of the Westerberg Sill

The upper intercept date of 2434 ± 16 Ma for sample M03WA using a free regression, yields a lower intercept date of 920 ± 450 Ma, the latter of which can be interpreted to reflect the time of disturbance of the U–Pb isotopic system in primary zirconium-bearing minerals. We assume that most of the discordance relates to the event causing partial transformation of baddeleyite to zircon (Fig. 4), at an approximate time given by the lower intercept. According to Colliston and Schoch (2013), theNamaqua-Natal Orogeny ended at ca.1030 Ma in a phase of comprehensive folding and shearing, and we assume that metamorphism at zeolite to greenschist facies in the area west of the town of Prieska relates to this metamorphic event (Cornell et al., 2006). Hence, we prefer to use a 1100 ± 100 Ma as a proxy for the lower intercept, since ca. 1100 Ma is normally referred to as the general time of metamorphism for the Namaqua-Natal Orogeny (e.g., Eglington, 2006). This approach results in an upper intercept age of 2441 ± 6 Ma, which is interpreted as the best estimate of the emplacement age of the Westerberg Sill in the Prieska study area. A multi-stage disturbance of the U–Pb isotopic system would theoretically bias both the upper and lower intercept dates in a discordant data set. The MSWD value of 2.9 indicates scatter beyond analytical uncertainty and we cannot rule out that a more recent Pb-loss event (younger than the Namaqua-Natal orogeny), may be superimposed.

The age results of M03WA and TCS-01 agree with previously obtained radiometric dates from the Kuruman BIF into which the Westerberg Sill intrudes. An unpublished single-grain zircon U–Pb age of 2480 ± 6 Ma for tuffaceous units at the base of the Kuruman BIF by Trendall et al. (1995) is thought to reflect the onset of BIF sedimentation according to Eriksson et al. (2006). U–Pb zircon ages of 2465 ± 6 Ma (Pickard, 2003), and an unpublished age of 2465 ± 7 Ma (cited in Martin et al., 1998) from the upper Kuruman Formation, are probably a good age estimate of the transition to a shallower depositional environment. This transitional depositional environment characterizes the deposition of the Griquatown Iron Formation (Beukes, 1984). Additionally, an unpublished age of 2432 ± 31 Ma is often cited for tuffaceous mudstone at the base of the Griquatown Iron Formation (Naauwte, 1991). Unpublished work cited in Kirschvink et al. (2000) for zircons from a tuffaceous bed near the top of the overlying Koegas Subgroup gave an age of 2415 ± 6 Ma. This suggests that the Westerberg Sill Suite may have been broadly coeval with the felsic magmatism during deposition of the Grippatum Iron Formation. However, field observations and thermal alteration of the surrounding country rock support the assertion that the Kuruman BIF was already lithified when the intrusion occurred. Consequently, the age range of 2441 ± 6 Ma to 2426 ± 1 Ma for the Westerberg Sill Suite reflects a minimum age for the Kuruman Iron Formation, in agreement with previously published age constraints.

5.2. Paleomagnetism – comparison with Paleoproterozoic paleopoles

The ca. 1.1 Ga Namaqua-Natal Orogeny was likely responsible for a significant disturbance of the U–Pb isotopic system in baddeleyite from the Westerberg Sill. None of our calculated poles however suggest that this event affected the magnetization of samples. Instead our paleopoles compare well with published paleomagnetic poles and VGPs, as well as known volcanic overprints from the Kaapvaal Craton during the Paleoproterozoic (Fig. 7). For this comparison we also include Neoarchean poles from the Kaapvaal Craton (all poles used in this comparison are listed in Table 3).

Our pre-fold high stability VGP (i.e., HIG) from the Westerberg Sill Suite plots well within an existing gap in the apparent polar wander path of the Kaapvaal Craton between ca. 2.66 Ga and the time of extrusion of the Ongeluk volcanics (Fig. 7). The HIG component VGP plots near the ca. 2.22 Ga Ongeluk Formation paleopole of Evans et al. (1997), and is indistinguishable from the intermediate component pole (i.e., INT) that was removed in some samples. This intermediate component is opposite in polarity to the HIG direction, and is clearly a younger magnetization. Besides being indistinguishable from the HIG pole, the INT pole is also very similar to the pole determined from the weathering profile that developed below the unconformity at the base of Gamagara-Mapedi Formation (Evans et al., 2002). This comparison of paleopoles allows for several possible interpretations. Although the magnetization of the Westerberg Sill Suite clearly pre-dates ca. 2.0 Ga deformation of the Postmasburg and Campbellrand groups, we have no further constraints on the timing of remanence acquisition. The magnetization could represent a ca. 2.22 Ga magnetic overprint associated with the extrusion of the Ongeluk volcanic rocks. However, this is unlikely given the lack of observations for a wider metamorphic and metasomatic influence of the Ongeluk Formation. A second, option would be that the HIG magnetization pre-dates deformation, and that it is a primary magnetization acquired at ca. 2.43 Ga during the
U–Pb geochronology and paleomagnetism of the Westerberg Sill Suite, Kaapvaal Craton

Fig. 7. Possible apparent polar wander path for the Kaapvaal Craton (black) and Pilbara Craton (blue) using known paleopoles for the Neoarchean-Paleoproterozoic (including component INT and HIG of this study). References for the Pilbara poles (blue): P1 = 2772 Ma Pilbara Flood basalt Package 1 (Strik et al., 2003), BR = 2772 ± 2 Ma Black Range dykes (Embleton, 1978), P2 = 2767 Ma Pilbara Flood basalt Package 2 (Strik et al., 2003), P4-5 = 2739 Ma Pilbara Flood basalt Package 4–5 (Strik et al., 2003), P8–10 = 2717 ± 2 Ma Pilbara Flood basalt Package 8–10 (Strik et al., 2003), WOON = 2449 ± 3 Ma Woongarra Rhyolite (Evans, 2007; Evans, pers. comm., 2012). (For interpretation of reference to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Summary of VGPs and paleopoles for the Kaapvaal Craton in the Neoarchean to Paleoproterozoic.

<table>
<thead>
<tr>
<th>Rock unit</th>
<th>Code</th>
<th>Age (Ma)</th>
<th>Age reference</th>
<th>Pole ‘N’</th>
<th>Pole ‘E’</th>
<th>A95 or dp (◦)</th>
<th>dm (◦)</th>
<th>Pole reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neoarchean poles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modipe Gabbro</td>
<td>MG</td>
<td>2784 ± 1</td>
<td>Denyszyn et al. (2013)</td>
<td>−47.6</td>
<td>12.4</td>
<td>8.6</td>
<td>9.3</td>
<td>Denyszyn et al. (2013)</td>
</tr>
<tr>
<td>Allansridge Formation</td>
<td>AR</td>
<td>ca. 2700</td>
<td>De Kock et al. (2008a)</td>
<td>−69.8</td>
<td>345.6</td>
<td>5.8</td>
<td></td>
<td>De Kock et al. (2008a)</td>
</tr>
<tr>
<td>Rykoppies Dykes</td>
<td>RYK</td>
<td>2700–2660</td>
<td>Olsson et al. (2010)</td>
<td>−62.1</td>
<td>336</td>
<td>3.5</td>
<td>4.2</td>
<td>Lubina et al. (2010)</td>
</tr>
<tr>
<td>Paleoproterozoic poles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample-based HIG component</td>
<td>HIG</td>
<td>2441–2426</td>
<td>This study</td>
<td>16.8</td>
<td>279.9</td>
<td>4.4</td>
<td>7.7</td>
<td>This study</td>
</tr>
<tr>
<td>Westerberg Sill Suite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tilt-corrected INT component</td>
<td>INTtc</td>
<td></td>
<td>This study</td>
<td>11.8</td>
<td>271.1</td>
<td>15.3</td>
<td>24.8</td>
<td>This study</td>
</tr>
<tr>
<td>In situ INT component,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westerberg Sill Suite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ghaap SD component</td>
<td>Ghaap SD</td>
<td>2500–2300</td>
<td>De Kock et al. (2009b)</td>
<td>−48</td>
<td>65.6</td>
<td>14.7</td>
<td>17.3</td>
<td>De Kock et al. (2009b)</td>
</tr>
<tr>
<td>Ongeluk Lava</td>
<td>ONG</td>
<td>2222 ± 13</td>
<td>Cornell et al. (1996)</td>
<td>−0.5</td>
<td>100.7</td>
<td>5.3</td>
<td></td>
<td>Evans et al. (1997)</td>
</tr>
<tr>
<td>Manarvan Ore component 1</td>
<td>MAM-1</td>
<td>ca. 2200</td>
<td>Evans et al. (2001)</td>
<td>−8.2</td>
<td>111.1</td>
<td>5.6</td>
<td>11.1</td>
<td>Evans et al. (2001)</td>
</tr>
<tr>
<td>Gamagara/Mapedi Formation</td>
<td>BGM</td>
<td>ca. 2200</td>
<td>Evans et al. (2002)</td>
<td>2.2</td>
<td>81.9</td>
<td>7.2</td>
<td>11.5</td>
<td>Evans et al. (2002)</td>
</tr>
<tr>
<td>Ghaap W component</td>
<td>G W</td>
<td>ca. 2200</td>
<td>De Kock et al. (2009b)</td>
<td>−3.2</td>
<td>104.1</td>
<td>15</td>
<td></td>
<td>De Kock et al. (2009b)</td>
</tr>
<tr>
<td>Phalaborwa Complex</td>
<td>PB</td>
<td>2060 ± 4</td>
<td>Wu et al. (2011)</td>
<td>27.7</td>
<td>35.8</td>
<td>6.6</td>
<td></td>
<td>Letts et al. (2011)</td>
</tr>
<tr>
<td>B-1 Bushveld Sills</td>
<td>B1</td>
<td>2058 ± 6</td>
<td>Wah et al. (2011)</td>
<td>13.1</td>
<td>44</td>
<td>14.3</td>
<td>Letts et al. (2009)</td>
<td></td>
</tr>
<tr>
<td>Bushveld Complex</td>
<td>BC</td>
<td>2054 ± 1.3</td>
<td>Scoates and Friedman (2008)</td>
<td>19.2</td>
<td>30.8</td>
<td>5.8</td>
<td>Letts et al. (2009)</td>
<td></td>
</tr>
<tr>
<td>Waterberg unconformity</td>
<td>WUBS-1</td>
<td>2054 ± 4</td>
<td>Dorland et al. (2006)</td>
<td>36.5</td>
<td>51.3</td>
<td>10.9</td>
<td>De Kock et al. (2006)</td>
<td></td>
</tr>
<tr>
<td>bounded sequence 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Witwatersrand overprint</td>
<td>WITS</td>
<td>1945 ± 40</td>
<td>Layer et al. (1988)</td>
<td>19.1</td>
<td>45.6</td>
<td>7.8</td>
<td></td>
<td>Layer et al. (1988)</td>
</tr>
<tr>
<td>Ghaap ND component</td>
<td>G-ND</td>
<td>2000–1900</td>
<td>De Kock et al. (2009b)</td>
<td>26.5</td>
<td>22.8</td>
<td>7</td>
<td></td>
<td>De Kock et al. (2009b)</td>
</tr>
<tr>
<td>Vrededorf</td>
<td>VRED</td>
<td>2023 ± 4</td>
<td>Kamo et al. (1996)</td>
<td>21.8</td>
<td>44.5</td>
<td>11.3</td>
<td>15.4</td>
<td>Carpozen et al. (2005)</td>
</tr>
</tbody>
</table>

A95 (in degrees) is the radius of the 95% confidence cone about a mean based on site poles, while dp and dm (in degrees) are semiaxis of the 95% confidence cone about a mean based on site direction.

* Reliability of age determination under debate (see text).
intrusion and subsequent cooling of the Westerberg Sill Suite. If correct, this suggests a relatively stationary Kaapvaal Craton for some 200 million years (i.e., between 2.43 Ga and 2.22 Ga). There is however a third option that we consider here, which suggests that the age of the Ongeluk Formation is not ca. 2.22 Ga as commonly accepted, but much closer in age to that of the Westerberg Sill Suite (i.e., ca. 2.43 Ga). An older age has been suggested for the Ongeluk volcanic rocks before (Moore et al., 2001, 2012; Bau et al., 1999), but requires a challenging revision of stratigraphic correlations between the various basins preserving the Transvaal Supergroup. If correct, the Westerberg Sill Suite may be a stratigraphically deeper, intrusive equivalent of the Ongeluk Formation volcanic rocks. This option remains speculative until conclusive geochronological data is presented for the Ongeluk Formation itself.

The INT magnetization or intermediate opposite polarity overprint was only observed from northerly sampling sites in the Kuruman study area, further away from the edge of the Kaapvaal Craton. Apart from being situated deeper into the interior of the craton, the sites are stratigraphically closer to the Ongeluk Formation due to the unconformity at the base of the Postmasburg Group. This unconformity cuts down into the Koegas Formation in the Kuruman study area, where there is much less intervening rock units compared to the Prieska study area. Alternatively the INT magnetization may be related to the deep oxidative weathering experienced before the deposition of the Kuruman. The Postmasburg Group rests unconformably on top of the Koegas Formation. There is thus a possibility that the Ongeluk Formation could have overprinted the magnetization of the Westerberg Sill Suite in the Kuruman study area, where there is an unconformity at the base of the Postmasburg Group. This unconformity cuts down into the Koegas Formation in the Kuruman study area, where there is much less intervening rock units compared to the Prieska study area. Alternatively the INT magnetization may be related to the deep oxidative weathering experienced before the deposition of the Kuruman. The Postmasburg Group rests unconformably on top of the Koegas Formation. There is thus a possibility that the Ongeluk Formation could have overprinted the magnetization of the Westerberg Sill Suite in the Kuruman study area, where there is an unconformity at the base of the Postmasburg Group.

5.3. Implications for Vaalbara

5.3.1. Vaalbara so far

Based on analyses of sequence stratigraphy, lithostratigraphy and lithofacies, Cheney (1996, 1990) produced a reconstruction placing the Pilbara Craton at the southern margin of the Kaapvaal Craton. This reconstruction also included the Yilgarn and Zimbabwe cratons in the delimitation of Vaalbara. The relationships between these four cratons have recently been discussed in Smirnov et al. (2013). Similar time-stratigraphic development is present in both Kaapvaal and Pilbara cratons (Fig. 8). The volcanic rocks of the Venterdorp Supergroup and the sedimentary rocks of the successive Transvaal Supergroup (Kaapvaal Craton), can be correlated with the volcanic rocks of the Fortescue Group and the sedimentary rocks of the Mount Bruce Supergroup (Pilbara Craton), respectively (Cheney, 1990). A comparison between similar poles of the Neoarchean Usushwana Complex on the Kaapvaal Craton, and the Millindina Complex (Pilbara Craton), in addition to correlation between Archean tectonic architecture of the respective cratons, led Zegers et al. (1998) to propose an alternative reconstruction with the Pilbara Craton on the eastern margin of the Kaapvaal Craton. Published paleomagnetic data disproved the traditional “Cheney-fit” scenario; De Kock et al. (2009a) revised paleomagnetic results for the 2.78–2.70 Ga interval, and also presented new data from the Venterdorp Supergroup volcanic rocks. Based on this, a third reconstruction (herein referred to as the “de Kock-fit”), places the Pilbara Craton to the north-west of the Kaapvaal Craton. The alignment of platform sedimentary rocks, together with the overlapping paleopoles and parallel APWPs for the ca. 2.78–2.66 Ga time interval favor this model. In addition, new U–Pb baddeleyite ages of ca. 2900–2978 Ma for the Usushwana Complex (Gumsley et al., 2015) also contradicts the link to the Hlagothi Complex (Schmidt and Embleton, 1985; Gumsley et al., 2013).

The Vaalbara hypothesis is corroborated by geology, geochronology and paleomagnetism until ca. 2.66 Ga. The next possible pair of paleopoles of comparable age is ca. 1.9 Ga, but there is no general paleolatitudinal comparison of the Kaapvaal and Pilbara cratons at this time rules out the possibility of a connection due to a poleward drift of the Kaapvaal Craton, and the low-latitude position of the Pilbara Craton. The Pilbara Craton is at ca. 12° latitude for remagnetization seen during the Capricorn Orogeny, and Kaapvaal is at ca. 55° latitude for the post-Waterberg dolerites and Hartley-Tsingu volcanic rocks and dolerites (Alibeyeh Semami, 2014; Hanson et al., 2004). A possible break-up scenario at ca. 2.2 Ga is supported by the “barcode” age match between the 2222 ± 13 Ma Ongeluk volcanic rocks in the Kaapvaal Craton from Cornell et al. (1996) and 2208 ± 10 Ma volcanism in the Turee Creek Group of the Pilbara Craton (Müller et al., 2005). However, there is controversy concerning the ca. 2.22 Ga age of the Ongeluk volcanic rocks by Cornell et al. (1996). Two new indirect minimum age determinations at ca. 2394 Ma on the overlying Moodraa Formation dolomites suggest this unit to be at least 200 Ma older (Fairey et al., 2013; Bau et al., 1999). Combined with the work of Moore et al. (2001, 2012), there is the possibility that the Westerberg Sill Suite may indeed reflect sub-volcanic intrusions linked to the Ongeluk volcanic event itself, which is supported by paleomagnetism presented in this study, unless this indeed reflects a magnetic overprint tied to the ca. 2.22 Ga Ongeluk volcanism.

5.3.2. A new barcode match at ca. 2.44 Ga?

The new age of 2441 ± 6 Ma for the Westerberg Sill coincides within error with the zircon U–Pb SHRIMP age of 2449 ± 3 Ma for the Woongarra Rhyolite of the Pilbara Craton (Barley et al., 1997). This intrusive suite overlies the BIF successions of the Weeli Wolli Formation. Zircons from a tuffaceous sandstone layer in the Weeli Wolli Formation also yield the age of 2440 ± 3 Ma (Barley et al., 1997). Therefore, the Woongarra volcanism has been interpreted as representing a Large Igneous Province (LIP). There are also numerous doleritic and basaltic units intruding within the Weeli Wolli strata. These magmatic units likely reflect later magmatic episodes of the same LIP, which may date to 2426 ± 1 Ma, the same age as obtained for sample TGS-01 in this study. The Woongarra Rhyolite at the top of the Weeli Wolli Formation is a felsic unit thought to have been emplaced in two magmatic pulses (Trendall et al., 1995). Although a directly equivalent unit is absent in the Griqualand West Basin of the Kaapvaal Craton, there are several coeval porphyroclastic stelipnomelane petite beds in the upper part of the Kuruman Iron Formation which are thought to be derived from felsic volcanic activity (Beukes, 1984). Tuffaceous horizons can also be found within a sedimentary unit in the overlying Bolgerda Iron Formation in the Pilbara Craton. Unpublished zircon U–Pb dating cited in Gutzmer and Beukes (1998) from one of these volcanic layers yielded an age of ca. 2440 Ma. We therefore suggest a major Westerberg–Woongarra LIP event may have taken place on the contiguous cratons of the Kaapvaal and Pilbara from approximately 2425–2445 Ma, despite the paleomagnetic discrepancy. The similarities between the geological histories during the ca. 2.8 to 2.2 Ga time interval are significant (e.g., Beukes and Gutzmer, 2008). Trendall (1968) and Button (1976) were the first to point out these resemblances between the sedimentary successions and basin configurations of the Transvaal Supergroup (Kaapvaal) and the Hamersley Group (Pilbara). Button (1976) concluded that the two largely coeval sedimentary successions represented spatially distinct basins, but probably shared similar depositional histories as part of a larger continental block.
6. Conclusion

Baddeleyite U–Pb dating of the Westerberg Sill near the south-western margin of the Kaapvaal Craton and a dolerite sill suite further to the north-west in the cratonic hinterland yield crystallization ages of 2441 ± 6 Ma and 2426 ± 1 Ma, respectively. These two U–Pb ages date a new event of mafic magmatism on the craton, which may represent a new Large Igneous Province. These new ages define the herein named Westerberg Sill Suite which is similar in age to the 2449 ± 3 Ma Woongarra
volcanic rocks of the Pilbara Craton, possibly indicating a common Westerberg–Woongarra LIP. However, if the Westerberg characteristic magnetization is primary, a comparison to coeval Pilbara Craton poles does not allow for a Vaalbara (Kaalpvaal–Pilbara) reconstruction at 2.44–2.43 Ga, indicating crustal break-up before this time. It is important to bear in mind the primary nature of paleopoles on both cratons may be in doubt, as resetting by either the Ongulov volcanism in the Kaapvaal Craton, or the Capricorn Orogeny in the Pilbara Craton may be apparent. In our preferred interpretation, despite the paleomagnetic discrepancy, the Kaap- vaal and Pilbara cratons formed a single crustal block between 2449 and 2426 Ma. The magnetic barcode match, combined with similar depositional histories recorded in underlying carbonates and BIFs argue strongly for a shared history between these two cratonic blocks. This would extend the crustal association between these two blocks from 2.78 Ga, all the way through to 2.22 Ga.

Acknowledgements

This study has benefited from the Swedish Research Council, through research grants to Ulf Söderlund. Special thanks to Per- Olof Persson, Hans Schöberg and Kjell Billström, as well as the rest of the staff of the Department of Geosciences at the Swedish Museum of Natural History in Stockholm for technical support and help. The staff of the Department of Geology at the University of Johannesburg are acknowledged for the warm welcome and great hospitality during field work for this study. Leif Johansson is thanked for assisting with the SEM work. Johan Olsson supported this study with insightful comments and discussions. This is publication number 30 of the Industry-Academia-Government Consortium Project “Reconstruction of Supercontinents Back to 2.7 Ga Using the Large Igneous Province (LIP) Record, with Implications for Mineral Deposit Targeting, Hydrocarbon Resource Exploration, and Earth System Evolution”.

References

(References provided in the document)

U–Pb baddeleyite geochronology and geochemistry of the White Mfolozi Dyke Swarm: unravelling the complexities of 2.70–2.66 Ga dyke swarms across the eastern Kaapvaal Craton, South Africa

ASHLEY GUMSLEY1, JOHAN RÅDMAN2, ULF SÖDERLUND1,2 and MARTIN KLAUSEN3

Abstract: On the south-easternmost Kaapvaal Craton, a NE-trending plagioclase-megacrystic dolerite dyke swarm, herein named the White Mfolozi Dyke Swarm (WMDS), has been identified. New U–Pb baddeleyite ages presented here indicate that the WMDS was emplaced within less than 10 million years, with our three most robust results yielding a weighted mean age of 2662 ± 2 Ma. The WMDS is coeval with the youngest dykes of a 2.70–2.66 Ga radiating dyke swarm already identified further north on the eastern side of the Kaapvaal Craton. This dyke swarm radiates out from the eastern lobe of the ca. 2.05 Ga Bushveld Complex. A clustering of ages from the WMDS and the 2.70–2.66 Ga radiating dyke swarm identify potential magmatic peaks at 2701–2692 Ma, 2686–2683 Ma and 2665–2659 Ma. Geochemical signatures of the dykes do not correlate with these age groups, but are rather unique to specific areas. The northern part of the eastern Kaapvaal Craton hosts relatively differentiated 2.70–2.66 Ga dolerite dykes that could have been derived from a moderately enriched mantle source, whereas the ca. 2.66 Ga WMDS from the southernmost area exhibit much more depleted signatures. In between these two margins, the central area hosts more andesitic 2.70–2.66 Ga dykes that may have assimilated substantial amounts of partly digested tonalite–trondhjemite–granodiorite crust from the basement. We investigate the evolution for the Kaapvaal Craton during a highly magmatic period that extends for over 60 million years from extensive Ventersdorp volcanism to the eruption of proto-basinal volcanic rocks at the base of the Transvaal Supergroup.

Keywords: geochemistry; Kaapvaal Craton; U–Pb baddeleyite geochronology; White Mfolozi Dyke Swarm

1Department of Geology, Lund University, Sölvegatan 12, Lund, 223 62, Sweden; ashley.gumsley@geol.lu.se
2Department of Geosciences, Swedish Museum of Natural History, P.O. Box 50 007, 104 05, Stockholm, Sweden
3Department of Earth Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa

Manuscript received 15 March 2015. Revised manuscript accepted 17 November 2015.

1. Introduction

Initial studies using U–Pb geochronology on baddeleyite grains extracted from mafic intrusions have revealed a record of at least five different dyke swarms and sill provinces across the Kaapvaal Craton, which are interpreted as feeders to major large igneous provinces (LIPs). Baddeleyite ages from these LIPs include: ca. 2.99–2.97 Ga (Olsson et al. 2010, Gumsley et al. 2015), ca. 2.78–2.66 Ga (Olsson et al. 2010, Denyszyn et al. 2013), ca. 1.93–1.87 Ga (Hanson et al. 2004b), ca. 1.11 Ga (Hanson et al. 2004a) and ca. 0.18 Ga (Svensen et al. 2012). These ages can be linked to the Pongola, Ventersdorp, Waterberg, Umkondo and Karoo magmatic events, respectively. The remnants of these magmatic events are well preserved within southern Africa’s stratigraphic record. Only the ca. 2.06 Ga Bushveld Complex and its related volcanic rocks and marginal sills within the Transvaal Supergroup has yet to be linked to a significant feeder dyke swarm (Olsson et al. 2010, 2011). The apparent radiating pattern produced by the NW–SE-trending ca. 2.99–2.97 Ga Barberton-Badplaas Dyke Swarm (Olsson et al. 2010), the SW–NE-trending ca. 1.88–1.84 Ga Black Hills Dyke Swarm (Olsson et al. this volume) and the E–W-trending ca. 2.70–2.66 Ga dykes of the Rykoppies Swarm (Olsson et al. 2010), does not emanate from the eastern lobe of the Bushveld Complex. However, Olsson et al. (2011) later emphasised that overlapping ca. 2.70–2.66 Ga dolerite dyke swarms do radiate from the same locus, and thereby proposed a link between a Ventersdorp-aged plume event followed by the emplacement of the Bushveld Complex later due to lithospheric delamination. More detailed studies are now also beginning to elucidate other magmatic substages within some of
the Kaapvaal Craton’s major Precambrian LIP events, including: recognition of the ca. 2.87 Ga Hlagothi dykes and sills within the Pongola Supergroup (Gumsley et al. 2013), the 2.44–2.43 Ga Westerberg sills in the Transvaal Supergroup (Kampmann et al. 2015), as well as the 1.93–1.91 Ga Tsineng Dyke Swarm and volcanic rocks of the Hartley Formation in the Olifantshoek Supergroup (Semami et al. this volume) and lastly coeval dyke swarms radiating from different magmatic centres associated with the ca. 1.11 Ga Umkondo LIP (de Kock et al. 2014). These more detailed investigations represent a new generation of primarily geochronological investigations that aim at better resolving how dyke swarms and sill provinces are emplaced within various tectonic settings on the Kaapvaal Craton. This builds on the initial investigations undertaken prior to this by Uken & Watkeys (1997), as well as by Hunter & Halls (1992).

In this paper, we report new U–Pb baddeleyite ages and geochemistry for seven dolerite dykes from a significant NE-trending dyke swarm bearing diagnostic plagioclase phenocrysts, which is located on the south-easternmost portion of the Kaapvaal Craton (Fig. 1). This dyke swarm, herein termed the ‘White Mfolozi Dyke Swarm’ (WMDS), was first investigated geochemically and palaeomagnetically by Klausen et al. (2010) and Lubnina et al. (2010), as well as Gumsley (2013). Apart from refining and expanding the magmatic barcode record for the Kaapvaal Craton, the tectonic and petrological relationship of the WMDS to the more northerly, yet broadly coeval ca. 2.70–2.66 Ga radiating dyke swarm is investigated and expanded upon.

2. Regional geology

The Kaapvaal Craton in southern Africa is one of approximately 35 pieces of Archaean crust that is preserved to this day (Bleeker 2003). The largest part of this Archaean basement granite–greenstone terrain is exposed along eastern part of the craton (pink in Fig. 1). South of this major basement exposure, in the northern KwaZulu-Natal Province of South Africa, the Archaean basement is exposed within isolated inliers, referred to as the south-easternmost window of Archaean basement
U–Pb baddeleyite geochronology and geochemistry of the White Mfolozi Dyke Swarm

GFF 00(2016) A. Gumsley et al.: U–Pb baddeleyite geochronology and geochemistry

65

Unconformably overlying the Ventersdorp Supergroup is a series of discrete sedimentary and volcanic rocks that are proto-basinal to the Transvaal Supergroup (Eriksson et al. 2006). These volcanic units have been dated to 2664 ± 1 Ma using U–Pb on zircon (Barton et al. 1995). On top of the proto-basinal fills lies the entire Transvaal Supergroup (green in Fig. 1), a sequence of mainly sedimentary units that was deposited from 2600 to 2100 Ma (Eriksson et al. 2006). A 2222 ± 13 Ma age from the volcanic Ongeluk–Hekpoort Formation in the Transvaal Supergroup has been reported (Cornell et al. 1996), along with 2441 ± 6 Ma and 2426 ± 1 Ma ages for the Westerberg Sill Suite (Kampmann et al. 2015). The largest layered intrusion in the world, the economically important Bushveld Complex (grey in Fig. 1), intrudes through the Transvaal Supergroup (Cawthorn et al. 2006). The first U–Pb baddeleyite age for the mafic portion of the Bushveld Complex is 2058 ± 2 Ma (Olsson et al. 2010).

In the exposed eastern Kaapvaal Craton (Fig. 1), three distinct Precambrian dolerite dyke swarms appear to radiate out from the
eastern lobe of the Bushveld Complex (Uken & Watkeys 1997, Olsson et al. 2011). The first precise U–Pb TIMS baddeleyite ages for some of these dykes (Olsson et al. 2010, 2011, Gumsley et al. 2015, Olsson et al. this volume) demonstrate that this radiating pattern is made up of the southern NE-trending Barberton-Badplaas Dyke Swarm of ca. 2.98–2.96 Ga and 2.70–2.66 Ga dykes, the central E-trending Rykoppies Dyke Swarm of ca. 2.70–2.66 Ga dykes, and the more pervasive northern NE-trending Black Hills Dyke Swarm of ca. 1.88–1.83 Ga ages, as well as 2.70–2.66 Ga dykes (Fig. 1). The south-easternmost Archaean basement is cut by some sills, as well as numerous mafic dykes of various trends (Figs. 1 and 2). Relatively older SE-trending dykes are presumed to be the southwestern extension of the Barberton-Badplaas Dyke Swarm (Klausen et al. 2010, Lubnina et al. 2010). The NE-trending dykes are easily distinguished from the other swarms by being remarkably feldspar-megacrystic, and they were noted to cut both SE-trending dolerite dykes, as well as the Pongola Supergroup, but not any E- to ENE-trending dykes or the sedimentary Karoo Supergroup cover with its ca. 0.18 Ga dolerite sills and dykes. One SE-trending dolerite dyke from this south-easternmost window has been dated prior to this study at ca. 2.87 Ga (Gumsley et al. 2013), which correlates with the coeval Hlagothi Complex. The NE-trending and characteristically feldspar-megacrystic dolerite dyke swarm in the south-easternmost basement window is the focus of this study, which was tentatively assigned a ca. 1.90 Ga age (Klausen et al. 2010, Lubnina et al. 2010), based on how all of the NE-trending dykes appeared to be geochemically and palaeomagnetically distinct from the Archaean dykes. Similar reconnaissance studies were also done further north on the eastern Kaapvaal Craton by Klausen et al. (2010) and Lubnina et al. (2010), with more extensive geochemical and palaeomagnetic investigations in the Barberton-Badplaas area by Maré & Fourie (2012), as well as Hunter & Halls. (1992). The WMDS is primarily exposed and thereby sampled in and around the White Mfolozi River, from which its name, the ‘WMDS’, is derived (Fig. 2).

3. The WMDS

Dolerite samples of the WMDS were collected from the Archaean basement terrane of the Kaapvaal Craton in the northern KwaZulu-Natal and south-eastern Mpumalanga provinces of South Africa (Figs. 1 and 2). Suitable dolerite dykes and sample sites inside the Archaean inliers were identified through Google Earth, with the dykes usually best exposed either along outcrop pavements in dry river sections or along distinct boulder trains on ridges outside the rivers. The NE-trending dolerite dykes were observed to cross-cut SE-trending dolerite dykes in the region, but in turn are cross-cut by more E- to ENE-trending dolerite dykes, in agreement with previous observations (Klausen et al. 2010, Lubnina et al. 2010). All of the NE-trending dykes are variably plagioclase-phryic, with markedly pale pink-weathered phenocrysts (Fig. 2), typically set in a grey–green and medium-grained dolerite groundmass that becomes more fine-grained towards the dyke’s aphanitic chilled margins. The plagioclase phenocrysts vary considerably in both size and distribution, with some individual phenocrysts up to 10 cm in length, and these are thus referred to as megacrysts (used for the remainder of this paper). Most euhedral megacrysts are typically rectangular, but some are more equidimensional (or even rounded). Despite being strongly altered, many megacrysts preserve a compositional zonation, suggesting that these grew freely within a differentiating magma. These megacrysts are typically concentrated into margin-parallel bands that are best explained by flow segregation. Exceptionally high megacryst concentrations (up to ~60%) are typically found at dyke offsets, and could therefore have accumulated within local eddy currents or flow constrictions.

4. Petrography

Polished thin sections were made from all dated dolerite dyke samples in this study. The NE-trending dolerite dykes sampled farther to the north in south-eastern Mpumalanga are less metamorphosed than those farther south and closer to the ca. 1.1 Ga Natal-Namaqua Belt in northern KwaZulu-Natal. The samples are devoid of olivine, or its diagnostic alteration products of iddingsite and serpentine. The mafic groundmass in all thin sections is partly chloritised, which is tentatively used as an indication of lower greenschist facies metamorphism. Actinolite and tremolite are the usual observed amphiboles, which are primarily thought to be a product of the uralitisation of clinopyroxene (although some orthopyroxene was also noted). Some pyroxenes remain as preserved cores within amphibole, particularly in samples collected in south-east Mpumalanga. Sericitisation and minor saussauritisation of plagioclase is common in all samples, with some NE-trending dykes in northern KwaZulu-Natal typically being more strongly sericitised. Accessory minerals include Fe-Ti oxides, and occasional interstitial quartz and biotite, consistent with the absence of olivine.

5. Geochronology

5.1. Analytical protocol

From a total of twenty collected samples, seven dolerite dyke samples yielded a sufficient amount of baddeleyite for geochronology (Fig. 2). At the Department of Geology in Lund University, the rock samples were crushed and milled. Water-based separation of baddeleyite was done using the method of Söderlund & Johansson (2002). For every sample, the best quality baddeleyite crystals were combined into fractions of 1 to 6 crystals each, and put in separate pre-cleaned Teflon capsules. The fractions were then washed thoroughly in steps with small quantities of ultrapure HNO₃ and H₂O, including one heating step of the solutions by placing the capsules on a hot plate for ~30 min (in 3 M HNO₃). A trace of a ²⁰⁸Pb,²³⁵–²³⁸U spike solution was added to each capsule together with 10 drops of concentrated HF-HNO₃ (10:1). The capsules were then placed in oven for three days at 190 °C to dissolve the baddeleyite grains and homogenise U and Pb from the spike and sample. At the Department of Geoscience in the Museum of Natural History in Stockholm, the Teflon capsules were again put on a hot plate until the solution had evaporated. An addition of 10 drops of ultrapure 6 M HCl and 1 drop of 0.25 M H₃PO₄ were added to each capsule before being dried down once again on a hot plate. The sample fractions were then dissolved in 2-μl silica gel before being loaded on an outgassed Re filament. Further details are given in Olsson et al. (2010) and Nilsson et al. (2013).
U and Pb isotopic ratios were measured on a Finnigan Triton mass spectrometer. Pb isotopes were measured after heating to a temperature range of approximately 1200–1250 °C. The intensities of 204Pb, 205Pb, 206Pb, 207Pb and 208Pb were measured in either static mode with Faraday Cups, or in peak-switching mode using a Secondary Electron Multiplier. The temperature was then increased to approximately 1270–1320 °C. At this temperature the U isotopes were emitted and measured. An “in-house” programme made by Per-Olof Persson (Natural History Museum, Stockholm), with calculations following Ludwig (1991), was used for data reduction.

5.2. Results
U–Pb isotopic data are presented in Table 1 and concordia diagrams are shown in Fig. 3. A summary of the results are reported individually and comments regarding analytical issues follow at the end of this chapter.

Fractions comprising three, four and five baddeleyite grains were analysed from NED-01 (Fig. 3(A)). The grains show frosty surfaces, indicating post-intrusive metamorphism and/or alteration. Analyses plot strongly discordant between 14 and 43%, supporting partial transformation of baddeleyite to polycrystalline zircon. Free regression yielded an upper intercept age of 2661 ± 11 Ma (MSWD = 0.05), which is similar to the mean age of ca. 2662 Ma for the WMDS, despite all three analyses being strongly discordant. The lower intercept age is 127 ± 70 Ma, suggesting a partial transformation of baddeleyite to zircon related to the Karoo magmatic event.

Four fractions of good-quality grains were analysed from JR-16 (Fig. 3(B)). They consisted of one to six relatively light brown grains in each fraction. One fraction plots concordant at a slightly younger age than the other analyses. The other three fractions give reproducible 207Pb/206Pb dates, of which two plot concordant. The weighted mean 207Pb/206Pb age of these fractions is 2654 ± 2 Ma (MSWD = 0.39), whereas the concordia date is 2648 ± 14 Ma (MSWD = 9.8). The weighted 207Pb/206Pb age of 2654 ± 2 Ma is considered as the best age estimate of JR-16.

Four baddeleyite fractions of brown, transparent grains of JR-17 were analysed (Fig. 3(C)). The grains were combined into fractions of three to five grains each. One fraction plots variably discordant (1.5–3.5%), and an anchored regression at 0 ± 100 Ma yields an upper intercept age of 2659 ± 7 Ma (MSWD = 1.5). A weighted mean value yields a precise age of 2659 ± 1 Ma (MSWD = 1.5). The fourth fraction plots slightly above the concordia curve at a lower 207Pb/206Pb date. The weighted 207Pb/206Pb result of 2659 ± 1 Ma of the remaining analyses is the preferred age of this sample.

The analysis of sample JR-19 comprised four fractions (Fig. 3(D)). One analysis was performed on a single large, clear grain, while the other fractions consisted of three to four smaller grains of moderate to good quality. Three fractions overlap within error, of which two plot concordant. Including fraction b in an unforced regression yields upper and lower intercept ages of 2657 ± 28 Ma and ca. 805 Ma, respectively, but the MSWD of 3.7 reveals scatter beyond analytical uncertainties. The weighted mean 207Pb/206Pb age, if excluding this fraction b, is 2661 ± 4 Ma (MSWD = 1.2). This is the preferred age estimate for this dyke.

The grains from JR-06 are dark brown and of good quality, although many grains are fractured. The analyses plot less than 1% discordant, and are partly overlapping (Fig. 3(E)). The weighted mean 207Pb/206Pb age is 2659 ± 5 Ma (MSWD = 1.8), with a concordia age of 2658 ± 5 Ma (MSWD = 1.3).

Four fractions, composed of between three and five grains each were analysed from BCD5-04 (Fig. 3(F)). The baddeleyite grains selected for analysis are dark brown and clear. Some of these grains were long elongated crystals, and some are fragmented. One fraction plots concordant whereas the other fractions are up to 2% discordant. Regression comprising all four analyses yields an age of 2662 ± 3 Ma. Using a forced lower intercept age of 0 ± 100 Ma gives an upper intercept that is identical to the weighted mean of 207Pb/206Pb age, i.e., 2662 ± 3 Ma (MSWD = 1.5).

Two fractions of JR-07 were analysed with three and four grains, respectively (Fig. 3(G)). The grains are dark brown without any trace of zircon rims. Both analyses plot concordant, allowing a concordia age to be calculated at 2665 ± 4 Ma (MSWD = 1.5), which is interpreted as the crystallisation age of this dyke.

One fraction each of samples JR-16, JR-17 and JR-19 have 207Pb/206Pb dates that appear significantly younger than the other analyses of the respective samples. Although two of them plot statistically concordant (JR-16 and JR-19), we have rejected these from the age calculations, as we consider them associated with analytical artefacts. If their relatively younger 207Pb/206Pb dates were indeed caused by a later metamorphic event it might have been justified to include these analyses in the regressions of JR-16 and JR-19 (although this would be problematic for JR-17, as the ‘young’ analysis plots above the concordia curve, Fig. 3(C)), and then their intrusion ages should be better reported as upper intercept dates. However, the bulk of the baddeleyite analyses forms tight clusters that plot concordant or only slightly discordant. The excellent reproducibility of 207Pb/206Pb dates of these samples, and the overall fresh quality of baddeleyite grains (e.g., lack of secondary zircon rims, with the exception of JR-17), suggest that small degree of discordance, if any, was recently caused by partial transformation of baddeleyite to zircon during metamorphism/alteration. A relatively recent time of discordance is also indicated by the lower intercept of JR-17 (0 Ma within 2σ error). For these reasons we prefer to restrict the age calculation for JR-16, JR-17 and JR-19 to analyses that have reproducible 207Pb/206Pb dates. We hence assign the three “younger” analyses to record some analytical bias that we have no explanation for.

6. Geochemistry

6.1. Analytical protocol
All dated samples from Olsson et al. (2010, 2011), used for comparative studies, and JR-16, JR-19, NED-01 and BCD5-04 were prepared for analysis at Lund University, Sweden. Rock samples were sawed and crushed with a sledge hammer into small pieces. The pieces were hand-picked, in order to avoid phenocrysts of plagioclase feldspar, and pieces with saw smear marks or weathering. Dolerite pieces were then milled in a tungsten carbide mill tray to a very fine powder. The mill tray was thoroughly cleaned before each analysis. The samples were then loaded into a tungsten carbide mill tray to a very fine powder. The mill tray was thoroughly cleaned before each analysis.
<table>
<thead>
<tr>
<th>Analysis no. (number of grains)</th>
<th>U/Th</th>
<th>Pb/cPb*</th>
<th>(^{206}\text{Pb} /^{204}\text{Pb})</th>
<th>(^{207}\text{Pb} /^{206}\text{Pb})</th>
<th>(^{208}\text{Pb} /^{235}\text{U})</th>
<th>(^{207}\text{Pb} /^{206}\text{Pb})</th>
<th>conc</th>
<th>Concordance</th>
<th>age, Ma</th>
</tr>
</thead>
<tbody>
<tr>
<td>NED-01 28.210376° S, 30.982430° E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a (4)</td>
<td>7.9</td>
<td>0.393</td>
<td>108.8</td>
<td>8.7049</td>
<td>2.20</td>
<td>0.35456</td>
<td>195.6</td>
<td>263.49</td>
<td>12.6</td>
</tr>
<tr>
<td>JR-16 28.234830° S, 31.147900° E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a (5)</td>
<td>7.2</td>
<td>0.037</td>
<td>1647.0</td>
<td>12.4720</td>
<td>0.62</td>
<td>0.50225</td>
<td>264.0</td>
<td>262.43</td>
<td>2.5</td>
</tr>
<tr>
<td>b (1)</td>
<td>8.3</td>
<td>0.127</td>
<td>400.5</td>
<td>12.7011</td>
<td>1.59</td>
<td>0.51083</td>
<td>267.7</td>
<td>268.9</td>
<td>7.3</td>
</tr>
<tr>
<td>c (2)</td>
<td>5.3</td>
<td>0.152</td>
<td>394.1</td>
<td>12.1810</td>
<td>2.14</td>
<td>0.49938</td>
<td>261.8</td>
<td>261.1</td>
<td>10.3</td>
</tr>
<tr>
<td>d (6)</td>
<td>8.1</td>
<td>0.077</td>
<td>776.0</td>
<td>12.6311</td>
<td>1.09</td>
<td>0.50823</td>
<td>265.2</td>
<td>264.9</td>
<td>4.4</td>
</tr>
<tr>
<td>JR-17 28.351620° S, 31.341771° E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a (5)</td>
<td>13.1</td>
<td>0.066</td>
<td>793.4</td>
<td>12.4768</td>
<td>0.32</td>
<td>0.50097</td>
<td>264.10</td>
<td>264.0</td>
<td>2.6</td>
</tr>
<tr>
<td>b (3)</td>
<td>9.8</td>
<td>0.018</td>
<td>318.23</td>
<td>12.4936</td>
<td>0.34</td>
<td>0.50197</td>
<td>264.22</td>
<td>262.23</td>
<td>2.1</td>
</tr>
<tr>
<td>c (5)</td>
<td>3.6</td>
<td>0.014</td>
<td>420.82</td>
<td>12.6238</td>
<td>0.33</td>
<td>0.50666</td>
<td>265.20</td>
<td>265.95</td>
<td>2.0</td>
</tr>
<tr>
<td>d (3)</td>
<td>8.3</td>
<td>0.018</td>
<td>322.19</td>
<td>12.1955</td>
<td>0.82</td>
<td>0.48906</td>
<td>261.96</td>
<td>256.66</td>
<td>2.9</td>
</tr>
<tr>
<td>JR-19 26.648985° S, 30.504398° E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a (3)</td>
<td>6.1</td>
<td>0.012</td>
<td>158.4</td>
<td>12.7615</td>
<td>1.22</td>
<td>0.51309</td>
<td>266.22</td>
<td>266.98</td>
<td>10.2</td>
</tr>
<tr>
<td>b (1)</td>
<td>8.4</td>
<td>0.124</td>
<td>481.5</td>
<td>12.3966</td>
<td>1.70</td>
<td>0.50288</td>
<td>263.49</td>
<td>262.61</td>
<td>6.8</td>
</tr>
<tr>
<td>c (3)</td>
<td>5.4</td>
<td>0.148</td>
<td>417.1</td>
<td>12.8719</td>
<td>2.35</td>
<td>0.51760</td>
<td>267.03</td>
<td>268.90</td>
<td>9.4</td>
</tr>
<tr>
<td>d (4)</td>
<td>3.1</td>
<td>0.044</td>
<td>124.0</td>
<td>12.6007</td>
<td>0.64</td>
<td>0.50711</td>
<td>265.47</td>
<td>264.43</td>
<td>4.3</td>
</tr>
<tr>
<td>JR-06 28.145580° S, 30.954920° E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a (5)</td>
<td>6.2</td>
<td>0.151</td>
<td>362.0</td>
<td>12.5255</td>
<td>1.53</td>
<td>0.50413</td>
<td>264.46</td>
<td>263.51</td>
<td>7.7</td>
</tr>
<tr>
<td>b (3)</td>
<td>5.9</td>
<td>0.102</td>
<td>584.8</td>
<td>12.7364</td>
<td>1.52</td>
<td>0.50515</td>
<td>266.04</td>
<td>265.88</td>
<td>6.8</td>
</tr>
<tr>
<td>BCD04 26.646720° S, 30.521970° E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a (2)</td>
<td>5.3</td>
<td>0.186</td>
<td>270.8</td>
<td>12.8879</td>
<td>1.23</td>
<td>0.51883</td>
<td>267.15</td>
<td>269.42</td>
<td>5.3</td>
</tr>
<tr>
<td>b (3)</td>
<td>7.4</td>
<td>0.196</td>
<td>253.7</td>
<td>12.5149</td>
<td>1.11</td>
<td>0.50136</td>
<td>264.38</td>
<td>261.96</td>
<td>5.0</td>
</tr>
<tr>
<td>c (3)</td>
<td>5.8</td>
<td>0.082</td>
<td>749.7</td>
<td>12.7736</td>
<td>1.29</td>
<td>0.51080</td>
<td>266.31</td>
<td>266.12</td>
<td>6.8</td>
</tr>
<tr>
<td>d (5)</td>
<td>5.1</td>
<td>0.189</td>
<td>285.3</td>
<td>12.6248</td>
<td>1.86</td>
<td>0.50906</td>
<td>265.21</td>
<td>263.55</td>
<td>8.6</td>
</tr>
<tr>
<td>JR-07 28.123850° S, 30.841676° E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a (4)</td>
<td>7.4</td>
<td>0.061</td>
<td>992.3</td>
<td>12.8777</td>
<td>0.93</td>
<td>0.51504</td>
<td>267.07</td>
<td>267.81</td>
<td>4.3</td>
</tr>
<tr>
<td>b (3)</td>
<td>n.m.</td>
<td>0.281</td>
<td>198.8</td>
<td>12.7852</td>
<td>1.77</td>
<td>0.51244</td>
<td>266.40</td>
<td>266.07</td>
<td>7.8</td>
</tr>
</tbody>
</table>

*Pbc = common Pb; Pbtot = total Pb (radiogenic + blank + initial).
*measured ratio, corrected for fractionation and spike.
*isotopic ratios corrected for fractionation (0.1% per amu for Pb), spike contribution, blank (1 pg Pb and 0.1 pg U), and initial common Pb. Initial common Pb corrected with isotopic compositions from the model of Stacey & Kramers (1975) at the age of the sample.
*not measured.
Fig. 3. Concordia diagrams for the seven dated NE-trending dolerite dykes from the WMDS. Error ellipses are reported at 2σ level. Shaded ellipses indicate fractions (e.g., a, b, etc.) used in age calculations, whereas unshaded ones were not. Darker shaded ellipses are error ellipses of concordia ages.
Table 2. Whole-rock major and trace element data for all dated 2.70–2.66 Ga dykes across the eastern Kaapvaal Craton.

<table>
<thead>
<tr>
<th>Sample</th>
<th>JR-06</th>
<th>JR-07</th>
<th>JR-16</th>
<th>JR-17</th>
<th>JR-19</th>
<th>BCD5-04</th>
<th>NED-01</th>
<th>BCD5-17*</th>
<th>BCD5-18*</th>
<th>BCD5-19*</th>
<th>BCD5-22*</th>
<th>BCD5-23*</th>
<th>BCD5-09*</th>
<th>BCD5-27*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Elements (wt.%)</td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>48.68</td>
<td>48.06</td>
<td>49.82</td>
<td>48.85</td>
<td>48.31</td>
<td>48.77</td>
<td>48.37</td>
<td>56.02</td>
<td>56.24</td>
<td>55.58</td>
<td>50.40</td>
<td>50.58</td>
<td>56.08</td>
<td>49.71</td>
</tr>
<tr>
<td>MnO</td>
<td>0.22</td>
<td>0.20</td>
<td>0.18</td>
<td>0.20</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.12</td>
<td>0.13</td>
<td>0.13</td>
<td>0.21</td>
<td>0.20</td>
<td>0.13</td>
<td>0.19</td>
</tr>
<tr>
<td>MgO</td>
<td>9.77</td>
<td>10.69</td>
<td>10.01</td>
<td>10.42</td>
<td>9.42</td>
<td>10.43</td>
<td>9.52</td>
<td>8.26</td>
<td>7.27</td>
<td>8.05</td>
<td>8.93</td>
<td>8.22</td>
<td>7.82</td>
<td>9.22</td>
</tr>
<tr>
<td>CaO</td>
<td>2.10</td>
<td>2.13</td>
<td>2.21</td>
<td>2.34</td>
<td>2.74</td>
<td>3.37</td>
<td>3.58</td>
<td>2.63</td>
<td>2.65</td>
<td>3.49</td>
<td>2.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.35</td>
<td>0.42</td>
<td>0.59</td>
<td>0.61</td>
<td>0.41</td>
<td>0.65</td>
<td>1.25</td>
<td>1.08</td>
<td>1.05</td>
<td>1.48</td>
<td>1.33</td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.49</td>
<td>1.16</td>
<td>1.00</td>
<td>1.26</td>
<td>1.31</td>
<td>1.14</td>
<td>1.27</td>
<td>0.75</td>
<td>0.82</td>
<td>0.79</td>
<td>1.91</td>
<td>2.32</td>
<td>0.79</td>
<td>1.65</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.16</td>
<td>0.13</td>
<td>0.10</td>
<td>0.14</td>
<td>0.12</td>
<td>0.11</td>
<td>0.13</td>
<td>0.12</td>
<td>0.16</td>
<td>0.16</td>
<td>0.44</td>
<td>0.16</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>L.O.I.</td>
<td>1.50</td>
<td>1.69</td>
<td>1.80</td>
<td>1.61</td>
<td>2.10</td>
<td>1.90</td>
<td>2.30</td>
<td>1.30</td>
<td>1.60</td>
<td>1.40</td>
<td>-0.40</td>
<td>-0.30</td>
<td>1.30</td>
<td>0.80</td>
</tr>
<tr>
<td>TOTAL</td>
<td>97.57</td>
<td>98.87</td>
<td>99.74</td>
<td>99.20</td>
<td>99.76</td>
<td>99.75</td>
<td>99.77</td>
<td>99.70</td>
<td>99.76</td>
<td>99.70</td>
<td>99.70</td>
<td>99.70</td>
<td>99.70</td>
<td>99.71</td>
</tr>
<tr>
<td>Trace Elements (ppm)</td>
<td></td>
</tr>
<tr>
<td>Sc</td>
<td>40.64</td>
<td>35.53</td>
<td>36.00</td>
<td>39.81</td>
<td>33</td>
<td>35</td>
<td>22</td>
<td>21</td>
<td>23</td>
<td>39</td>
<td>34</td>
<td>21</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>312.98</td>
<td>258.30</td>
<td>234.00</td>
<td>284.83</td>
<td>246</td>
<td>231</td>
<td>303</td>
<td>165</td>
<td>170</td>
<td>160</td>
<td>324</td>
<td>276</td>
<td>155</td>
<td>293</td>
</tr>
<tr>
<td>Co</td>
<td>73.57</td>
<td>80.20</td>
<td>77.60</td>
<td>61.15</td>
<td>61.2</td>
<td>48.8</td>
<td>38.4</td>
<td>38.9</td>
<td>39.8</td>
<td>53.6</td>
<td>51.9</td>
<td>40.5</td>
<td>55.0</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>88.11</td>
<td>120.91</td>
<td>90.00</td>
<td>110.85</td>
<td>69.5</td>
<td>64.8</td>
<td>47.2</td>
<td>64.5</td>
<td>44.4</td>
<td>17.8</td>
<td>32.9</td>
<td>59.7</td>
<td>27.3</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>88.83</td>
<td>78.20</td>
<td>67.60</td>
<td>90.73</td>
<td>65.9</td>
<td>69.3</td>
<td>78.3</td>
<td>90.8</td>
<td>88.2</td>
<td>211.0</td>
<td>102.7</td>
<td>82.9</td>
<td>169.5</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>121.67</td>
<td>81.99</td>
<td>40.00</td>
<td>92.54</td>
<td>60</td>
<td>57</td>
<td>39</td>
<td>41</td>
<td>38</td>
<td>34</td>
<td>36</td>
<td>23</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>28.76</td>
<td>32.60</td>
<td>30.00</td>
<td>9.32</td>
<td>29.4</td>
<td>10.7</td>
<td>87.0</td>
<td>41.6</td>
<td>47.1</td>
<td>31.8</td>
<td>38.9</td>
<td>62.9</td>
<td>49.0</td>
<td>38.5</td>
</tr>
<tr>
<td>Sr</td>
<td>157.20</td>
<td>161.64</td>
<td>145.00</td>
<td>143.97</td>
<td>175.0</td>
<td>148.9</td>
<td>174.2</td>
<td>335.9</td>
<td>429.1</td>
<td>344.1</td>
<td>183.7</td>
<td>176.6</td>
<td>374.5</td>
<td>186.0</td>
</tr>
<tr>
<td>Y</td>
<td>29.64</td>
<td>22.75</td>
<td>19.20</td>
<td>24.59</td>
<td>23.6</td>
<td>22.6</td>
<td>15.6</td>
<td>19.0</td>
<td>17.3</td>
<td>40.3</td>
<td>51.5</td>
<td>20.6</td>
<td>35.0</td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>89.93</td>
<td>68.68</td>
<td>57.60</td>
<td>73.52</td>
<td>77.3</td>
<td>71.1</td>
<td>78.1</td>
<td>110.7</td>
<td>133.2</td>
<td>123.7</td>
<td>197.8</td>
<td>285.9</td>
<td>131.9</td>
<td>167.0</td>
</tr>
<tr>
<td>Nb</td>
<td>3.91</td>
<td>3.05</td>
<td>2.20</td>
<td>3.52</td>
<td>2.9</td>
<td>2.9</td>
<td>3.5</td>
<td>4.0</td>
<td>4.2</td>
<td>3.8</td>
<td>10.6</td>
<td>16.6</td>
<td>4.2</td>
<td>8.8</td>
</tr>
<tr>
<td>Ba</td>
<td>66.37</td>
<td>46.89</td>
<td>99.00</td>
<td>36.89</td>
<td>106</td>
<td>80</td>
<td>119</td>
<td>371</td>
<td>500</td>
<td>360</td>
<td>238</td>
<td>343</td>
<td>375</td>
<td>202</td>
</tr>
<tr>
<td>La</td>
<td>5.86</td>
<td>4.34</td>
<td>3.70</td>
<td>4.76</td>
<td>6.6</td>
<td>5.6</td>
<td>5.2</td>
<td>17.5</td>
<td>20.5</td>
<td>19.4</td>
<td>21.3</td>
<td>32.7</td>
<td>20.0</td>
<td>18.2</td>
</tr>
<tr>
<td>Ce</td>
<td>15.15</td>
<td>11.35</td>
<td>9.50</td>
<td>12.26</td>
<td>14.6</td>
<td>13.4</td>
<td>13.1</td>
<td>35.0</td>
<td>40.1</td>
<td>38.2</td>
<td>48.0</td>
<td>74.3</td>
<td>39.8</td>
<td>40.8</td>
</tr>
<tr>
<td>Pr</td>
<td>2.26</td>
<td>1.75</td>
<td>1.48</td>
<td>1.89</td>
<td>2.13</td>
<td>2.06</td>
<td>2.02</td>
<td>4.25</td>
<td>4.86</td>
<td>4.76</td>
<td>6.21</td>
<td>9.17</td>
<td>4.68</td>
<td>5.08</td>
</tr>
<tr>
<td>Sm</td>
<td>3.58</td>
<td>2.79</td>
<td>2.03</td>
<td>2.75</td>
<td>2.70</td>
<td>2.80</td>
<td>2.93</td>
<td>3.06</td>
<td>3.81</td>
<td>3.68</td>
<td>5.89</td>
<td>7.83</td>
<td>3.84</td>
<td>5.13</td>
</tr>
<tr>
<td></td>
<td>Eu</td>
<td>Gd</td>
<td>Tb</td>
<td>Dy</td>
<td>Ho</td>
<td>Er</td>
<td>Tm</td>
<td>Yb</td>
<td>La</td>
<td>Hf</td>
<td>Ta</td>
<td>Pb</td>
<td>Th</td>
<td>U</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>JR-06</td>
<td>1.29</td>
<td>4.48</td>
<td>0.74</td>
<td>5.31</td>
<td>1.13</td>
<td>3.32</td>
<td>0.51</td>
<td>3.37</td>
<td>0.50</td>
<td>2.57</td>
<td>0.26</td>
<td>3.25</td>
<td>0.45</td>
<td>0.12</td>
</tr>
<tr>
<td>JR-07</td>
<td>1.05</td>
<td>3.48</td>
<td>0.61</td>
<td>4.26</td>
<td>0.86</td>
<td>2.63</td>
<td>0.37</td>
<td>2.51</td>
<td>0.41</td>
<td>2.03</td>
<td>0.18</td>
<td>1.82</td>
<td>0.30</td>
<td>0.09</td>
</tr>
<tr>
<td>JR-16</td>
<td>0.90</td>
<td>2.90</td>
<td>0.52</td>
<td>3.47</td>
<td>0.81</td>
<td>2.31</td>
<td>0.33</td>
<td>2.28</td>
<td>0.31</td>
<td>1.60</td>
<td>0.20</td>
<td>1.40</td>
<td>0.20</td>
<td>0.10</td>
</tr>
<tr>
<td>JR-17</td>
<td>1.10</td>
<td>3.78</td>
<td>0.63</td>
<td>4.45</td>
<td>0.95</td>
<td>2.83</td>
<td>0.40</td>
<td>2.86</td>
<td>0.41</td>
<td>2.05</td>
<td>0.20</td>
<td>1.90</td>
<td>0.32</td>
<td>0.10</td>
</tr>
<tr>
<td>JR-19</td>
<td>1.10</td>
<td>3.90</td>
<td>0.66</td>
<td>4.26</td>
<td>0.96</td>
<td>2.70</td>
<td>0.38</td>
<td>2.79</td>
<td>0.43</td>
<td>2.3</td>
<td>0.2</td>
<td>0.7</td>
<td>0.6</td>
<td>0.1</td>
</tr>
<tr>
<td>BCD5-04</td>
<td>1.29</td>
<td>3.66</td>
<td>0.65</td>
<td>4.05</td>
<td>0.96</td>
<td>2.82</td>
<td>0.41</td>
<td>2.62</td>
<td>0.40</td>
<td>2.1</td>
<td>0.2</td>
<td>0.5</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>NED-01</td>
<td>1.14</td>
<td>3.94</td>
<td>0.67</td>
<td>4.22</td>
<td>0.57</td>
<td>2.74</td>
<td>0.23</td>
<td>2.51</td>
<td>0.24</td>
<td>1.80</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>BCD5-27</td>
<td>1.75</td>
<td>6.53</td>
<td>0.55</td>
<td>3.33</td>
<td>0.71</td>
<td>2.11</td>
<td>0.28</td>
<td>1.56</td>
<td>0.26</td>
<td>3.1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>BCD5-17*</td>
<td>2.15</td>
<td>8.43</td>
<td>0.59</td>
<td>3.35</td>
<td>0.68</td>
<td>2.01</td>
<td>0.66</td>
<td>1.82</td>
<td>0.23</td>
<td>4.9</td>
<td>0.7</td>
<td>0.1</td>
<td>0.1</td>
<td>0.7</td>
</tr>
<tr>
<td>BCD5-18*</td>
<td>1.23</td>
<td>4.00</td>
<td>1.17</td>
<td>6.95</td>
<td>0.71</td>
<td>2.11</td>
<td>0.28</td>
<td>1.76</td>
<td>0.26</td>
<td>4.9</td>
<td>0.7</td>
<td>0.1</td>
<td>0.1</td>
<td>0.7</td>
</tr>
<tr>
<td>BCD5-19*</td>
<td>1.57</td>
<td>5.71</td>
<td>1.48</td>
<td>8.65</td>
<td>0.68</td>
<td>2.01</td>
<td>0.66</td>
<td>1.76</td>
<td>0.23</td>
<td>4.9</td>
<td>0.7</td>
<td>0.1</td>
<td>0.1</td>
<td>0.7</td>
</tr>
<tr>
<td>BCD5-22*</td>
<td>1.02</td>
<td>3.20</td>
<td>1.48</td>
<td>3.20</td>
<td>0.68</td>
<td>2.01</td>
<td>0.66</td>
<td>1.76</td>
<td>0.23</td>
<td>4.9</td>
<td>0.7</td>
<td>0.1</td>
<td>0.1</td>
<td>0.7</td>
</tr>
</tbody>
</table>

* Dated in Olsson et al. (2010, 2011)
determine the volatile content. The XRF analysis was done for major and minor elements on glass beads, which was prepared from the whole-rock powder. The sample-to-flux ratio was 1:10, and the precision was better than ±1% of reported values. For the ICP-MS analysis, samples were dissolved in a 1.5-g lithium meta/tetraborate flux fusion. The resultant molten bead was weighed fraction of this powder was fused into La-free glass beads, which were analysed for major elements by XRF, using a Phillips PW1404w instrument with 2.4 kW Rh X-ray tube and controlled by a range of international NIST© standards. Trace elements were analysed from similar ultrapure fused beads using a mixed He–Ar carrier gas. Each sample was analysed using a mixed He–Ar carrier gas. Each sample was analysed with three spots (30 s blank, followed by 60 s data collection each), and an average was calculated. Standards were run after every third sample.

6.2. Results

XRF major and ICP-MS trace element data are listed in Table 2. The geochemical presentation of data from the dated NE-trending dykes of the WMDS in this study also includes additional geochemical data on dated dykes from the coeval 2.70–2.66 Ga dyke swarms from further north in Olsson et al. (2010, 2011), which are not already published in Klausen et al. (2010). The geochemical presentation of data from the dated NE-trending dykes of the WMDS in this study also includes additional geochemical data on dated dykes from the coeval 2.70–2.66 Ga dyke swarms from further north in Olsson et al. (2010, 2011), which are not already published in Klausen et al. (2010).

The TAS (Total Alkali vs. Silica) classification diagram of Le Bas et al. (1992) in Fig. 4(A) shows that all the studied dykes are subalkaline. NE-trending dykes from both the northern and southern part of the exposed eastern margin of the Kaapvaal Craton are gabbroic (basaltic) whereas dykes with trends other than NE are more dioritic (basaltic to andesitic, respectively). This is consistent with results from Klausen et al. (2010), who also noted that NE-trending dykes tend to be more tholeiitic than dykes with other trends that tend to exhibit more calc-alkaline affinities in the Irvine & Baragar (1971) AFM diagram (Fig. 4(B)).

The new results show good consistency with the distinction recognised by Klausen et al. (2010) between NE-trending tholeiitic and E- to SE-trending calc-alkaline dykes, and this distinction is best illustrated using Sr/V, irrespective of degree of differentiation expressed by MgO (Fig. 5(A)). The results from a similar statistical correspondence analysis to that applied in Klausen et al. (2010) show how far apart Sr and V plot from each other in Fig. 5(B), highlighting these particular elements being combined in more discriminatory ratios. As explained in more detail in Appendix A, samples plotting closer to certain elements in these types of statistical diagrams also have relatively higher concentrations of these elements. Fig. 5(C–E) indicates that, statistically, NE-trending tholeiitic gabbroic dykes also are less light rare earth element (LREE)-enriched, and contain less large-ion lithophile elements (LILE), compared to the different trending calc-alkaline and more dioritic dykes. However, the three NE-trending gabbroic dykes from the northern area of the eastern Kaapvaal Craton also have higher concentrations of high field strength elements (HFSE), including in particular Nb-Ta, than NE-trending gabbroic dykes from the southern area (enriched in transitional metals, e.g., V). As a better multi-variable discriminator, Fig. 5(B) identifies compositionally distinct dykes from each of the three different craton areas, illustrated consistently throughout this paper using colour coding for dykes hosted within either a northern (yellow), central (blue) or southern (red) area of the eastern Kaapvaal Craton.

Fig. 4. A. TAS diagram by Le Bas et al. (1992), and B. An AFM diagram by Irvine & Baragar (1971) showing compositions for 17 dated ca. 2.70–2.66 Ga dykes that are either presented or reinvestigated geochemically in this study. Diamond symbols are orientated according to their genetic trends as either NE-, E- or SE-trending, as well as colour coded according to the relative age group they belong to, as indicated in the legend. Colour-coded background fields are used to indicate dykes that were sampled within one of three different areas of the eastern Kaapvaal Craton.
U–Pb baddeleyite geochronology and geochemistry of the White Mfolozi Dyke Swarm

The three sample groups are also plotted in a more traditional E-MORB normalised multi-elemental diagram from Sun & McDonough (1989) in Fig. 5(C–E). With the exception of some distinct negative anomalies, most HFSE concentrations are similar to, or more enriched than E-MORB. As indicated by the correspondence analysis, Fig. 5(C–E) also shows how much more LREE-enriched (relative to HREE), E- and SE-trending dykes from the central area (Fig. 5(D)) are, compared to NE-trending dykes from both the northern (Fig. 5(C)) and southern (Fig. 5(E)) margins of the Kaapvaal Craton. NE-trending dykes from the northern area have more enriched (negative sloping) HFSE patterns compared to NE-trending dykes from the southern area, which have a more depleted (positive sloping) pattern with particularly low Th and U concentrations relative to E-MORB. In both cases, their overall HFSE patterns are less erratic than those from the intervening central area (e.g., negative P and Ti), and both have similar negative Nb anomalies and positive Cs and Rb. However, the NE-trending dykes from the northern area have distinctly negative Sr anomalies, whereas the NE-trending dykes from the southern area also are particularly more enriched in Cs, K and Pb, compared to HFSE.

Fig. 6(A) (after Pearce 2008) shows how much more LREE-enriched relative to chondrite the high-(La/Sm)$_n$ dykes from the east-central Kaapvaal Craton area are, compared to the NE-trending dykes from both ends of the eastern Kaapvaal Craton. These dykes from the central area also have higher (Dy/Yb)$_n$ and can therefore be viewed as more HREE-depleted. SE-trending dykes from the south-central area have even higher (Dy/Yb)$_n$ and are therefore even more HREE-depleted. In contrast to the E–W- and SE-trending dykes from the central area, all NE-trending dykes have lower (La/Sm)$_n$ and (Dy/Yb)$_n$ values in comparison. All of the NE-trending dykes possess relatively similar flat HREE patterns, characterising all NE-trending dykes from the southern craton area, exhibiting approximately chondritic LREE ratios, whereas our most northernly located NE-trending dykes are moderately LREE-enriched. Another Pearce (2008) diagram in Fig. 6(B) shows how well dyke compositions from the three major eastern Kaapvaal Craton areas differ from each other, with (1) E–W and SE-trending dykes of all

Fig. 5. A. Sr/V against MgO, B. Correspondent analysis results, which show 52% of all variations along F1 and 29% of all variations along F2 (see Appendix A for more details regarding this statistical method). C–E. E-MORB normalised incompatible element plots (Sun & McDonough 1989) for ca. 2.70–2.66 Ga dykes across the eastern Kaapvaal Craton, grouped according to the three areas identified in Fig. 4 and shown in Fig. 8. Colour-coded background fields in D–E show the range of previous patterns for comparison. An additional analysis of an extracted plagioclase megacryst is also added to E. Other symbols and colour coding are as in Fig. 4.
ages from the central craton area plotting at relatively high Th/Yb, well above the diagram’s Mantle Array reference, (2) NE-trending dykes from the southern area clustering closer to the Mantle Array and (3) NE dykes from the northern craton area lying in between these two extremes.

7. Discussion

7.1. Timing and distribution of the WMDS

Very similar crystallisation ages were obtained for all dated dykes of the WMDS, consistent with a short duration of dyke emplacement. The three most robustly dated samples (JR-07, JR-19 and BCD5-04), have been chosen to represent a tentative mean age of the WMDS. A combined weighted mean of their emplacement ages has been calculated at 2662 ± 2 Ma (MSWD = 0.3), although the actual age range is from 2665 Ma to 2659 Ma.

Fig. 7 summarises all U–Pb data presented in this study, and compares these data to age data published by Olsson et al. (2010, 2011). It shows that concordant data-sets (JR-07, JR-19 and BCD5-04), yield slightly older ages (with weighted mean 207Pb/206Pb ages of 2662 ± 2 Ma), than most of the discordant data-sets (JR-06, JR-16, JR-17 and NED-01), which when combined yield a weighted mean age of 2659 ± 3 Ma. Considering emplacement ages constrained from weighted means of 207Pb/206Pb dates are minimum ages, one cannot rule out the possibility that the true ages of these sample could be a few million years older. If concordant data-sets represent the most robust emplacement ages, and the true ages of discordant sets are slightly older, then all dykes were emplaced within a shorter time interval than is given by the their mean ages. Therefore, the current U–Pb data does not preclude dykes of the WMDS being emplaced within a time interval of just a couple of million years, or even less.

As shown in Fig. 7, the three E–W-trending dykes (BCD5-17, BCD5-18 and BCD5-19) of Olsson et al. (2010, 2011) from the central area of the eastern Kaapvaal Craton are coeval to the WMDS. Moreover, two NE-trending dykes (BCD5-22 and BCD5-23) from the northern area, are also contemporaneous with the WMDS, indicating that this magmatic event might arguably have constituted a ~400-km wide swarm of coeval dykes with a combined weighted mean age of 2659 ± 2 Ma (Fig. 8).

7.2. Magmatic episodes, coeval volcanic rocks and sub-swarm patterns

Broadly coeval U–Pb baddeleyite ages of Neoarchaean dykes along the eastern portion of the Kaapvaal Craton have now been recognised inside the studied NE-trending WMDS, as
Fig. 8. Dyke sample localities and trends across the exposed eastern part of the Kaapvaal Craton. A. Sample localities indicated by orientated diamonds that are colour coded according to their age group, as determined in Fig. 7. B-D. Three outlines of the exposed eastern Kaapvaal Craton basement, subdivided into three colour-coded areas that roughly correspond to cratonic subdivisions. For each outline B–D, spatial and temporal distribution of the dated dykes is shown for each of the three age groups.

7.2.1. 2701–2692 Ma.

The oldest episode of magmatism recorded by our dated dyke episode (plotted as blue symbols in Fig. 7, and as blue dyke trends in Fig. 8) includes the absolute oldest NE-trending dyke (BCD5-27) in the northern Kaapvaal Craton area (yellow in Fig. 8), and two SE-trending dykes (BCD3-08 and BCD1-04), within the central Kaapvaal Craton area (blue in Fig. 8). A tentative minimum age of ca. 2673 Ma for BCD1-04 was earlier constrained from the least discordant baddeleyite fraction analysed by Olsson et al. (2010). The age of this dyke was subsequently refined to 2698 ± 4 Ma (Olsson et al. 2011), testifying that it belongs to the oldest magmatic episode.

NE-trending dykes cut across much of the Kaapvaal Craton, but those that are hosted within the Witwatersrand Supergroup have on the basis of field relationships and geochemical compositions (e.g., McCarthy et al. 1990, Meier et al. 2009), been correlated to the volcanic rocks of the Klipriviersberg Group (Venterdorp Supergroup). The Klipriviersberg Group was deposited in a parallel series of NE-trending half-graben structures (Stanistreet & McCarthy 1991). This led Uken & Watkeys (1997) to tentatively attribute most NE-trending dykes as far north-east as the Limpopo Province in South Africa to the Venterdorp Supergroup magmatism. From their correlation scheme, McCarthy et al. (1990) noted a change from NE-trending dykes feeding lower Ventersdorp Supergroup volcanic rocks to WNW–ESE-trending dykes feeding the volcanic rocks of the upper Ventersdorp Supergroup. It is possible for the oldest 2701 ± 11 Ma NE-trending dyke of the radiating swarm to have been emplaced during Klipriviersberg volcanic eruptions, if the Armstrong et al. (1991) age of 2714 ± 8 Ma for these volcanic rocks is deemed correct. It is impossible, however, to correlate this NE-trending dyke to the Klipriviersberg volcanic rocks if the Wingate (1998) and de Kock et al. (2012) ages of 2783 ± 5 Ma and 2735–2724 Ma for the Derdepoort and Hartswater volcanic rocks (in different half-grabens to the main Ventersdorp Basin, see Fig. 1 and Table 3), respectively, correlate with the Klipriviersberg and Platberg (overlying the Klipriviersberg Group) groups in the main Ventersdorp half-graben. If so, the oldest group of dykes dated can only be correlated to volcanic rocks in either the Rietgat or Allanridge formations in the upper Ventersdorp Supergroup. However, their orientations remain enigmatic unless they are part of an incompletely dated radiating swarm. As argued for other overlapping swarms (e.g., Jourdan et al. 2006), it is also possible that NE-trending dykes followed an old Klipriviersberg rift-trend.
Fig. 8(D). They represent the youngest and the spatially most extensive episode of dyke emplacement.

Lower intercepts for all dykes within the WMDS consistently record disturbances of the 1.88–1.83 Ga, 1.11 Ga and 0.18 Ga Soutpansberg, Umkondo and Karoo LIPs, which appear to have pervasively affected the eastern Kaapvaal Craton's southernmost area. The reported 2674 ± 11 Ma age of the NE-trending BCD5-23 dyke is constrained from a regression through only two fractions. We have chosen to use only the least discordant fraction (fraction 'a' in Olsson et al. 2011), with a 207Pb/206Pb-age of 2662 ± 5 Ma, as a reliable minimum emplacement age for this sample. An unconstrained regression line through all ellipses in the WMDS intersects the concordia at 2662 ± 2 Ma. The youngest record of dyke injections across the exposed eastern Kaapvaal Craton, including the ca. 2662 Ma WMDS, is best correlated to volcanic rocks within the proto-basinal fill at the base of Transvaal Supergroup, which are dated at ca. 2664 Ma (U–Pb zircon, Barton et al. 1995). The two coeval E–W-trending dykes parallel earlier E–W lineaments in the precursors to the Transvaal Basin.

This intermediate-aged dyke record is likely related to volcanism which must at least have been younger than the Klipriviersberg Group. Olsson et al. (2010) proposed a possible correlation between the Rykoppies Dyke Swarm and the volcanic rocks of the undated Allanridge Formation (upper Venterdorp Supergroup – see Table 3), which is supported by geochemical matching of the volcanic rocks and dykes (Klaesen et al. 2010). These Rykoppies dykes could be the second in a succession of sub-swarms, simply controlled by an equally variable paleo-stress field over a period of 15 million years. It is also possible that these different trending dolerite dyke swarms represent branches within an incompletely dated radiating swarm.

7.2.3. 2665–2659 Ma.

The seven dated dykes from the WMDS, and coeval dykes from both the E–W-trending Rykoppies Dyke Swarm (BCD5-17 and BCD-18 from Olsson et al. 2010 and BCD5-19 from Olsson et al. 2011), as well as two NE-trending dykes across the eastern Kaapvaal Craton’s northern area (BCD5-22 and BCD5-23), are plotted as red symbols in Fig. 7, and as red trend lines in Fig. 8(D). They represent the youngest and the spatially most extensive episode of dyke emplacement.

Lower intercepts for all dykes within the WMDS consistently record disturbances of the 1.88–1.83 Ga, 1.11 Ga and 0.18 Ga Soutpansberg, Umkondo and Karoo LIPs, which appear to have pervasively affected the eastern Kaapvaal Craton’s southernmost area. The reported 2674 ± 11 Ma age of the NE-trending BCD5-23 dyke is constrained from a regression through only two fractions. We have chosen to use only the least discordant fraction (fraction ‘a’ in Olsson et al. 2011), with a 207Pb/206Pb-age of 2662 ± 5 Ma, as a reliable minimum emplacement age for this sample. An unconstrained regression line through all ellipses in the WMDS intersects the concordia at 2662 ± 2 Ma. The youngest record of dyke injections across the exposed eastern Kaapvaal Craton, including the ca. 2662 Ma WMDS, is best correlated to volcanic rocks within the proto-basinal fill at the base of Transvaal Supergroup, which are dated at ca. 2664 Ma (U–Pb zircon, Barton et al. 1995). The two coeval E–W-trending dykes parallel earlier E–W lineaments in the precursors to the Transvaal Basin. Most dykes within this age period however appear to have made a return to the initial, older ‘Klipriviersberg’ rift-trend. Plagioclase-megacrystic NE-trending dyke swarms appear to be concentrated farther to the south-east, however, and thereby appear to define a distinct sub-swarm. It is also possible for the two coeval E–W-trending dykes to locally have followed the pre-existing Rykoppies Dyke Swarm trend, and thereby be

Table 3. Stratigraphy with ages of the various half-grabens composed of Venterdorp Supergroup and equivalent rocks (modified after de Kock et al. 2012).

<table>
<thead>
<tr>
<th>Ventersdorp Supergroup</th>
<th>Taung</th>
<th>Derdepoort</th>
<th>Botswana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pniel ‘Sequence’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allanridge Fm.</td>
<td>Allanridge Fm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amygdoidal andesitic lava</td>
<td>Amygdoidal andesitic lava</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bothaville Fm.</td>
<td>Bothaville Fm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartzite, conglomerate and shale</td>
<td>Quartzite, conglomerate and shale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platberg Group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rietgat Fm.</td>
<td>Hartswater Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porphyrictic lava, quartzite, tuffs and limestone</td>
<td>Shale, andesitic lava and limestone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makwassie Fm. (2708 Ma)</td>
<td>Quartz porphyry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz porphyry</td>
<td>Mohle Fm. (2734 Ma)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kameeldoons Fm.</td>
<td>Conglomerate, quartzite and tuff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breccia, conglomerate, quartzite and tuff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klipriviersberg Group (2714 Ma)</td>
<td>Derdepoort (2769–2781 Ma)</td>
<td>Lobatse Group</td>
<td></td>
</tr>
<tr>
<td>Basal conglomerate and quartzite</td>
<td>Basaltic to rhyolitic lava</td>
<td>Niyane Fm.</td>
<td></td>
</tr>
<tr>
<td>Komatiitic lava and basaltic lava</td>
<td>Conglomerate, quartzite and shale</td>
<td>Tuff and quartz porphyry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kanye Fm. (2781 Ma)</td>
<td>Rhyolitic lava</td>
<td></td>
</tr>
</tbody>
</table>

7.2.2. 2686–2683 Ma.

The U–Pb data of Olsson et al. (2010) for two E–W-trending dykes (BCD1-09 and BCD1-11) plot as green symbols in Fig. 7, as well as green trend lines in Fig. 8(C).
members of a more extensive, and predominantly NE-trending WMDS. The WMDS may then be up to 400-km wide, when including the two northerly located young NE-trending dykes (BCD5-22 and BCD5-23, Fig. 8(D)).

7.3. Petrogenesis and subsequent differentiation and assimilation

Different geochemical subgroups have been shown to correlate more with which part of the exposed Kaapvaal Craton the samples were collected from, as shown in Figs. 4–8, than the dyke’s trend or relative age. This is consistent with either the initial petrogenesis and/or subsequent differentiation/assimilation giving rise to: (1) uniquely different coeval magmas being emplaced within different parts of the Kaapvaal Craton; and (2) compositionally similar magmas having been injected up to 40 Myr apart into the same part of the Kaapvaal Craton. From each perspective, this appears to argue for a remarkably local lithospheric control on geochemical signatures.

7.3.1. Northern part of eastern Kaapvaal Craton.

For the northern area of the eastern Kaapvaal Craton, three NE-trending dykes were emplaced both during the oldest youngest magmatic period amongst all 2.70–2.66 Ga dykes (Fig. 8(B, D)), and yet all exhibit uniquely similar incompatible element patterns (Fig. 5(C)). These sub-parallel patterns have different elevations relating to different degrees of differentiation, which appear to have affected these northerly located magmas more than NE-trending dykes from the southern part of the craton (i.e., lower MgO and Mg# discussed in Section 7.3.3). This is supported by the increasingly more negative Sr anomalies in Fig. 5(C) which could reflect a more advanced differentiation stage including plagioclase fractionation. As evidenced by how close these data plot to Nb and Ta in Fig. 5(B), it is also clear that the incompatible element patterns of these three northerly located NE-trending dykes exhibit less negative Nb anomalies, compared to younger dykes, and correspondingly lower LIL/HFSE. Even if these characteristics are still indicative of some subduction zone component – which is unlikely to have been derived from any nearby active margin at that time – it is inherently difficult to decide whether this lithospheric component stems from either a subcontinental lithospheric mantle (SCLM) source and/or local assimilation of its overlying Archaean crust. From their more differentiated status (i.e., low MgO/Mg#), and relative positions within a mixing array between more tonalite–trondhjemite–granodiorite-assimilated dykes from the central craton area, and the ‘primordial’ part of the mantle array in Fig. 6(B), however, primary melts could have been derived from a moderately enriched (or ambient) mantle peridotite. From their relatively low (Dy/Yb)N in Fig. 6(A), this must have been a spinel-bearing mantle that could only have been asthenospheric if it had been able to rise above the <600-km stability depth for garnet below the thick Kaapvaal Craton lithosphere.

7.3.2. Central part of the eastern Kaapvaal Craton.

For the central area of the eastern Kaapvaal Craton, five E–W-trending and two SE-trending dykes are representatives of all three periods of dyking, yet exhibit even more closely match-

ing incompatible element patterns (Fig. 5(D)), that are distinctly different from all other dykes in this study. Their distinctly lower HREE patterns could be attributed to a deeper garnet-bearing mantle source. However, the commonly observed inclusion of basement xenoliths and phenocrysts in most of these dykes (Klausen et al. 2010), as well as their more anesitic and calc-alkaline compositions (Fig. 4) and significant LILE/HFSE- and LREE-enrichments (Fig. 5(D)), attest to assimilation of a correspondingly large amounts of tonalite–trondhjemite–granodiorite material. It is beyond the scope of this paper on relatively few dyke samples to quantitatively model such assimilation, but the common field observation of partly digested crustal xenoliths and xenocrysts in these particular dykes (parts of which invariably were incorporated in the analysed material), and their andesitic composition attest to substantial proportions of assimilated crust. Even if it seems likely for all dykes from the central area to have been contaminated by tonalite–trondhjemite–granodiorite, it is still puzzling how such an unpredictable diversification process could have produced such similar patterns for dykes that were emplaced during all three episodes of the entire 2701–2662 Ma event. However, the relative position of samples along mixing curves (e.g., Fig. 6(B)), can be used to argue that primary magmas for the dykes injected into the central craton area were initially derived from a, moderately enriched or ambient, primordial mantle that was relatively similar to the source(s) of the other dyke groups.

7.3.3. Southern part of the eastern Kaapvaal Craton.

In the southern craton area (Figs. 1, 2 and 8), the seven dated NE-trending dykes from the WMDS, all exhibit uniquely similar incompatible element patterns (Fig. 5(E)), which are distinctly more HFSE-depleted than any of the other dykes in the two other craton areas. The lack of any significant LREE-enrichment and corresponding HREE-depletion argues against the kind of tonalite–trondhjemite–granodiorite-assimilation that appear to have affected dykes in the central craton area, which is also supported by a general absence of granitic xenoliths in the WMDS. Nevertheless, some very marked positive LIL anomalies, accentuated against relatively low HFSE (Fig. 5(E)), require a selective addition of Cs, Rb, K and Pb. Rather than attributing these anomalies to some lithospheric overprint, similar to the crustal assimilation suggested for the central part of the craton (Section 7.3.2), more selective LIL enrichment could have been caused by pervasive metasomatism during regional greenschist metamorphism that appears to have affected the southern part of the southern area more than the north (Elworthy et al. 2000). As an example, the two NE-trending dykes located within the least metamorphosed northern part of the southern craton area (JR-19 and BCD5-04), do not exhibit any Pb anomalies, albeit still possessing high Cs, Rb and Ba (Fig. 5(E)). The fact that these anomalies persist even for those samples from which plagioclase megacrysts were carefully removed suggests that these are not the culprits. In addition, one plagioclase feldspar megacryst that was milled and analysed just like the bulk rock samples, exhibits many of the same selective enrichments in Cs, Rb, Ba, K, Pb, Sr and Eu against minute concentrations in all other incompatible elements shown in Fig. 5(E). If the LIL-enrichments in Fig. 5(E) can be attributed to secondary alteration, then the depleted patterns exhibited by the more robust HFSEs are consistent with primary magmas derived from an equally depleted
spinel-bearing mantle source. This is consistent with the data overlap of the depleted end of the Mantle Array in Fig. 6(B), even if we cannot rule out that these selectively LILE-enriched magmas were either crustally contaminated or derived from a metasomatically enriched SCLM.

The depleted mantle source could have been asthenospheric if the WMDS was emplaced within a significant SW–NE-trending rift zone across the south-eastern margin of the present day Kaapvaal Craton. The depleted nature of the plagioclase-megacrystic WMDS contrasts with the other four coeval dykes emplaced across both the central and northern areas of the eastern Kaapvaal Craton (Fig. 8(D)), which could both host dykes derived from a more enriched SCLM. Magmas from the central area could have also become excessively contaminated by poorly digested tonalite–trondhjemite–granodiorite crust. Thus, there appears to be a clear geochemical distinction between Olsson et al.’s (2011) ‘radiating’ swarm to the north-eastern Kaapvaal Craton, and the newly discovered WMDS that cuts obliquely across its south-eastern extent which cannot have been derived from the same mantle source. Indeed the less than 30-km separation between depleted signature dykes BCD5-04 and JR-19 to enriched BCD3-08 highlights such discrete geochemical differences, despite being within the same cratonic area.

7.4. Tectono-magmatic model implications

The proposed radiating swarm of Olsson et al. (2011) is not supported by all its 2.70–2.66 Ga dykes having been derived from a heterogeneous, yet common mantle source. A spinel-bearing and moderately enriched mantle is not, however, what one would expect from a ‘Venterdorp’ mantle plume, which Olsson et al. (2011) proposed impacted on the Kaapvaal Craton where the eastern lobe of the 2.06 Ga Bushveld Complex is currently located. Especially not when compared to the signatures of Phanerozoic ocean hotspots like Hawaii, where tholeiitic basalts are typically derived from a more enriched and deeper garnet-bearing mantle source. The 2.70–2.66 Ga dykes within the proposed radiating swarm also appear to be slightly younger than current ages of the Klipriviersberg’s basal basaltic komatiites and most of the subsequent large volumes of overlying continental flood basalts, which Eriksson et al. (2002) attributed to a hot mantle plume source. Furthermore, it is questionable whether a mantle plume-induced radiating dyke swarm can remain active in the same place for as long as ~40 Myr (or possibly >120 Myr if the Deredpoort–Hartswater volcanic rocks and associated intrusions are included). This is at least close to (or more than) the maximum 50-Myr time limit for LIPs (Ernst 2014 and references therein), and arguably fed volcanism that episodically erupted to form not only the bulk of the Venterdorp Supergroup, but also the Allanridge Formation and proto-basinal volcanic rocks. Instead we propose that the radiating swarm of Olsson et al. (2011) is an artefact of a succession of magmatic rifting events, following on from an initial Venterdorp mantle plume. Our new U–Pb ages identify the NE-trending WMDS, which a pair of E–W-trending dykes may locally have deflected along the pre-existing Rykoppies Dyke Swarm trend. However, a more extensive WMDS still requires that its coeval dykes were derived from two different mantle sources, i.e., a more enriched northerly and more depleted southerly mantle source.

8. Conclusions

New high-precision baddeleyite U–Pb ages for seven dykes sampled from the south-easternmost window into the Kaapvaal Craton identify the prominent NE-trending WMDS, with characteristic plagioclase megacrysts, to have been emplaced within a relatively narrow time span at approximately 2662 Ma. The WMDS cuts the south-eastern branch of the broadly coeval radiating dyke swarm across the central and northern parts of the eastern Kaapvaal Craton (Olsson et al. 2011). A closer scrutiny of this ca. 2.70–2.66 Ga radiating dyke swarm and the WMDS reveals three magmatic periods:

1. The oldest 2701–2692 Ma feeder dykes, represented by one NE-trending and two SE-trending dykes, correlate, within analytical uncertainties, to the early lower Ventersdorp Supergroup volcanic rocks, which Uken & Watkeys (1997) argued to have been emplaced mainly in a SW–NE-trending regional rift, terminating with the emplacement of SE-trending feeders.

2. The intermediate 2686–2683 Ma feeder dykes, only shown by two E–W-trending dykes across the eastern Kaapvaal Craton’s central area, are on the basis of both geochronology (Olsson et al. 2010) and geochemical matching (Klausen et al. 2010) thought to be coeval with later volcanic rocks of the upper Ventersdorp Supergroup. These dykes form the original Rykoppies Dyke Swarm of Olsson et al. (2010).

3. The youngest 2665–2659 Ma feeder dykes include nine NE-trending and three E–W-trending dykes, some of which were included into the radiating dyke swarm by Olsson et al. (2010, 2011) but on the basis of coeval ages and dyke trends can also be combined into a more regionally extensive, and overall NE-trending WMDS, spanning across much of the exposed eastern Kaapvaal Craton. The ages of these dykes correlate to so-called proto-basinal volcanic rocks (Eriksson et al. 2006), marking the significant transition from the Ventersdorp Supergroup to the Transvaal Supergroup, as was stated in Olsson et al. (2010).

Geochemical signatures on all 17 dated basaltic–andesitic dykes do not correlate with either dyke ages or trends, but are remarkably unique signatures for dykes of different ages and/or orientations that reside within one of the following three cratonic areas, across the exposed eastern part of the Kaapvaal Craton:

1. The northern area, which has both the oldest and two of the youngest NE-trending basaltic dykes, is characterised by relatively enriched HFSE-signatures, with weak...
negative Nb anomalies and less LILE enrichments, consistent with derivation from a correspondingly moderately enriched (or ambient primordial) and spinel-bearing mantle peridotite source.

(2) The central area hosts two dykes of intermediate age, three younger E–W-trending andesitic dykes, and two SE-trending dykes, all with remarkably similar incompatible element patterns. These patterns can be explained by a parental magma much like the ones described above for the northern area, after having assimilating typical tonalite–trondhjemite–granodiorite crust. This is supported by the common observation of xenoliths and xenocrysts in the field from these dykes.

(3) The southern area, which hosts NE-trending and characteristically feldspar-megacrystic dykes belonging to the studied WMDs, exhibit much more depleted HFSE patterns that are selectively enriched in the most mobile Cs, Rb, K and Pb elements. Some of these LILE-enrichments correlate with a southward increase in metamorphic greenschist facies overprint, and are therefore likely to be secondary. Their otherwise depleted magmas cannot be related to any of the more enriched dykes across either the central or northern craton areas, and were probably generated from a correspondingly more depleted spinel-bearing and asthenospheric mantle peridotite source.

Collectively, the data presented question the radiating 2.70–2.66 Ga dyke swarm of Olsson et al. (2011) across the Kaapvaal Craton. It is possible for a more prolonged and geochemically enriched radiating system to have been terminated by a periph- eral, yet cross-cutting dyke swarm derived from a more depleted mantle source.

Acknowledgments—The authors wish to thank the reviews and comments from two anonymous reviewers and the guest editor Wouter Bleeker for helping to improve this article. The authors also wish to acknowledge the support from the Swedish Research Council for a master’s project assistance to Johan Rådmån. The Department of Geology at the University of Johannesburg and Michel de Kock are thanked for supplying logistical support during field work both in Mpumalanga and KwaZulu-Natal. Ashley Gumsley acknowledges support from the Royal Physiographic Society in Lund for a travel grant.

References

Olsson, J.R., Söderlund, U., Klausen, M.B. & Ernst, R.E., 2010: U–Pb baddeleyite ages linking major Archaean dyke swarms to volcanic-rift forming events in the Kaapvaal craton (South Africa), and a precise age for the Bushveld Complex. Precambrian Research 183, 490–500.

Appendix A: Correspondence analysis

Correspondence analysis is a descriptive multivariate statistical technique first proposed by Hirschfeld (1935) and later developed by Benzécri (1973). It is conceptually similar to principal component analysis, more often used (e.g., as a component in GCDkit, Janoušek et al. 2006) on geochemical data, but applies to categorical rather than continuous data. No data can be negative and should all be on the same scale for the correspondence analysis to be applicable, and the method treats rows and columns equivalently. The correspondence analysis first pre-processes such contingency tables by computing a set of weights for both its columns and rows. It then decomposes the chi-squared statistics associated with this pre-processed table into orthogonal components, which are finally reformulated as so-called Factor scores for both rows and columns (see Greenacres 1983, 2007, for more statistical details). Most of the statistical variation in a contingency table is represented by the first set of Factor scores and successively less in subsequent sets, and the rate by which the cumulative percentage of all statistical variation declines depends on how complexly variable a data-set is. Thus, in most igneous data-sets, a significant proportion of all statistical variation can typically be displayed by the first two to three sets of Factor scores.

Like principal component, correspondence analysis results provide a means of displaying or summarising a set of Factor scores in two-, or more, dimensional graphical form, which typically ‘radiate’ out from an ‘averaged’ origin. In such plots, Factor points that plot closer to each other (note that there are more dimensions not displayed in 2D) are more similar than points plotted farther apart and the relative distances between points is a statistical measure of their ‘degree of similarity’, or correspondence. As exemplified by Fig. 5(B), we see how compositionally similar samples, as well as elements that are known for their similar properties (e.g., Zr-Hf and Nb-Ta) plot closer to each other. One useful advantage of the correspondence analysis, compared to the principal component analysis, is that it can display both rows (e.g., samples) and columns (e.g., elements) in the same plot, and thereby allow the user to better link these to each other. As exemplified by Fig. 5(B), and noted in the related main text, one typically finds that a sample plotting closer to a certain element also has a relatively higher concentration of that element, compared to samples plotting farther from it. That paragraph continues with providing more specific examples of such correspondences between certain sample and element groups, pertaining to the data-set presented in this paper.
New U–Pb geochronologic and palaeomagnetic constraints on the late Palaeoproterozoic Hartley magmatic event

PAPER IV
New U–Pb geochronologic and palaeomagnetic constraints on the late Palaeoproterozoic Hartley magmatic event: evidence for a potential large igneous province in the Kaapvaal Craton during Kalahari assembly, South Africa

FARNAZ ALEBOUYEH SEMAMI1, MICHEL DE KOCK2, ULF SÖDERLUND13, ASHLEY GUMSLEY1, RICHARD DA SILVA1, NICOLAS BEUKES2 and RICHARD ARMSTRONG24

Abstract: The volcanic Hartley Formation (part of the Olifantshoek Supergroup, which is dominated by red bed successions) in South Africa recorded depositional and tectonic conditions along the western Kaapvaal Craton during the late Palaeoproterozoic. It formed in association with red bed deposition elsewhere in the cratonic hinterland and along the craton’s northern margin. However, the exact correlation of the Olifantshoek Supergroup with these other red-bed successions is hindered by poor geochronological constraints. Herein, we refine the age and palaeopole of the Hartley Formation, and provide geochronological constraints for large-scale 1.93–1.91 Ga bimodal magmatism on the Kaapvaal Craton (herein named the Hartley large igneous province). We present new age constraints for the mafic and felsic phases of this event at 1923 ± 6 Ma and 1920 ± 4 Ma, respectively, which includes the first reported age dating of the Tsineng Dyke Swarm that has been linked to Hartley volcanism. A mean 1.93–1.91 Ga palaeomagnetic pole for the Hartley large igneous province at 22.7°N, 328.6°E with $A_{95} = 11.7°$ represents a significant improvement on a previously published virtual geomagnetic pole. This improved pole is used to refine the late Palaeoproterozoic apparent polar wander path of the Kaapvaal Craton. This can assist in correlation of red-bed successions in southern Africa.

Keywords: geochronology; large igneous province; dyke swarm; palaeomagnetism; apparent polar wander path; Orosirian period

1Department of Geology, Lund University, Lund, Sweden
2Department of Geology, University of Johannesburg, Johannesburg, South Africa; mdekock@uj.ac.za
3Department of Geoscience, Swedish Museum of Natural History, Stockholm, Sweden
4Research School for Earth Sciences, The Australian National University, Canberra, Australia

Manuscript received 17 March 2015. Revised manuscript accepted 20 November 2015.

1. Introduction

The identification and understanding of Mesoarchean to Proterozoic magmatic events on the Kaapvaal Craton, including short-lived large igneous provinces (LIPs), are becoming better understood using high-precision U–Pb geochronology on baddeleyite and zircon (e.g., Olsson et al. 2010, 2011; Gumsley et al. 2013, 2015a; Mukasa et al. 2013; de Kock et al. 2014; Kampmann et al. 2015). The late Palaeoproterozoic Hartley Formation represents a small volcanic component within the red bed-dominated Olifantshoek Supergroup (Cornell 1987; Moen 1999, 2006), which in southern Africa recorded conditions along the western Kaapvaal Craton margin (Fig. 1). Several magmatic rock units on the Kaapvaal Craton have previously been correlated to the Hartley Formation (Cornell et al. 1998; Hanson et al. 2004; Goldberg 2010), and hint at a wider spatial distribution of magmatism, but the association is as yet unconfirmed for most. The Olifantshoek Supergroup developed in broad association with red bed deposition elsewhere in the cratonic interior following the emplacement of the ca. 2.05 Ga Bushveld Complex and 2.04–2.02 Ga high-grade metamorphism during the assembly of the Kalahari Craton (Fig. 1). Thin-skinned tectonic shortening of much of the Olifantshoek Supergroup occurred during the <1.93 Ga Kheis Orogeny (Cornell et al. 1998), and later tectonic reworking by the ca. 1.0 GaNamaqua-Natal Orogeny (Eglington & Armstrong 2004). Structural complexity, younger cover and limited geochronology obstruct the exact correlation of the Olifantshoek Supergroup with other southern African red-bed suc-
Hartley Formation. U–Pb age constraints from two suggested Hartley Formation equivalents are reported to constrain the regional extent and establish LIP status of Hartley volcanism during the Kalahari Craton assembly. Coupled with a refinement of previous palaeomagnetic studies (Evans et al. 2002), our new ages further constrain the apparent polar wander (APW) path of the Kaapvaal and Kalahari Cratons during the Orisirian Period – a vital tool in the correlation of southern African red-bed successions.

Previous attempts to date the Hartley Formation document imprecise Rb–Sr and Pb–Pb isochrons and errorchrons (Armstrong 1987; Cornell 1987). An exception is a 207Pb/206Pb age of 1928 ± 4 Ma for a quartz porphyry unit interbedded with the Hartley Formation basalts obtained by Cornell et al. (1998) via Pb–Pb evaporation. This provides the principal constraint on the Kheis Orogeny. Here we present a U–Pb SHRIMP zircon age of another porphyry occurrence that confirms the age for the Hartley Formation.

Fig. 1. An overview map of the Kaapvaal Craton and its surrounding environment which highlights the Olifantshoek-Waterberg-Soutpansberg-Palapye strata and the ~1.93–1.84 Ga dolerite dyke and sill intrusions. Inset shows a geological map of the western margin of the Kaapvaal Craton. Sample localities for palaeomagnetism and geochronology near the western margin of the craton are shown together with other localities mentioned in the text.
2. Geological setting

2.1. Regional geology

The Kaapvaal Craton, together with the Zimbabwe Craton, and several accreted terranes along their western margins (Eglington & Armstrong 2004), constitute the greater Kalahari Craton. To its north, the Kaapvaal Craton adjoins with the Zimbabwe Craton along the Limpopo Belt (Fig. 1), a 2.6–2.02 Ga polymetamorphic complex (Kramers & Mouri 2011). However, the exact timing of amalgamation of the Kalahari Craton remains controversial (Hanson et al. 2011). On its west, the Kaapvaal Craton is bounded by the Kheis Province (Fig. 1), a <1.93 Ga fold and thrust belt, which has largely been reworked during the ca. 1100 and 1050 Ma Namaqua-Natal Orogeny (Fig. 1), to the west and south of the craton (Eglington & Armstrong 2004; Cornell et al. 2006; Eglington 2006). During the late Palaeoproterozoic extensive red-bed successions were deposited on the Kaapvaal Craton and its margins including the Limpopo Belt and Kheis Province. The Waterberg Group, Soutpansberg Group and Olifantshoek Supergroup of South Africa together with the Palapye Group (Botswana), and a number of smaller outliers, such as the Blouberg Formation, are erosional remnants of these late Palaeoproterozoic successions (e.g., De Kock et al. 2006; Dorland et al. 2006). It is now accepted that deposition of the Soutpansberg Group commenced some 200 million years after the initiation of deposition in the Waterberg Group and Blouberg Formation at 2.04 Ga (Dorland et al. 2006; Corcoran et al. 2013; Geng et al. 2014), while deposition continued possibly as late as 1604 Ma within the Palapye Group (Mapeo et al. 2004). Still elusive is the exact correlation of these successions with the Olifantshoek Supergroup.

2.2. Olifantshoek Supergroup

Structural complexities and poor geochronological control have resulted in several proposed lithostratigraphic frameworks for the Olifantshoek Supergroup. Here, we employ a combination of the recent frameworks of Moen (2006) and Van Niekerk (2006) that sees the Olifantshoek Supergroup divided into two unconformity-bounded sequences (Fig. 2). The oldest of these sequences is named the Elim Group in accordance with Van Niekerk (2006). The formations of this group are interpreted by Van Niekerk (2006) and others (e.g., Beukes et al. 2002; Evans et al. 2002) as being part of the Transvaal Supergroup and not an integral part of the Olifantshoek Supergroup as proposed by Moen (2006). The placement by Moen (2006) seems justified by recent unpublished constraints from detrital zircon grains from the Mapedi Formation (Da Silva 2011). Placement of the Elim Group rocks either before (i.e., Transvaal Supergroup) or after (i.e., Olifantshoek Supergroup) the intrusion of the 2.05 Ga Bushveld Complex is crucial for how the Kaapvaal Craton’s APW path is defined, as will be shown (Section 5.3). The Elim Group consists of the Mapedi and Lucknow formations (Moen 1999), an upward coarsening shale to quartzite succession with interbedded carbonate rocks.

As recognized by Van Niekerk (2006), the second sequence is taken from the regional unconformity at the base of the overlying Hartley Formation, which is composed of basal conglomerate and quartzite (i.e., the so-called Neylan Member of the Hartley Formation in the subdivision of Van Niekerk, 2006) followed by dominantly volcanic rocks (Fig. 2). The Hartley Formation is overlain conformably by light grey to white arenites (orthoquartzite), with minor shale and poorly exposed silty sandstone (Fig. 2). Opinions vary widely on the lithostratigraphic status...
of this sandstone-dominated unit at the top of the Volop Group (Moen 2006; Van Niekerk 2006).

2.3. Hartley volcanic rocks and equivalents

The Hartley Formation is formed by dominantly basaltic lava flows also encompassing pyroclastic and sedimentary rocks, with a total estimated thickness that ranges between 300 and 762 m (Cornell 1987). The conservative estimate is supported by reports of thrust duplication (Tinker et al. 2002). Rare quartz-feldspar porphyry also occurs as isolated outcrops in the predominantly Kalahari sand covered N–S trending valleys of the present topography south of Olifantshoek (Cornell 1987). The 1928 ± 4 Ma age of Cornell et al. (1998) is from such porphyry that outcrops on the farm Prahberg (Fig. 1). In the Hartley Formation, a porphyry intersected in a borehole north of Olifantshoek (MHK 1/86), was sampled for U–Pb geochronology.

Cornell et al. (1998) proposed that basalt and interbedded sedimentary units some 140 km south of Olifantshoek (Fig. 1) are Hartley Formation correlatives. This unit (the Boegoeberg Dam Formation) could, however, also represent a volcanic unit of the 2.64 Ga lower Transvaal Supergroup (Smit et al. 1991). Fined-grained quartzite (sample BOS 10), interbedded with the Boegoeberg Dam Formation was sampled to test the proposed correlation.

In addition, an undated ~120 m-thick unit of mafic lava preserved in the lower part of the Selika Formation near the base of the Palapye Group in Botswana (Ermanovics et al. 1978), must be older than 1604 Ma according to Mapeo et al. (2004), and could represent a Hartley Formation equivalent. Elsewhere, near Moshaneng, Hanson et al. (2004) reported a narrow range of ~1927 Ma 207Pb/206Pb baddelyte ages for dolerite sills that intrude the Waterberg Group (Fig. 1). They further illustrated geochemical similarity between these sills and basalt of the Hartley Formation.

In South Africa, U–Pb geochronology of zircons from two gabbric drill core samples of the unexposed Trompsburg Complex near the southwestern Kaapvaal Craton margin, beneath the Panarozic cover (Fig. 1), yielded an age of 1915 ± 6 Ma (Maier et al. 2003), which is comparable to the existing ages for the Hartley Formation (Cornell et al. 1998) and Moshaneng sills (Hanson et al. 2004). Finally, a distinct dyke swarm known as the Tsineng Dyke Swarm (TDS), in the western Kaapvaal Craton (Fig. 1), has been linked to the Hartley Formation volcanic rocks (Goldberg 2010). The TDS is evident on aeromagnetic maps, and displays a slight convergence towards the west, where it is truncated by the Kheis Province. This truncation led Goldberg (2010) to suggest a pre-1.8 Ga age for the TDS. The dyke swarm fans out very slightly towards the ENE, and its strike is ~0–60°, with a slight dextral curvature to ~0–60° in the west. According to Goldberg (2010), aeromagnetic data indicate that these dolerite dykes crosscut the ca. 2.4 Ga Ongeluk Formation of the Transvaal Supergroup (Fairey et al. 2013; Gumsley et al. 2015b), presenting a maximum constraint on TDS emplacement. One of the NE-trending TDS dykes intersected in drill core near the town of Tsing (sample RP353) was collected for U–Pb geochronology.

3. Methodology

3.1. SHRIMP U–Pb geochronology of the Hartley volcanic rocks

Zircon grains were separated from a quartz porphyry found at 683 m depth within drill core of borehole MHK1/86 (Fig. 2), from the farm Moolthoek just north of Olifantshoek (Fig. 1), as well as from fine-grained quartzite (Sample BOS 10) interbedded with volcanic rocks of the Boegoeberg Dam Formation (Figs. 1 and 2). A heavy mineral fraction was extracted using Bromoform on a washed 250 micron sieve after crushing and milling at the University of Johannesburg, South Africa. Zircons were concentrated from this heavy mineral fraction by magnetic separation at 1.25 A, and then separated using methylene iodine in the heavy mineral separation facilities of the PRISE Research School of Earth Sciences at the Australian National University in Canberra, Australia.

For microbeam analysis, the zircon grains were hand-picked, mounted in epoxy resin, polished and gold-coated. Cathodoluminescence and backscatter electron images were obtained by scanning electron microscopy, which were used to identify xenocrysts through morphology, and to avoid inclusions, cracks and metamict zones in grains.

Sensitive high-resolution ion microprobe reverse geometry analyses were performed at PRISE at the Australian National University. The FC-1 and SL3 zircon standards were used for calibration (Compston & Williams 1984; Paces & Miller 1993). Common Pb corrections were done using the Stacey & Kramers (1975) terrestrial Pb model composition. The analytical data were reduced according to the method described in Williams & Claesson (1987) and Compston et al. (1992). Only 207Pb/206Pb ages with a discordance of less than 10% were used to define detrital zircon age populations in sample BOS10. Uncertainties of ages are given at 2σ in the text, ignoring decay constant errors.

3.2. ID-TIMS U–Pb geochronology of the Tsineng Dyke Swarm

Baddleyite grains were extracted from drillcore sample RP353, which intersects one of the NE–SW trending TDS dolerite dykes. The borehole is located on Smartt Mine in the Kalahari Manganese Field near Tsingeng in the Northern Cape Province of South Africa (see Fig. 1). Here, a dyke intrudes Mn-rich rocks of the Transvaal Supergroup (Hotazel Formation). The RP353 dyke sample is an unfoliated coarse-grained dolerite with abundant plagioclase phenocrysts. Baddleyite grains were extracted after crushing, milling and water-based separation at Lund University following the procedures described in Schütte (1992). The best-quality grains were hand-picked and transferred to Teflon capsules, where they were washed repeatedly in ultrapure water and dilute HNO3. One drop of a 3×3–24U–206Pb tracer solution and 10 drops of HF–HNO3 (10:1) solution were added into each capsule. The samples were then completely dissolved after three days in the oven. Isotope Dilution Thermal Ionization Mass Spectrometry (ID-TIMS) analysis was done using a Finnigan Triton Thermal Ionization Mass Spectrometer in the Department of Geosciences at the Swedish Museum of National History in Stockholm. Data were plotted using Isoplot after Ludwig (1991). U decay constants used were those published in Jaffey...
et al. (1971). The correction for initial common Pb was carried out using the isotopic model compositions of global common Pb (Stacey & Kramers 1975). Further details are given in Olsson et al. (2010).

3.3. Palaeomagnetism of the Hartley volcanic rocks

Ten individual magmatic cooling units of the Hartley Formation were drilled and sampled for palaeomagnetic study (Fig. 1). A total of 77 oriented samples, with between 8 and 9 samples per unit, were taken using a water-cooled portable drill. The majority of samples originate from the Hartley Hill quarry outside of the town of Olifantshoek, where a largely undeformed succession of Hartley Formation volcanic rocks are exposed as eight sub-horizontal flow units (Cornell 1987). This locality was also previously sampled for palaeomagnetism by Evans et al. (2002). Additional samples were taken from a more foliated mafic volcanic unit on the farm O’Donoghue, and from the dated porphyry of Cornell et al. (1998) outcropping on the farm Pramberg. Sample orientation was done using a magnetic and sun compass, and drilled samples were cut into one or more shorter cylindrical specimens.

In the palaeomagnetic laboratory at UJ, the cut specimens were measured on a vertical 2G Enterprises DC-4 K magnetometer equipped with an automatic sample changer (Kirschvink et al. 2008). After measuring the natural remanent magnetization (NRM) of all specimens, they were demagnetized stepwise. Specimens were pretreated with low-field strength alternating field (AF) demagnetization from 2 mT up to 10 mT. Specimens that showed a strong resistance to this initial low-field strength AF demagnetization were submerged in liquid nitrogen before demagnetization was continued. Specimens were then treated to high-field strength AF demagnetization in steps up to 100 mT. Magnetic components were identified and quantified via the least-squares (LSQ) principal component method of Kirschvink (1980) using Palaeomag 3.1b2 software of Jones (2002). Palaeopoles were plotted using GPlates 1.2.0 software of Williams et al. (2012).

4. Results

4.1. Zircon U–Pb geochronology

Summarized geochronological data are presented in Table 1 and Table 2, with concordia diagrams and detrital age populations illustrated in Fig. 3.

4.1.1. Moosihoek Porphyry (MHK1/86)

This quartz porphyry yielded clear euhedral zircons with consistent Th/U ratios of between 0.5 and 0.75 indicating their magmatic origin. Seventeen zircon crystals analysed by SHRIMP-RG in 18 spots produce a well-defined U–Pb concordia age of 1920 ± 4 Ma with MSWD of 0.04 (Fig. 3A).

4.1.2. Boegoeberg Dam Formation (BOS10)

Sample BOS10 yielded zircon grains of between 75 and 150 μm in length that varied from being euhedral to well rounded. Some grains were clearly broken during the milling process and could have been in excess of 250 μm originally. Most zircon grains were clear, but about 15% of grains were covered in a mottled red coating. About half of the grains were pitted and cracked, while a few grains had inclusions or growth of xenotime along grain boundaries. The zircon grains were concentrically zoned, and some had detrital cores with younger zircon rims.

SHRIMP analyses of 52 zircon grains produced 29 concordant to near concordant (within 10%) ages that define two major age populations (Fig. 3B). All concordant and near-concordant grains from this sample had high Th/U ratios and are considered magmatic in origin. Eleven grains define a prominent ca. 2000–2100 Ma age peak, and 6 grains define a prominent age population around ca. 2700 Ma. There is also a secondary peak consisting of 3 grains around ca. 3200 Ma. Most interesting for our study was one zircon grain with an age of 1931 ± 20 Ma (analysis 39.2). Another zircon grain produced an age of 1957 ± 18 Ma (analysis 33.2) and may fall in the same young group. The two grains are both euhedral and may be derived from the Boegoeberg Dam Formation volcanic eruptions (Table 1).

4.2. Baddeleyite U–Pb geochronology

Summarized geochronological data are presented in Table 2, with a concordia diagram shown in Fig. 3. Baddeleyite grains extracted from the dolerite dyke drillcore sample (RP353) are transparent, light brown crystals with no signs of mottled surfaces or alteration. Three grain fractions plot concordant, yielding a robust concordia age of 1923 ± 6 Ma (MSWD = 0.56) for the RP353 dyke of the TDS (Fig. 3C).

4.3. Palaeomagnetism

Palaeomagnetic results from the Hartley Formation are summarized in Table 3. Examples of demagnetization behaviour and summaries of the remanent magnetization components are shown in Fig. 4.

4.3.1. Hartley Hill Quarry

Our samples from Hartley Hill quarry overlap with, and extend, the limited sampling originally done by Evans et al. (2002), who only took three oriented samples per flow unit (Fig. 2). We repeated LSQ analyses on specimen data of Evans et al. (2002) and combined it with our own data-set to calculate component means (Table 3).

Random low-coercivity components and a present field-like viscous remanent magnetization were successfully removed in most samples during initial demagnetization steps. An intermediate coercivity component (INT component) was recognized in samples from three of the sites (i.e., two samples from site HAA, as well as all the samples from sites HAF and HAHI). This component is generally poorly constrained, but displays shallow inclination and southward declination in present geographic coordinates. High coercivity components (HIG1 component) were removed by demagnetization steps between 35 and 100 mT, either as origin-seeking linear trajectories of demagnetization, or as stable endpoints of demagnetization. These define generally westerly and moderately steep to very steep downwards directed vectors in present geographic coordinates (Figs. 4 and 5C). This component was present in all of the sampled volcanic units at
Table 1. Summary of SHRIMP geochronological data on zircon.

<table>
<thead>
<tr>
<th>Grain</th>
<th>Spot</th>
<th>U/Th (Ma)</th>
<th>206Pb* (Ma)</th>
<th>206Pb/207Pb (Ma)</th>
<th>206Pb/207Pb (Ma)</th>
<th>Error Discordance (%) ppm2</th>
<th>235U % err.</th>
<th>238U % err.</th>
<th>235U/238U (Ma)</th>
<th>206Pb (Ma)</th>
<th>correlation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOS</td>
<td>10</td>
<td>1.1</td>
<td>4.12</td>
<td>0.11</td>
<td>61.4</td>
<td>12.80</td>
<td>1.33</td>
<td>1.5</td>
<td>0.5096</td>
<td>1.3</td>
<td>0.895</td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td>1.44</td>
<td>0.08</td>
<td>63.0</td>
<td>7.13</td>
<td>0.3390</td>
<td>0.1339</td>
<td>0.78</td>
<td>1644</td>
<td>17</td>
<td>0.870</td>
</tr>
<tr>
<td></td>
<td>3.1</td>
<td>1.11</td>
<td>0.41</td>
<td>78.6</td>
<td>6.84</td>
<td>0.2904</td>
<td>0.0790</td>
<td>1644</td>
<td>17</td>
<td>0.830</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>1.11</td>
<td>0.41</td>
<td>94.0</td>
<td>6.30</td>
<td>0.2904</td>
<td>0.0790</td>
<td>1644</td>
<td>17</td>
<td>0.830</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>5.1</td>
<td>3.93</td>
<td>0.47</td>
<td>64.7</td>
<td>6.43</td>
<td>0.3002</td>
<td>0.1234</td>
<td>1693</td>
<td>21</td>
<td>0.889</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7.1</td>
<td>1.70</td>
<td>0.15</td>
<td>58.6</td>
<td>7.21</td>
<td>0.2038</td>
<td>0.1041</td>
<td>2089</td>
<td>23</td>
<td>0.860</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>8.1</td>
<td>1.34</td>
<td>0.68</td>
<td>139.0</td>
<td>11.90</td>
<td>0.1536</td>
<td>0.1016</td>
<td>2158</td>
<td>20</td>
<td>0.876</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>9.1</td>
<td>3.94</td>
<td>0.17</td>
<td>97.1</td>
<td>6.51</td>
<td>0.3274</td>
<td>0.1267</td>
<td>2061</td>
<td>20</td>
<td>0.862</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>10.1</td>
<td>5.91</td>
<td>0.35</td>
<td>114.0</td>
<td>6.73</td>
<td>0.3792</td>
<td>0.1311</td>
<td>1693</td>
<td>17</td>
<td>0.862</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>11.1</td>
<td>1.54</td>
<td>0.54</td>
<td>68.0</td>
<td>6.61</td>
<td>0.3003</td>
<td>0.1234</td>
<td>1693</td>
<td>21</td>
<td>0.889</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>12.1</td>
<td>1.87</td>
<td>0.04</td>
<td>109.0</td>
<td>9.09</td>
<td>0.2530</td>
<td>0.1311</td>
<td>1693</td>
<td>21</td>
<td>0.889</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>13.1</td>
<td>1.83</td>
<td>0.16</td>
<td>50.5</td>
<td>6.70</td>
<td>1.5187</td>
<td>0.1788</td>
<td>2061</td>
<td>20</td>
<td>0.862</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>14.1</td>
<td>0.83</td>
<td>0.04</td>
<td>109.0</td>
<td>9.09</td>
<td>0.2530</td>
<td>0.1311</td>
<td>1693</td>
<td>21</td>
<td>0.889</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>15.1</td>
<td>2.49</td>
<td>0.14</td>
<td>60.9</td>
<td>13.22</td>
<td>0.3902</td>
<td>0.1234</td>
<td>1693</td>
<td>21</td>
<td>0.889</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>16.1</td>
<td>2.64</td>
<td>0.36</td>
<td>84.7</td>
<td>5.46</td>
<td>0.3732</td>
<td>0.1234</td>
<td>1693</td>
<td>21</td>
<td>0.889</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>17.1</td>
<td>1.54</td>
<td>0.47</td>
<td>163.0</td>
<td>9.26</td>
<td>0.3732</td>
<td>0.1234</td>
<td>1693</td>
<td>21</td>
<td>0.889</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>18.1</td>
<td>1.53</td>
<td>0.34</td>
<td>94.6</td>
<td>2.72</td>
<td>0.3732</td>
<td>0.1234</td>
<td>1693</td>
<td>21</td>
<td>0.889</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>19.1</td>
<td>1.88</td>
<td>0.37</td>
<td>111.0</td>
<td>6.99</td>
<td>0.3732</td>
<td>0.1234</td>
<td>1693</td>
<td>21</td>
<td>0.889</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>20.1</td>
<td>0.48</td>
<td>0.39</td>
<td>78.1</td>
<td>6.67</td>
<td>0.3732</td>
<td>0.1234</td>
<td>1693</td>
<td>21</td>
<td>0.889</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>21.1</td>
<td>1.35</td>
<td>0.08</td>
<td>157.0</td>
<td>18.91</td>
<td>0.2332</td>
<td>0.1311</td>
<td>1693</td>
<td>21</td>
<td>0.889</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>22.1</td>
<td>2.12</td>
<td>0.27</td>
<td>115.0</td>
<td>23.28</td>
<td>0.5835</td>
<td>0.2332</td>
<td>1311</td>
<td>21</td>
<td>0.889</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>23.1</td>
<td>1.95</td>
<td>0.00</td>
<td>75.0</td>
<td>12.60</td>
<td>0.5147</td>
<td>0.1234</td>
<td>1693</td>
<td>21</td>
<td>0.889</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>24.1</td>
<td>1.95</td>
<td>0.00</td>
<td>75.0</td>
<td>12.60</td>
<td>0.5147</td>
<td>0.1234</td>
<td>1693</td>
<td>21</td>
<td>0.889</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>25.1</td>
<td>2.10</td>
<td>0.13</td>
<td>56.7</td>
<td>13.49</td>
<td>0.3919</td>
<td>0.1234</td>
<td>1693</td>
<td>21</td>
<td>0.889</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>26.1</td>
<td>2.10</td>
<td>0.13</td>
<td>56.7</td>
<td>13.49</td>
<td>0.3919</td>
<td>0.1234</td>
<td>1693</td>
<td>21</td>
<td>0.889</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>27.1</td>
<td>2.39</td>
<td>0.35</td>
<td>122.0</td>
<td>13.11</td>
<td>0.3919</td>
<td>0.1234</td>
<td>1693</td>
<td>21</td>
<td>0.889</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>28.1</td>
<td>4.43</td>
<td>0.24</td>
<td>214.0</td>
<td>5.11</td>
<td>0.3919</td>
<td>0.1234</td>
<td>1693</td>
<td>21</td>
<td>0.889</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>29.1</td>
<td>0.72</td>
<td>0.55</td>
<td>73.5</td>
<td>7.90</td>
<td>0.3919</td>
<td>0.1234</td>
<td>1693</td>
<td>21</td>
<td>0.889</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>30.1</td>
<td>2.76</td>
<td>0.46</td>
<td>76.7</td>
<td>5.40</td>
<td>0.3919</td>
<td>0.1234</td>
<td>1693</td>
<td>21</td>
<td>0.889</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>31.1</td>
<td>0.81</td>
<td>0.10</td>
<td>88.8</td>
<td>6.54</td>
<td>0.2211</td>
<td>0.1234</td>
<td>1693</td>
<td>21</td>
<td>0.889</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>32.1</td>
<td>1.62</td>
<td>0.48</td>
<td>82.0</td>
<td>5.69</td>
<td>0.2211</td>
<td>0.1234</td>
<td>1693</td>
<td>21</td>
<td>0.889</td>
<td>5</td>
</tr>
<tr>
<td>BH MDK</td>
<td>1.1</td>
<td>1.77 0.10 29.4 5.62 1.8 0.3452 1.4 0.1181 1.10 1912 22 1928 20 0.776 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>----------------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1.2</td>
<td>1.52 0.00 55.9 5.62 1.6 0.3510 1.2 0.1177 1.00 1939 21 1922 19 0.766 1</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>1.33 135.0 5.62 1.2 0.3471 1.1 0.1174 0.42 1921 18 1917 8 0.935 0</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>1.47 0.00 24.0 5.43 1.7 0.3325 1.4 0.1185 0.93 1851 23 1933 17 0.834 4</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>1.45 0.04 87.4 5.65 1.3 0.3474 1.2 0.1180 0.53 1922 19 1927 9 0.910 0</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>1.25 0.06 79.2 5.62 1.3 0.3838 1.2 0.1173 0.47 1905 20 1916 9 0.929 1</td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>1.66 0.00 36.2 5.66 1.5 0.3431 1.3 0.1196 0.79 1901 22 1949 14 0.858 2</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>1.31 0.00 88.9 5.60 1.4 0.3460 1.3 0.1175 0.52 1915 21 1918 9 0.925 0</td>
<td></td>
</tr>
<tr>
<td>1.9</td>
<td>1.93 0.00 133.0 5.61 1.2 0.3465 1.1 0.1174 0.43 1918 18 1917 8 0.932 0</td>
<td></td>
</tr>
</tbody>
</table>
Hartley Hill, but its resolution progressively deteriorated towards the top of the quarry perhaps as an effect of increased weathering. The HIG1 component in the unit HAE (α95 = 43.7° and k = 4.0) and in unit HAH (where it was only recorded by two samples) were not included in the component mean calculation. In other upper units from the quarry (i.e., HL04, HAF and HAG), the HIG1 component was present in 30–50% of samples, and α95 values range from 21.9° to 23.4°. A cut-off of α95 ≤ 16° for inclusion of values in mean calculations is usual, but a higher cut-off of 25° was employed here. The HIG1 component in unit HL04 is distinct from the other sites (Fig. 5C), in that it is shallow and upwards directed, and was excluded from the mean HIG1 component calculation (Table 3).

4.3.2. O’Donoghue Farm
At O’Donoghue Farm, lava of the Hartley Formation is foliated and appears to be more altered (i.e., more greenish). Random lower coercivity components are removed in all specimens with demagnetization below 60–80 mT. At higher levels of demagnetization a consistent east-south-easterly and upward directed (in geographic coordinates) characteristic component was revealed, and is labelled HIG2 (Fig. 5D). The easterly and upward directed grouping of high coercivity components restores to a north-easterly and downward directed position upon structural correction. This component (viewed either in geographic or tilt-corrected coordinates) has not been identified at Hartley Hill.

4.3.3. Pramberg Farm
Quartz porphyry outcrops as low hills towards the southeast of Volop Group quartzite ridges on the Pramberg Farm. The quartzite dips steeply (at ~53°) towards the west, which is taken as the attitude of the porphyry as well. Demagnetization of nine specimens yielded disappointingly disparate results that were challenging to interpret. Apart from a couple present field-like components, a easterly upwards directed component (in geographic coordinates) emerges in three specimens, which is comparable to the HIG2 component identified at O’Donoghue (Fig. 5D). At both Pramberg and O’Donaghue, the HIG2 component is very poorly constrained and is excluded from further discussion.

5. Discussion
5.1. Age of the Hartley Formation volcanism and related magmatism
The dates obtained on zircons from the quartz porphyry in drillcore from Mooihoek (MHK1/86) demonstrate an age of 1920 ± 4 Ma, which is within error of a new SIMS age of 1915 ± 3 Ma from the Pramberg porphyry (Dave Cornell, pers. comm. 2015). Variability in ages is unsurprising for rift related volcanism, as often isolated graben systems each recorded a unique sedimentary and volcanic fill (e.g., de Kock et al. 2012). The TDS sample RP353 was here dated to 1923 ± 6 Ma, which is comparable to ca. 1927 Ma ages obtained for broadly coeval mafic sills in Botswana by Hanson et al. (2004). These ages are also comparable with those of the youngest concordant detrital zircon grains (1931 ± 20 and 1957 ± 18 Ma), from sample BOS10, which are considered to...
Table 2. Summary of ID-TIMS geochronological data on baddeleyite.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bd-1 (9)</td>
<td>4.1</td>
<td>0.384</td>
<td>121.5</td>
<td>1.78</td>
<td>0.35232</td>
<td>1.73</td>
<td>1935.0</td>
<td>1945.6</td>
<td>1923.5</td>
<td>11.2</td>
<td>1.011</td>
<td>1.011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bd-2 (12)</td>
<td>5.8</td>
<td>0.213</td>
<td>286.3</td>
<td>2.41</td>
<td>0.35118</td>
<td>2.35</td>
<td>1935.6</td>
<td>1940.2</td>
<td>1930.6</td>
<td>14.2</td>
<td>1.005</td>
<td>1.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bd-3 (16)</td>
<td>4.6</td>
<td>0.075</td>
<td>828.4</td>
<td>5.6202</td>
<td>1.04</td>
<td>1.03</td>
<td>1919.2</td>
<td>1918.4</td>
<td>1920.0</td>
<td>5.2</td>
<td>0.999</td>
<td>0.999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1Pbc = common Pb; Pbtot = total Pb (radiogenic + blank + initial).
2Measured ratio, corrected for fractionation and spike.
3Isotopic ratios corrected for fractionation (0.1% per amu for Pb), spike contribution, blank (1 pg Pb and 0.1 pg U) and initial common Pb. Initial common Pb corrected with isotopic compositions from the model of Stacey and Kramers (1975) at the age of the sample.
Table 3. Summary of palaeomagnetic results.

<table>
<thead>
<tr>
<th>Location (Strike/Dip)</th>
<th>Site</th>
<th>nN</th>
<th>Declination (in °)</th>
<th>Inclination (in °)</th>
<th>α₉₅ (in °)</th>
<th>k</th>
<th>Latitude (in °N)</th>
<th>Longitude (in °E)</th>
<th>A₀₉₅ (in °)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Hartley Hill</td>
<td>HAA and HL01*</td>
<td>9/16</td>
<td>332.4</td>
<td>−52.4</td>
<td>7.4</td>
<td>48.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(89°/22°S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(60°/7°SE)</td>
<td>HAB and HL02*</td>
<td>10/15</td>
<td>50.2</td>
<td>−63.8</td>
<td>9.8</td>
<td>25.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(32°/7°E)</td>
<td>HAD</td>
<td>4/5</td>
<td>43.0</td>
<td>−65.4</td>
<td>40.4</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(90°/22°S)</td>
<td>HAC and HL03*</td>
<td>9/11</td>
<td>15.6</td>
<td>−64.3</td>
<td>17.2</td>
<td>9.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(120°/4°SW)</td>
<td>HL04*</td>
<td>3/4</td>
<td>346.4</td>
<td>−46.9</td>
<td>7.9</td>
<td>No poles calculated for present present field-like Component A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(90°/22°S)</td>
<td>HAE and HL05*</td>
<td>12/14</td>
<td>348.4</td>
<td>−80.0</td>
<td>16</td>
<td>8.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(88°/22°S)</td>
<td>HAF and HL06*</td>
<td>5/14</td>
<td>40.9</td>
<td>−28.3</td>
<td>21.6</td>
<td>13.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(66°/10°SE)</td>
<td>HAG and HL07*</td>
<td>4/14</td>
<td>18.5</td>
<td>−43.5</td>
<td>18.5</td>
<td>25.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pramberg</td>
<td>HBA</td>
<td>3/9</td>
<td>349.3</td>
<td>−61.2</td>
<td>14.2</td>
<td>51.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(107°/53°W)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present field-like (geographic coordinates)</td>
<td>A Mean</td>
<td>7/9</td>
<td>14.8</td>
<td>−59.2</td>
<td>17.4</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Component INT (geographic coordinates)

<table>
<thead>
<tr>
<th>Location (Strike/Dip)</th>
<th>Site</th>
<th>nN</th>
<th>Declination (in °)</th>
<th>Inclination (in °)</th>
<th>α₉₅ (in °)</th>
<th>k</th>
<th>Latitude (in °N)</th>
<th>Longitude (in °E)</th>
<th>A₀₉₅ (in °)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Hartley Hill</td>
<td>HAF and HL06*</td>
<td>7/7</td>
<td>199.7</td>
<td>−16.8</td>
<td>9.8</td>
<td>39.2</td>
<td>48.8</td>
<td>53.2</td>
<td>(5.2, 10.1)</td>
</tr>
<tr>
<td>(88°/22°S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(75°/6°SE)</td>
<td>HAH and HL08*</td>
<td>8/12</td>
<td>154.3</td>
<td>7.8</td>
<td>30.5</td>
<td>4.3</td>
<td>55.7</td>
<td>332.6</td>
<td>(15.5, 30.7)</td>
</tr>
<tr>
<td>JP-11**</td>
<td>5/10</td>
<td>180.5</td>
<td>−28.1</td>
<td>5.8</td>
<td>69.2</td>
<td>50.1</td>
<td>26.1</td>
<td></td>
<td>(3.5, 6.4)</td>
</tr>
</tbody>
</table>

Component HIG1

<table>
<thead>
<tr>
<th>Location (Strike/dip)</th>
<th>Site</th>
<th>nN</th>
<th>Declination and inclination (in °) (geographic coordinates)</th>
<th>Declination and Inclination (in °) (tilt-corrected coordinates)</th>
<th>α₉₅ (in °)</th>
<th>k</th>
<th>Latitude (in °N)</th>
<th>Longitude (in °E)</th>
<th>A₀₉₅ (in °)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Hartley Hill</td>
<td>HAA and HL01*</td>
<td>8/16</td>
<td>293.4, 28.0</td>
<td>289.1, 26.6</td>
<td>13.0</td>
<td>19.2</td>
<td>9.6</td>
<td>314.4</td>
<td>(7.7, 14.1)</td>
</tr>
<tr>
<td>(89°/22°S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(60°/7°SE)</td>
<td>HAB and HL02*</td>
<td>8/15</td>
<td>305.4, 35.0</td>
<td>304.9, 36.9</td>
<td>14.1</td>
<td>16.3</td>
<td>18.0</td>
<td>329.0</td>
<td>(9.7, 16.5)</td>
</tr>
<tr>
<td>(90°/22°S)</td>
<td>HAC and HL03*</td>
<td>3/11</td>
<td>318.4, 44.8</td>
<td>322.8, 50.6</td>
<td>18.6</td>
<td>30.1</td>
<td>21.0</td>
<td>349.2</td>
<td>(16.8, 25.0)</td>
</tr>
<tr>
<td>(32°/7°E)</td>
<td>HAD</td>
<td>3/5</td>
<td>291.7, 31.3</td>
<td>291.2, 34.6</td>
<td>15.5</td>
<td>42.6</td>
<td>8.6</td>
<td>319.8</td>
<td>(10.2, 17.8)</td>
</tr>
<tr>
<td>(90°/22°S)</td>
<td>HAE and HL05*</td>
<td>5/14</td>
<td>310.0, 26.6</td>
<td>310.9, 25.1</td>
<td>43.7</td>
<td>4.0</td>
<td>27.2</td>
<td>327.0</td>
<td>(25.3, 47.0)</td>
</tr>
<tr>
<td>(88°/22°S)</td>
<td>HAF</td>
<td>4/14</td>
<td>307.5, 36.1</td>
<td>306.4, 38.0</td>
<td>23.4</td>
<td>12.3</td>
<td>18.6</td>
<td>330.5</td>
<td>(16.3, 27.7)</td>
</tr>
<tr>
<td>(66°/10°SE)</td>
<td>HAG and HL07*</td>
<td>4/14</td>
<td>312.0, 40.7</td>
<td>312.2, 44.1</td>
<td>22.7</td>
<td>17.3</td>
<td>19.3</td>
<td>337.9</td>
<td>(17.8, 28.4)</td>
</tr>
<tr>
<td>(75°/6°SE)</td>
<td>HAH and HL08*</td>
<td>2/12</td>
<td>303.7, 36.1</td>
<td>302.7, 37.0</td>
<td>16.4</td>
<td>16.4</td>
<td>16.4</td>
<td>327.6</td>
<td>−</td>
</tr>
<tr>
<td>(120°/4°SW)</td>
<td>HL04*</td>
<td>4/4</td>
<td>274.9, 16.9</td>
<td>275.7, −15.2</td>
<td>21.9</td>
<td>13.9</td>
<td>6.9</td>
<td>257.7</td>
<td>(11.5, 22.5)</td>
</tr>
</tbody>
</table>
represent the timing of eruption of the Boegoeberg Dam mafic lava unit. This unit may thus be considered the age equivalent to the Hartley Formation as suggested by Cornell et al. (1998). An age range of 1927–1915 Ma can thus be placed on the Hartley Formation bimodal igneous rocks from the work in this study combined with the work of Cornell et al. (1998) and Hanson et al. (2004).

5.2. Identifying the potential Hartley LIP and dynamics of late Palaeoproterozoic rifting

With the now well-dated 1.93–1.91 Ga magmatic units of the Hartley Formation, Boegoeberg Dam Formation, TDS, Moshaneng sills and Trompsburg Complex, a large scale bimodal magmatic event is be recognized. We propose that these magmatic units be incorporated into a LIP, the Hartley Event. Its size (footprint on the order 4 × 10^5 km^2) is compatible with the magnitude of known LIP dimensions (Coffin & Eldholm 1993; Ernst 2014), but the duration of emplacement for the Hartley igneous rocks is longer than most typical LIPs according to the LIP definition (Ernst 2014).

Tinker et al. (2002) reported on a seismic reflection profile spanning the western margin of the northern Kaapvaal Craton (see Fig. 6 for the exact locality), and presented insight into the dynamics and structure associated with the extensional event that culminated in the emplacement of the Hartley LIP. Late Palaeoproterozoic extension was initiated before, but continued during eruption of the Hartley volcanic rocks (Tinker et al. 2002). According to Tinker et al. (2002), an unknown amount of extension occurred along such deep crustal structures as the Moshaweng Normal Fault (Fig. 6.), a prominent N–S trending normal fault that was reactivated or initiated by late Palaeoproterozoic rifting. According to Moen (2006), early graben formation is not evident from surface exposures, but the predominance of rudites in drillcore north of Olifantshoek suggest that the basal parts of the Elim Group were deposited in grabens. Late Palaeoproterozoic deformation along structures like the Moshaweng Fault was associated with the development of a series of normal faults, and caused relative uplift of the Elim Group in the form of a rollover anticline (Tinker et al. 2002). Continued extension resulted in the formation of half-grabens bounded on their east side by structures like the Moshaweng Fault and an anticlinal structure to their west side (Fig. 6 inset). The half-grabens were then later filled by erosional products, such as the Elim Group (i.e., the conglomerates and quartzites at the base of the Hartley Formation), followed by volcanic products of the Hartley Formation. A system of similar half-graben structures probably punctuated by several volcanic centres extended towards the south along the western Kaapvaal margin, as evidenced by the ca. 1.93 Ga Boegoeberg Dam Formation (Fig. 6). Flexural analyses (Tinker et al. 2004) have shown that the elastic lithosphere along this western margin was significantly reduced (to as little as 7.5 km, compared to the present day 60–70 km thickness) between ca. 1.93 and 1.75 Ga, suggesting that a significant amount of crustal thinning took place during this extensional event.

Our 1923 ± 6 Ma age for the TDS, which is truncated by the Kheis Province and extends towards the east-north-east, with a strike length of ~500 km into the cratonic hinterland (Fig. 6), probably dates an arm of NW-SE extension associated with rift-
Fig. 4. Representative demagnetization behaviour for the Hartley volcanic rocks in geographic coordinates. Open symbols plot in the upper hemisphere of equal area plots, while solid symbols plot in the lower hemisphere. Open symbols on the orthogonal plots represent the projection of vector endpoints onto the horizontal plane, while closed symbols represents the projection of vector endpoints onto a vertical plane.

Fig. 5. Site and component means for magnetic components identified during this study. Ellipses are cones of 95% confidence (or α_{95}) about component means (shown as squares). Stippled ellipses and open squares plot in the upper hemisphere of the equal area diagrams, while solid ellipses and closed squares are in the lower hemisphere. Lighter shaded symbols and ellipses are from sites that were excluded from component mean calculations. Data from Evans et al. (2002) are identified by an *, whereas those from Hanson et al. (2004) by **. A. Low coercivity, present Earth field-like components (in geographic coordinates) with the present dipole field of the Earth shown as a star. B. Component INT site means compared to a similar component from a sill in Botswana (JP11), in geographic coordinates. C. Component HIG1 site means in tilt-corrected coordinates compared to similar components from sills in Botswana. D. Poorly constrained Component HIG2 site means in geographic coordinates.
perhaps be addressed to some extent by adding the results from the ca. 1927 Ma Moshaneng sills (Hanson et al. 2004) to our data for the calculation of a 1927–1915 Ma mean palaeopole (Table 3). VGPs from the ca. 1927 Ma Moshaneng sills plot removed from, but in a generally similar region as our calculated site VGPs for the Hartley Formation. This might be expected given a possible age difference between the Moshaneng Sills and Hartley lava, but could also be due to unrecognized vertical axis rotation of about 15° during the development of the Kheis Province. The 1927–1915 Ma mean palaeopole is located at 22.7°N, 328.6°E with \(A_{95} = 11.7° \) (Fig. 7B, C), and rates as a 4 out of 7 on the Q-scale of reliability of Van der Voo (1990). By no means ideal (too few sample sites, lack of a field test and magnetic reversals), our new 1927–1915 Ga Hartley LIP palaeopole can still be considered a significant improvement on the existing VGP of Evans et al. (2002), given the significant increase in the number of samples per cooling unit, and the statistically sound palaeopole calculation.

The identified INT component yields a VGP at 48.8°N and 53.2°E (\(d_p = 5.2 \), \(d_m = 10.1 \)) for site HAF, where it was best developed. Compared to palaeopoles from the Kaapvaal Craton (Table 4 and Fig. 7A), this VGP is very similar to the 1.2–1.1 Ga poles of the Kaapvaal Craton. A similar magnetic component was identified by Hanson et al. (2004) in a 1927 ± 1 Ma Moshaneng dolerite sill from Botswana (i.e., their JP11 sill, shown for comparison in Fig. 5B), where it was interpreted to be a 1.11 Ga magnetic overprint.

5.3. Hartley Formation palaeopole and the late Palaeoproterozoic APWP of the Kaapvaal Craton

The HIG1 component is a consistent characteristic remanent direction (Fig. 5C) for the Hartley Formation. A palaeopole at 16.1°N, 329.8°E with \(A_{\mu} = 11.0° \) can be calculated by combining six of our site virtual geomagnetic poles (VGPs) (Table 3, Fig. 7B, C). Like Evans et al. (2002), we too cannot be sure that our data effectively average out palaeosecular variation of the Earth’s magnetic field. The averaging of secular variation can perhaps be addressed to some extent by adding the results from the ca. 1927 Ma Moshaneng sills (Hanson et al. 2004) to our data for the calculation of a 1927–1915 Ma mean palaeopole (Table 3). VGPs from the ca. 1927 Ma Moshaneng sills plot removed from, but in a generally similar region as our calculated site VGPs for the Hartley Formation. This might be expected given a possible age difference between the Moshaneng Sills and Hartley lava, but could also be due to unrecognized vertical axis rotation of about 15° during the development of the Kheis Province. The 1927–1915 Ma mean palaeopole is located at 22.7°N, 328.6°E with \(A_{95} = 11.7° \) (Fig. 7B, C), and rates as a 4 out of 7 on the Q-scale of reliability of Van der Voo (1990). By no means ideal (too few sample sites, lack of a field test and magnetic reversals), our new 1927–1915 Ga Hartley LIP palaeopole can still be considered a significant improvement on the existing VGP of Evans et al. (2002), given the significant increase in the number of samples per cooling unit, and the statistically sound palaeopole calculation.

The identified INT component yields a VGP at 48.8°N and 53.2°E (\(d_p = 5.2 \), \(d_m = 10.1 \)) for site HAF, where it was best developed. Compared to palaeopoles from the Kaapvaal Craton (Table 4 and Fig. 7A), this VGP is very similar to the 1.2–1.1 Ga poles of the Kaapvaal Craton. A similar magnetic component was identified by Hanson et al. (2004) in a 1927 ± 1 Ma Moshaneng dolerite sill from Botswana (i.e., their JP11 sill, shown for comparison in Fig. 5B), where it was interpreted to be a 1.11 Ga magnetic overprint.

Several new palaeopoles and new age constraints (listed in Table 4) have been published since the last attempted reconstruc-
Table 4. Poles calculated during this study and a selection of published Late Palaeoproterozoic and Mesoproterozoic poles from the Kaapvaal Craton.

<table>
<thead>
<tr>
<th>Rock Unit</th>
<th>Abbreviation</th>
<th>Age (Ma)</th>
<th>Age reference</th>
<th>Latitude</th>
<th>Longitude</th>
<th>(dp, dm) or A95</th>
<th>Palaeopole reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Palaeproterozoic palaeopoles</td>
<td></td>
<td>(in °N)</td>
<td>(in °E)</td>
<td>(in °)</td>
<td></td>
</tr>
<tr>
<td>Ongeluk Lava</td>
<td>ONG</td>
<td>2222 ± 13</td>
<td>Cornell et al. (1996)</td>
<td>22</td>
<td>−0.5</td>
<td>5.3</td>
<td>Evans et al. (1997)</td>
</tr>
<tr>
<td>Basal Gamagra-Mapelli Forma</td>
<td>BGM</td>
<td>~2200 or</td>
<td>Evans et al. (2002)</td>
<td>2.2</td>
<td>81.9</td>
<td>(7.2, 11.5)</td>
<td>Evans et al. (2002)</td>
</tr>
<tr>
<td>Elim Group</td>
<td></td>
<td>~2000</td>
<td>Da Silva (2011)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phalaborwa Complex</td>
<td>PC</td>
<td>2061 ± 1</td>
<td>Reischmann (1995)</td>
<td>27.7</td>
<td>35.8</td>
<td>6.6</td>
<td>Letts et al. (2010)</td>
</tr>
<tr>
<td>Bushveld Complex</td>
<td>BC</td>
<td>2054 ± 1</td>
<td>Scoates & Friedman (2008)</td>
<td>19.2</td>
<td>30.8</td>
<td>5.8</td>
<td>Letts et al. (2009)</td>
</tr>
<tr>
<td>Bushveld B1 silts</td>
<td>B1</td>
<td>2058 ± 6</td>
<td>Wabo et al. (2015a)</td>
<td>13.1</td>
<td>44</td>
<td>14.3</td>
<td>Wabo et al. (2015a)</td>
</tr>
<tr>
<td>Elim Group</td>
<td></td>
<td>~2000</td>
<td>Da Silva (2011)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waterberg unconformity</td>
<td></td>
<td>≥2054 ± 4</td>
<td>Dorland et al. (2006)</td>
<td>36.5</td>
<td>51.3</td>
<td>10.9</td>
<td>de Kock et al. (2006)</td>
</tr>
<tr>
<td>bounded sequence 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vredefort Impact</td>
<td>VRED</td>
<td>2023 ± 4.0</td>
<td>Kamo et al. (1996)</td>
<td>21.8</td>
<td>44.5</td>
<td>(11.3, 15.4)</td>
<td>Carpozen et al. (2006)</td>
</tr>
<tr>
<td>Witwatersrand Supergroup</td>
<td>WITS</td>
<td>1945–2050</td>
<td>Layer et al. (1988)</td>
<td>26.1</td>
<td>22.3</td>
<td>(7.9, 10.3)</td>
<td>Layer et al. (1988)</td>
</tr>
<tr>
<td>Waterberg unconformity</td>
<td></td>
<td>>1930</td>
<td>de Kock et al. (2006)</td>
<td>−10.5</td>
<td>330.4</td>
<td>9.8</td>
<td>de Kock et al. (2006)</td>
</tr>
<tr>
<td>bounded sequence 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hartley Formation</td>
<td>HAR VGP</td>
<td>1928 ± 4</td>
<td>Cornell et al. (1998)</td>
<td>12.5</td>
<td>332.8</td>
<td>16</td>
<td>Evans et al. (2002)</td>
</tr>
<tr>
<td>Palaeopole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hartley LIP</td>
<td>HAR LIP</td>
<td>1927–1915</td>
<td>THIS STUDY</td>
<td>22.7</td>
<td>328.6</td>
<td>11.7</td>
<td>THIS STUDY recalculated using Evans et al. (2002)</td>
</tr>
<tr>
<td>Sand River Dykes</td>
<td>SRD</td>
<td>1876 ± 73</td>
<td>Morgan and Briden (1981)</td>
<td>2.3</td>
<td>9.1</td>
<td>10.3</td>
<td>Morgan and Briden (1981)</td>
</tr>
<tr>
<td>Post-Waterberg Dolerites</td>
<td>PWD</td>
<td>1879–1872</td>
<td>Hanson et al. (2004)</td>
<td>15.6</td>
<td>17.1</td>
<td>8.9</td>
<td>Hanson et al. (2004)</td>
</tr>
</tbody>
</table>

(Continued)
5.3.1. A pre-Bushveld age for the Elim Group

In the pre-Bushveld age option for the Elim Group, the late Palaeoproterozoic APW path of the Kaapvaal Craton (Fig. 7B) begins from the Gamagara-Mapedi Formation palaeopole of Evans et al. (2002) from the base of the Elim Group. From here the path is constrained by a 2060–2024 Ma cluster of palaeopoles (see Table 4 for details on individual poles and their age constraints). This cluster includes poles from the 2060 Ma Phalaborwa Complex (Letts et al. 2010), 2059–2054 Ma Bushveld LIP (Letts et al. 2009; Wabo et al. 2015a, b), the Bushveld Complex-induced magnetic overprint pole from the Mesoarchean Witwatersrand Supergroup (Layer et al. 1988), the younger than 2054 Ma first unconformity-bound sequence of the Waterberg Group palaeopole or WUBS1 pole (de Kock et al. 2006), and the 2023 Ma Vredefort impact structure (Carpozen et al. 2006). From here the pre-1.9 Ga palaeopole from the second unconformity-bound Waterberg Group sequence or WUBS2 palaeopole (de Kock et al. 2006) suggests a long southwesterly swath of the APW path (Fig. 7B). Our 1927–1915 Ma mean palaeopole from the Hartley LIP is located at a hairpin of the APW path (Fig. 7B), where the path loops back on itself towards ca. 1.8 Ga poles. The ca. 1.8 Ga cluster includes a palaeopole from the 1.88–1.84 Ga Post-Waterberg sills by Hanson et al. (2004), and palaeopoles from the NNE–SSW and NE–SW trending dykes of the Black Hills Dyke Swarm (Morgan 1985; Letts et al. 2010; Lubnina et al. 2010; Olsson et al. 2015). The Black Hills Dyke Swarm includes the so-called Sand River dykes and post-Bushveld dykes.}

5.3.2. A post-Bushveld age for the Elim Group

In this option (Fig. 7C), the APW path starts with the 2.06–2.02 Ga palaeopole cluster as defined above (Section 5.3.1.), then moves a short distance to the ca. 2.0 Ga Elim Group Gamagara–Mapedi Formation palaeopole (Evans et al. 2002). Evans et al. (2002) also illustrated this possibility, but not as their preferred choice. The next youngest palaeopole is the WUBS2 palaeopole (de Kock et al. 2006), but instead of requiring a long southwesterly swath of the path as in Fig. 7B, by choosing an opposite polarity option for this pole, the APW path continues towards the east (Fig. 7C). Palaeopoles can be represented either as a North Pole or South Pole when defining APW paths, given the ambiguity of magnetic reversals in the past. However, the next younger palaeopole in a path is usually placed in the polarity option that minimizes the path length between successive poles. From the
Group of Botswana. It is followed by extensive 1.88–1.83 Ga intraplate magmatism. Sills that intrude the Waterberg Group (Fig. 1) were dated in the 1879–1872 Ma age range (Hanson et al. 2004), while the extensive NE–SW trending Black Hills Dyke Swarm (Fig. 1) have been shown to have ages ranging from 1857–1839 Ma (Olsson et al. 2015). The post-Waterberg dolerite sills were correlated with the basal volcanic units preserved in the Soutpansberg Group. However, recent dates by Geng et al. (2014) suggest that the Sibasa Formation of the Soutpansberg Group is younger. The 1831 ± 15 and 1832 ± 9 Ma detrital zircon ages from Sibasa Formation by Geng et al. (2014) are closer to the younger range of dolerite dyke ages found by Olsson et al. (2015) for the Black Hills Dyke Swarm. The Kaapvaal Craton likely experienced an extended period of intraplate magmatism starting with the 1879–1872 Ma post-Waterberg sills and ending with the extrusion of the Sibasa Formation at 1832 Ma. Younger, but less-well dated magmatic units are also found in the upper Soutpansberg Group, as well as within the Brulpan Group along the craton’s western margin. The age of Palaeoproterozoic WUBS2 palaeopole, the path swings slightly south towards our 1.93–1.91 Ma Hartley LIP palaeopole (opposite polarity option), and continues eastwards towards the opposite polarity option of the 1.88–1.84 Ga pole cluster (Fig. 7C). This radically different interpretation of the Kaapvaal Craton’s late Palaeoproterozoic APW path segment eliminates the need for a loop in the APW path of the Kaapvaal Craton.

5.4. The late Palaeoproterozoic magmatic record of the Kaapvaal Craton and constraints on Kalahari Craton assembly

Within basal sections of the Waterberg Group, which is otherwise devoid of volcanic rocks, bimodal volcanic rocks are preserved (yielding 2054 ± 4 and 2021 ± 5 Ma ages; Dorland et al., 2006). The 1927–1915 Ma Hartley LIP (this study) represents the next record of volcanic and magmatic activity for the Kaapvaal Craton. This event may also include the undated mafic volcanic rocks of the lower Selika Formation of the Palapye Group of Botswana. It is followed by extensive 1.88–1.83 Ga intraplate magmatism. Sills that intrude the Waterberg Group (Fig. 1) were dated in the 1879–1872 Ma age range (Hanson et al. 2004), while the extensive NE–SW trending Black Hills Dyke Swarm (Fig. 1) have been shown to have ages ranging from 1857–1839 Ma (Olsson et al. 2015). The post-Waterberg dolerite sills were correlated with the basal volcanic units preserved in the Soutpansberg Group. However, recent dates by Geng et al. (2014) suggest that the Sibasa Formation of the Soutpansberg Group is younger. The 1831 ± 15 and 1832 ± 9 Ma detrital zircon ages from Sibasa Formation by Geng et al. (2014) are closer to the younger range of dolerite dyke ages found by Olsson et al. (2015) for the Black Hills Dyke Swarm. The Kaapvaal Craton likely experienced an extended period of intraplate magmatism starting with the 1879–1872 Ma post-Waterberg sills and ending with the extrusion of the Sibasa Formation at 1832 Ma. Younger, but less-well dated magmatic units are also found in the upper Soutpansberg Group, as well as within the Brulpan Group along the craton’s western margin. The age of Palaeoproterozoic
New U–Pb geochronologic and palaeomagnetic constraints on the late Palaeoproterozoic Hartley magmatic event

Kaapvaal Craton, which is in contrast to the 1.88–1.83 Ga event that can be identified in both the Kaapvaal and Zimbabwe cratons. In Zimbabwe, the intrusion of the Mashonaland sills has been dated to between 1886 and 1871 Ma (Söderlund et al. 2010; Hanson et al. 2011). This indicates that the two cratons might have been “nearest neighbours” as defined by Bleeker & Ernst (2006) at ca. 1.88 Ga. However, Hanson et al. (2011) argued for a greater than 2000 km displacement between the Kaapvaal and Zimbabwe cratons based on the difference between their ca. 1.88 Ga palaeopoles (Fig. 7B, C). The Zimbabwe Craton does not share a record of the Kaapvaal Craton Hartley LIP at 1.93–1.91 Ga (Fig. 8), which appears to have been emplaced during an early phase of Kalahari Craton assembly.

6. Conclusion

A SHRIMP U–Pb zircon age of 1920 ± 4 Ma for the Hartley Formation (Olifantshoek Supergroup) on the western margin of the Kaapvaal Craton of South Africa is presented. Together with a new maximum concordant detrital zircon age of 1931 ± 20 Ma...
for a coeval unit 140 km to the south, and a new 1923 ± 6 Ma U–Pb ID-TIMS baddeleyite date from the Hartley–Tsenteng Dyke Swarm, a potential LIP, herein named the “Hartley Event”, is now recognized. Included in the potential Hartley LIP are previously dated 1.93–1.91 Ga magmatic units of the Kaapvaal Craton (i.e., Mosshanean sills and Trompsburg Complex). In addition, the new palaeomagnetic data presented in this paper from the Hartley Formation are combined with previously published results to define an improved 1.93–1.91 Ga palaeopole for the Hartley LIP that assists in refining the late Palaeoproterozoic APW path of the Kaapvaal Craton.

Acknowledgements – The authors wish to thank Ken Buchan, Don Davis and Henry Halls for their detailed review, and especially would like to thank the guest editor Walter Blucke for helping to improve this manuscript considerably. The authors also wish to thank David Cornell for mention of his new SIMS age from the Pramberg quartz. MDK thanks the NRF (the National Research Foundation) and Glady Ester Tshabalala for financial support. MDK further acknowledges additional funding from CIMER (IDST-NRF Centre of Excellence for Integrated Mineral and Energy Resource Analysis) This is publication No. 36 of the International Government-Industry-Academia Program “Reconstruction of Supercontinent Distribution and Geochronology of Unconformity-bounded Sequences and Palaeomagnetic Reconstruction” (www.supercontinent.org).

Disclosure statement No potential conflict of interest was reported by the authors.

References

Briden, J.C., Duff, B.A. & Kröner, A., 1979: Palaeomagnetism of the Koras Dyke Swarm, a potential LIP, within the kleiverdtdi每天都會發生的事情。見識、恩語和英文基本的日常交流。
Validating the existence of the supercraton Vaalbara in the Mesoarchaean to Palaeoproterozoic
The first significant buildup in atmospheric oxygen, the Great Oxidation Event (GOE), began in the early Paleoproterozoic in association with global glaciations and continued until the end of the Late Proterozoic, indicating that the GOE is a key event in the evolution of atmospheric oxygen. Evidence from the Huronian Supergroup, a series of glacially influenced stratigraphic successions across the Canadian Shield, suggests that the GOE was broadly coincident with the development of the oldest widely accepted oxygenated paleosol (12) and red-bed sandstones (13). Discrepancies in correlations between these glacially influenced stratigraphic successions and the age of the GOE hinge on a disputed age for the Ongeluk Formation basalts (14–16). By using high-resolution isotopic analysis of secondary ion mass spectrometry (SIMS) on microbaddeleyite grains coupled with precise isotopic dilution thermal ionization mass spectrometry (ID-TIMS) and paleomagnetic studies, we resolve these uncertainties by obtaining accurate and precise ages for the volcanic Ongeluk Formation and related intrusions in South Africa. These ages lead to a more coherent global perspective on the timing and tempo of the GOE and associated global glaciations and LIPs.

Transvaal Supergroup

The Neoarchean to Paleoproterozoic Transvaal Supergroup overlies the Kaapvaal Craton and is preserved in two main sub-basins. In the Griqualand West subbasin, the Makganyene Formation consists of a series of glaciomarine diamictites (1). Paleomagnetic data for the Ongeluk Formation, which conformably overlies and interfingers with the Makganyene Formation, suggest that these glacial sediments were deposited at low latitudes, implying a glacial event of global extent (6, 17). The age of the Ongeluk Formation basalts has long been accepted at 2,222 ± 13 Ma based on a whole-rock Pb-Pb isochron date (14) and correlation with the noncontiguous basaltic units of the <2,250–2,240 Ma Hekpoort Formation in the Transvaal subbasin (11, 12, 14, 18), although this correlation has been questioned recently (15, 16, 19). The Ongeluk Formation is overlain by banded iron and manganese deposits of the Houtzel Formation, which in turn, are followed by carbonate rocks of the Mooldraai Formation (Fig. 1). Pb-Pb and U-Pb dating of the Mooldraai Formation carbonates has yielded dates of 2,394 ± 26 and 2,392 ± 23 Ma (15, 20), respectively, in conflict with the 2,222 ± 13 Ma Pb-Pb date on the stratigraphically equivalent Hekpoort Formation in the Transvaal subbasin (11, 12, 14, 18).

Significance

We present U-Pb ages for the extensive Ongeluk large igneous province, a large-scale magmatic event that took place near the equator in the Paleoproterozoic Transvaal basin of southern Africa at ca. 2,426 Ma. This magmatism also dates the oldest Paleoproterozoic global glaciation and the onset of significant atmospheric oxygenation. This result forces a significant reinterpretation of the iconic Transvaal basin stratigraphy and implies that the oxygenation involved several oscillations in oxygen levels across 10^{-3} present atmospheric levels before the irreversible oxygenation of the atmosphere. Data also indicate that the Paleoproterozoic glaciations and oxygenation were ushered in by assembly of a large continental mass, extensive magnatism, and continental migration to near-equatorial latitudes, mirroring a similar chain of events in the Neoproterozoic.

This article is a PNAS Direct Submission. Freely available online through the PNAS open access option.

To whom correspondence should be addressed. Email: ashley.gumley@geo.uu.se.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608824114/-/DCSupplemental.
The Hotazel Formation hosts giant Mn deposits with a negative Ce anomaly that are unequivocally interpreted to reflect deposition after the onset of the GOE (7, 21), whereas the Koegas Subgroup underlying the Makganyene Formation contains detrital pyrite and uraninite grains signifying deposition before the GOE (22). In the Transvaal subbasin (Fig. 1), the start of the GOE has been placed in the middle of either the Duitschland Formation or the Rooihoogte Formation by different authors (23, 24), with the age of the upper Duitschland Formation constrained by detrital zircon to ≤ 2,424 ± 24 Ma (11). A 2,316 ± 7 Ma Re-Os age for diagenetic pyrite (25) and a 2,309 ± 9 Ma U-Pb age for tuff in the lower Timeball Hill Formation (9), which conformably overlies the Rooihoogte Formation, suggest that the GOE began by ca. 2,309 Ma (24). All chronological and redox records for the Transvaal Supergroup are provided in Tables S1 and S2.

Sampling

To test and resolve some of these critical correlations, we have dated by U-Pb isotopic methods a number of dolerite and basalt samples that are linked geologically and paleomagnetically to the Ongeluk Formation basalts (SI Methods, Sampling, Fig. S1, and Table S3). An N-trending dolerite dike from the Griqualand West subbasin (G02-B) (Fig. 1) (26) as well as an intrusive dolerite sheet from the southeastern Kaapvaal Craton (NL-13c) (Fig. 1) (27) were dated using U-Pb ID-TIMS on baddeleyite. Samples TGS-05 and OLL-2, a coarse-grained, thick basalt flow and a dolerite sill, respectively, from near the base of the Ongeluk Formation basalts (Fig. 1) (6) were dated by in situ U-Pb SIMS on microbaddeleyite grains. To couple geochronological and paleomagnetic records for these mafic units, complementary paleomagnetic studies were conducted on specimens from the TGS-05 and MDK-05 sample sites (Fig. 1) using conventional demagnetization techniques.

Results

Samples G02-B and NL-13c produce upper intercept baddeleyite dates of 2,421 ± 3 and 2,423 ± 7 Ma, respectively (Fig. 2, SI Methods, Geochronology—ID-TIMS Analysis, Fig. S2, and Table S4), whereas samples TGS-05 and OLL-2, a coarse-grained, thick basalt flow and a dolerite sill, respectively, from near the base of the Ongeluk Formation basalts (Fig. 1) (6) were dated by in situ U-Pb SIMS on microbaddeleyite grains. To couple geochronological and paleomagnetic records for these mafic units, complementary paleomagnetic studies were conducted on specimens from the TGS-05 and MDK-05 sample sites (Fig. 1) using conventional demagnetization techniques.
Discussion

The Ongeluk LIP. All samples were collected stratigraphically from within or below the lower Ongeluk Formation (Fig. 1) and represent either the feeder system of dolerite dikes and sills to the Ongeluk Formation basalts or coarse-grained interiors of thicker basalt flows. We interpret the Westerberg Sill Province and the N-trending dolerite dike swarm (Fig. 1), both intruding into the Griqualand West subbasin stratigraphy, as parts of the same short-lived magmatic event based on their temporal, spatial, and stratigraphic proximities and similar paleomagnetic results. The age of the Westerberg Sill itself was defined by an upper intercept date of 2,441 ± 6 Ma composed of five discordant baddeleyite analyses (28). However, excluding the most discordant analysis from this result yields a more probable upper intercept date of 2,428 ± 4 Ma. This reinterpretation is supported by concordant baddeleyite analyses from a second sill dated at 2,426 ± 1 Ma as part of the same study (28). Combining all of these dates, we calculate a weighted mean date of 2,425.5 ± 2.6 Ma (Fig. 2) as the dated sample TGS-05 is located at −0.7° N and 288.2° E, whereas the VGP of sample MDK-05 is located at −0.9° N and 283.7° E (SI Methods, Paleomagnetism, Fig. S3, and Table S6). Samples OLL-2, G02-B, and NL-13c already have published shallow magnetization directions similar to those reported for the Ongeluk Formation (6, 26, 27).

The Ongeluk Key Paleomagnetic Pole. The VGPs presented in this study overlap with previously published paleopoles for the Ongeluk Formation and associated intrusions (6, 26–28). Collectively, the combined VGPs from all of these studies for the basalts from the Ongeluk Formation (6) and their intrusive feeders (26–28) define a grand key paleomagnetic pole for the Ongeluk LIP that is near-equatorial (29) at 4.1° N, 282.9° E (Table S7), with an A_{50} of 5.3° that achieves five of seven on the quality scale by Van der Voo (30).

Timing and tempo of the Great Oxidation Event.

Atmospheric Oxygen Oscillations. This stratigraphic interpretation indicates a dynamic state of atmospheric oxygen levels during the early Paleoproterozoic glacial period. The onset of the GOE occurred in the immediate aftermath of the Makganyene Formation glaciation with deposition of the world's largest manganese deposit, the Hotazel Formation, with a negative Ce anomaly, both indicative of oxygenation (7, 21). This oxygenation was followed by a return to anoxic conditions as indicated by the lack of a Ce anomaly in foreslope carbonates of the Moodraai Formation (Fig. 1) (21, 32) and a mass-independent fractionation of sulfur (MIF-S) signal recorded by early diagenetic sulfides from the lower Duitschland Formation (Fig. 1) (23). Subsequent oxygenation events occurred during deposition of the upper Duitschland Formation (23) and once again, in the middle of the Rooihoogete Formation (24) as indicated by the reappearance and disappearance of the MIF-S signal (Fig. 1).

Detrital pyrite grains persist above the oldest glacial diamictite in the Mississippian Formation in the Huronian Supergroup of the Superior Craton, Canada (33) and support oscillations in atmospheric oxygen herein inferred from the records of the Transvaal Supergroup (Fig. 3). Our geochronologic and stratigraphic framework argues against a simple, monotonic rise of atmospheric oxygen in the early Paleoproterozoic, a time period further characterized by four glaciations. Instead, the onset of the GOE was followed by oscillations in atmospheric oxygen content across the 107 present atmospheric level (PAL) threshold over an ∼200-Ma interval, adding empirical evidence to atmospheric modeling predictions (4).

Linking Snowball Earth and the GOE. The Makganyene Formation, deposited in the tropics (6), records the oldest known Snowball Earth event (7). Makganyene Formation diamictites are now constrained to be slightly older than ca. 2,426 Ma and likely correlate with glacial units of the Ramsay Lake Formation in the Huronian Supergroup, Canada and the Campbell Lake Formation from the Snowy Pass Supergroup on the Wyoming Craton in the United States. Other correlatable glacial units worldwide include the ca. 2,435 Ma Polisarka Formation on the Kola–Karelia Craton in Fennoscandia (34) as well as possibly, the Meteorite Bore Member on the Pilbara Craton in Australia, defining the wide extent of the oldest Paleoproterozoic glaciation (Fig. 3). This early Paleoproterozoic glaciomarine deposition is broadly coeval with the onset of the GOE; both events are now tightly bracketed between ca. 2,460 Ma, the age of volcanic rocks near the base of the Huronian Supergroup (6, 10), and ca. 2,426 Ma, the approximate age of the Makganyene Formation glaciation and near-coeval Ongeluk Formation volcanic rocks in the Transvaal Supergroup. In addition, the 2,442 ± 2 Ma Seidorechka Formation and the overlying 2,435 ± 2 Ma Polisarka formations (34, 35) in the Kola–Karelia Craton may tightly bracket the oldest Paleoproterozoic glacial event between ca. 2,426 Ma and 2,455 Ma, respectively, implying that it lasted less than 7 My (Fig. 3).

Our results add to the growing evidence for large low-latitude continental landmasses in the early Paleoproterozoic, including
the Kaapvaal Craton (6) and the clan of cratons that defines supercraton Superia (5, 36, 37): Superior, Wyoming, Hearne, and Karelia–Kola. These landmasses, at least in part contiguous, record a series of LIP events between 2,510 Ma and 2,440 Ma and include the Mistassini, Kaminak, Baltic, Baggot Rocks, and Matachewan LIPs (Fig. 3) (5) before the ca. 2,426 Ma Ongeluk LIP of the Kaapvaal Craton. Cumulatively, these large juvenile volcanic provinces on extensive low-latitude continental landmasses are likely to have triggered near-equatorial glaciations via enhanced chemical weathering of aerially extensive, nutrient-rich continental flood basalts. This weathering resulted in increased carbon dioxide drawdown (38, 39) and an enhanced flux of phosphorus and other essential nutrients (40) onto extensive continental margins and into intracratonic basins. An enhanced nutrient flux would have greatly increased photosynthetic activity and oxygen production, temporally linked to higher net burial of organic carbon in accumulating sediments, as reflected by $\delta^{13}C$ values of carbonates in the upper Tongwane Formation of the Transvaal Supergroup (31). The Tongwane Formation is locally preserved above the ca. 2,480–2,460 Ma iron formations (41) but below the major unconformity documented in the entire Transvaal basin (Fig. 1) (18). Thus, even an incipient rise of free atmospheric oxygen would have led to rapid oxidation of atmospheric methane (42), forcing catastrophic climate change and plunging Earth into a global glaciation (43). Importantly, the dated near-equatorial Ongeluk LIP, conformably overlying and interfingering with the uppermost Makganyene Formation glacial diamictites (Fig. 1), illustrates the dual role of LIPs in these global events, in that they would also have contributed carbon dioxide to rebuilding the greenhouse atmosphere that led to abrupt termination of the first Snowball Earth state of the early Paleoproterozoic.

Fig. 3. (A) is a graph illustrating the approximate chronology (Table S1) of the glaciations and atmospheric oxygen oscillations according to the related redox indicators in the Huronian and Transvaal basins (Table S2) using the same symbols as used in Fig. 1. Also shown are dated mafic and felsic magmatic events as well as $\delta^{13}C$ ranges for carbonates (Tables S1 and S2) and the extent of stratigraphic records in each basin denoting gaps in records at unconformities and disconformities. (B) The early Paleoproterozoic geography of the Superior, Kola-Karelia, Hearne, and Wyoming cratons as integral parts of the supercraton Superia (5, 36)* with the addition of the Kaapvaal and Pilbara cratons in the supercraton Vaalbara configuration (52). The early Paleoproterozoic basins developed on these cratonic fragments include both ca. 2.51–2.43 Ga volcanic rocks and glacial units, which can be correlated across the cratons. The glacial units in bold denote the glacial deposits likely recording the first glaciation. All of the cratonic fragments also contain dolerite dikes and sills emplaced between ca. 2.51 Ga and 2.43 Ga, showing the extent of the LIPs formed during this time. Available paleomagnetic studies indicate that the majority of the cratonic fragments (as part of supercraton Superia) were positioned near the paleoequator. The arrows denoting present-day true north in the crustal blocks illustrate the rotations necessary to make the reconstruction. (Inset) The hypothesized paleolatitude of these Archean cratons in the early Paleoproterozoic.
Comparing the Paleoproterozoic with the Neoproterozoic. In the Neoproterozoic, a remarkably similar sequence of events occurred, involving successive emplacement of multiple LIPs on the supercontinent Rodinia, a low-latitude position of this supercontinent, and incipient rifting and breakup (44). The massive Franklin LIP at ca. 717 Ma (45) immediately preceded the most dramatic and longest global glaciation of the Neoproterozoic, the Sturtian (46). This overall period is characterized by the second most dramatic change in surface redox conditions linked with Snowball Earth glaciations (47) and accompanied high rates of organic carbon burial (48, 49). Although substantial differences between the Paleo- and Neoproterozoic glacial periods might be expected, for instance, in the triggering mechanisms for the initial global glaciations, because methane was probably a more important greenhouse gas before the Makganyene glaciation (42, 43) than before the Sturtian glaciation (38, 39), there are also uncanny parallels. Examples include supercontinent- or supercontinent-size continental massifs that were capped by continental flood basalts, incipient rifting and/or breakup, and rapid transit to low latitudes. All of these factors enhanced chemical weathering of basaltic, incipient rifting and/or breakup, and high rates of organic carbon burial, surface oxygenation, and Snowball Earth glaciations) are mechanistically linked. In this case, a critical link might be true polynya wander caused by the lithospheric mass anomaly that nudged the basalt-covered and rifting supercontinental massifs to the equator (51), where chemical weathering and nutrient fluxes kicked into high gear and triggered the biotic, redox, and climatic responses.

Methods

Sampling. Samples in this study were taken from dolerite intrusions that intruded into the basement of the Kaapvaal Craton and the overlying cover succession of the Transvaal Supergroup in the Griqualand West subbasin, South Africa, except for one sample taken ~1,000 km to the east (Fig. 1, SI Methods, Fig. S1, and Table S3). One sample is tentatively interpreted as a coarse-grained basalt from the base of the Ongeluk Formation.

Geochronology—ID-TIMS Analysis. Water-based separation of baddeleyite was attempted for all rock samples at Lund University. Samples NL-13c and GOZ-B yielded baddeleyite grains using this method. Grains were separated and analyzed using U-Pb ID-TIMS on a Thermo Finnigan Triton Mass Spectrometer at the Department of Geosciences at the Swedish Museum of Natural History. Additional details of the operating procedures for the ID-TIMS analyses at the Swedish Museum of Natural History and results are given in SI Methods, Fig. S2, and Table S4.

Geochronology—SIMS Analysis. Zr-bearing phases were imaged, mapped using SEM in conjunction with energy-dispersive spectrometry in samples TGS-05 and OLL-2, and then, ranked (SI Methods and Fig. S2). U-Pb isotopic data using SIMS were determined in situ on the microbaddeleyite grains in the mapped thin sections using the CAMECA ims1270 Mass Spectrometer at the University of California, Los Angeles (UCLA). Additional details of the operating procedures for the SIMS at UCLA and results are given in SI Methods, Fig. S2, and Table S5.

Paleomagnetism. Measurements of magnetic remanence from samples TGS-05 and MDK-05 were made using the superconducting vertical 2G Enterprises DC-4K Rock Magnetometer at the University of Johannesburg (UJ). All specimens were measured to stepwise alternating-field demagnetization. Additional details of the sampling and operating procedures for the magnetometer at the U and results are given in SI Methods, Fig. S3, and Table S6.

Acknowledgments. We thank the staff of the SIMS and the TIMS laboratories at UCLA and the Department of Geosciences, Swedish Museum of Natural History, respectively, for all of the assistance during analyses. We thank N. Beukes for providing sample TGS-05. Funding for the SIMS and paleomagnetic laboratories at the Royal Physiographic Society in Lund (A.P.G.) and the Swedish Research Council (U.S.); M.O.D.K. and A.B. acknowledge support from the South African Department of Science and Technology and the National Research Foundation (DST-NRF)-funded Centre of Excellence for Integrated Mineral and Energy Resource Analysis (CIMERA). This article is a contribution to International Geoscience Programme (IGCP) 648: Supercontinents and Global Geodynamics.

Validating the existence of the supercraton Vaalbara in the Mesoarchaean to Palaeoproterozoic
Paleomagnetism and U-Pb geochronology of the Black Range dykes, Pilbara Craton, Western Australia

D. A. D. Evans a, A. V. Smirnov b and A. P. Gumsley c

aDepartment of Geology & Geophysics, Yale University, New Haven, CT 06520-8109, USA; bDepartment of Geological & Mining Engineering & Sciences, Michigan Technological University, Houghton, MI 49931-1295, USA; cDepartment of Geology, Lund University, Lund 223 62, Sweden

ABSTRACT
We report a new paleomagnetic pole for the Black Range Dolerite Suite of dykes, Pilbara craton, Western Australia. We replicate previous paleomagnetic results from the Black Range Dyke itself, but find that its magnetic remanence direction lies at the margin of a distribution of nine dyke mean directions. We also report two new minimum ID-TIMS 207Pb/206Pb baddeleyite ages from the swarm, one from the Black Range Dyke itself (2769 ± 1 Ma) and another from a parallel dyke whose remanence direction lies near the centre of the dataset (2764 ± 3 Ma). Both ages are slightly younger than a previous combined SHRIMP 207Pb/206Pb baddeleyite weighted mean date from the same swarm, with slight discordance interpreted as being caused by thin metamorphic zircon overgrowths. The updated Black Range suite mean remanence direction (D = 031.5°, I = 78.7°, k = 40, u95 = 8.3°) corresponds to a paleomagnetic pole calculated from the mean of nine virtual geomagnetic poles at 03.8°S, 130.4°E, K = 13 and A95 = 15.0°. The pole’s reliability is bolstered by a positive inverse baked-contact test on a younger Round Hummock dyke, a tentatively positive phreatomagmatic conglomerate test, and dissimilarity to all younger paleomagnetic poles from the Pilbara region and contiguous portions of Australia. The Black Range pole is distinct from that of the Mt Roe Basalt (or so-called ‘Package 1’ of the Fortescue Group), which had previously been correlated with the Black Range dykes based on regional stratigraphy and imprecise SHRIMP U-Pb ages. We suggest that the Mt Roe Basalt is penecontemporaneous to the Black Range dykes, but with a slight age difference resolvable by paleomagnetic directions through a time of rapid drift of the Pilbara craton across the Neoarchean polar circle.

Introduction
Precambrian craton reconstructions require high-quality paleomagnetic poles from well-dated and well-preserved rocks. The question of whether Earth’s supercontinent cycle began in Archean or Proterozoic time (Bleeker, 2003; Evans, 2013; Van Kranendonk & Kirkland, 2016) hinges on identifying former ‘supercraton’ connections and assessing whether those connections amalgamated into a single Neoarchean supercontinent, named Kenorland (Williams, Hoffman, Lewry, Monger, & Rivers, 1991), or whether instead they were embedded within continent-sized blocks (Bleeker, 2003). One classic supercraton is Vaalbara, the hypothesised conjunction of Kaapvaal craton, in southern Africa, with the Pilbara craton in Western Australia (Cheney, 1996). Different alternative reconstruction models (ibid., de Kock, Evans, & Beukes, 2009; Zegers, de Wit, Dann, & White, 1998) place the two cratons adjacent to each other in various relative locations and orientations.

The constituent cratons of Vaalbara have yielded a uniquely comprehensive dataset of Archean paleomagnetic directions, owing to their equally unique preservation of low-grade volcano-sedimentary rocks. On the Pilbara, initial success in obtaining coherent remanence directions from Fortescue lavas (Irving & Green, 1958) inspired further investigations of those rocks with similar results (Schmidt & Embleton, 1985). The most recent published paleomagnetic study documented Earth’s oldest recorded stratabound magnetic reversal and quantified cratonic drift velocities comparable with those of the last few hundred million years (Strik, Blake, Zegers, White, & Langereis, 2003). Further data also led to a revised reconstruction of Vaalbara that demarcates a simple pattern of depositional facies across the supercraton, in conjunction with paleomagnetic studies (de Kock et al., 2009).

Pre-Fortescue basement in the Pilbara craton has good potential for extending the paleomagnetic record before ca 2770 Ma, in order to determine whether geodynamo records and tests of plate velocities can be extended back further into Archean time (e.g. Bradley, Weiss, & Buick, 2015). The purpose of the present study is to begin such efforts by refining the Black Range suite of dykes paleomagnetic pole, using paleomagnetism integrated with U-Pb baddeleyite geochronology. Our results have important implications for stratigraphic correlations in the north-central Pilbara region.
Stratigraphic context

Archean stratigraphy of the Pilbara craton can be divided into two temporally and structurally defined successions (Figure 1). The older succession generally has granitoid–greenstone dome-trough crustal architecture with ages between ca 3500 and 2800 Ma, and is divided into the Pilbara and De Grey Supergroups in the East Pilbara Terrane or their lateral equivalents in the West Pilbara Terrane (Hickman, 2012; Van Kranendonk et al., 2006a). Following a large-scale regional unconformity, the second succession begins with the volcanic-dominated Fortescue Group and related intrusions within the time interval ca 2800–2700 Ma (Thorne & Trendall, 2001), followed conformably by the largely sedimentary Hamersley Group that extends into Paleoproterozoic time (Trendall, 1983). The Fortescue–Hamersley succession has been interpreted to record a plate-tectonic evolution from rifting to development of a passive margin (Blake, 1993; Thorne & Trendall, 2001), perhaps initially with the aid of a mantle plume (Arndt, Bruzak, & Reischmann, 2001; Rainbird & Ernst, 2001).

Fortescue Group strata are variable across the craton (Figure 1), but generally include a lowest mafic volcanic unit (Mount Roe Basalt), followed by a sandstone-dominated interval (Hardey Formation), more dominantly mafic volcanic units (variable names), and an uppermost shale-dominated unit (Jeerinah Formation). Felsic igneous rocks (Bamboo Creek and Spinaway porphyries) locally occur within or adjacent to the Hardey Formation. Around the northern part of the craton, variability can be observed along strike from the west near the Roebourne/Pyramid area, to the east near the Nullagine region and beyond to the Gregory Range. Near the centre of the northern outcrop belt, where the metamorphic grade is lowest (Smith, Perdrix, & Parks, 1982), the Marble Bar Sub-basin (an erosional outlier) exposes several alternations of basaltic lava and siliciclastic sedimentary rock that are disconnected from other Fortescue Group exposures. In that region, the stratigraphically lowest package was moderately to steeply folded prior to deposition of the overlying succession (Blake, 1993).

The Mount Roe Basalt, referred to as Fortescue Group ‘Package 1’ in the sequence-stratigraphic framework of Blake (1993) and Blake, Buick, Brown, and Barley (2004), has been dated by U–Pb methods in three localities: 2763 ± 13 Ma (SHRIMP on zircon) near the type locality at Roebourne (Arndt, Nelson, Compston, Trendall, & Thorne, 1991), 2775 ± 10 Ma (SHRIMP on zircon) in the far southwest area of the craton (ibid.), and 2767 ± 3 (TIMS on air-abraded zircon; ~1.4% discordant) in an isolated exposure near the southern edge of the Marble Bar outlier (Van Kranendonk, Bleeker, & Ketchum, 2006b). Ages from the overlying Hardey Formation interval include a volcanic member in the easternmost Pilbara (2764 ± 8 Ma, SHRIMP on zircon; Arndt et al., 1991); two
porphyries in east-central part of the craton, Spinaway (2768 ± 16 Ma conventional U–Pb on zircon, Pidgeon, 1984; 2766 ± 2 Ma, SHRIMP U–Pb on zircon, Blake et al., 2004) and Bamboo Creek (2756 ± 8 Ma, SHRIMP on zircon; Arndt et al., 1991); a lower rhyolite unit (2766 ± 3 Ma; Blake et al., 2004); and a volcanic unit within the sandstone in the southern region (2750 ± 5 Ma; Hall, 2005). The latter three ages were all obtained by U–Pb SHRIMP methods on zircon.

For many years, it has been considered that eruption of the Mount Roe Basalt was coincident with emplacement of the Black Range Dolerite Suite of NNE-trending mafic dykes, which include both the Black Range Dyke itself and the Cajuput Dyke farther to the east (Figure 2)—the latter of which is nonconformably overlain by Hardey Formation sandstone (Hickman, 1983; Lewis, Rosman, & de Laeter, 1975). The correlation of Mount Roe Basalt and the Black Range dyke swarm was strengthened by an integrated 207Pb–206Pb SHRIMP baddeleyite age of 2772 ± 2 Ma for the dykes (Wingate, 1999), which was within uncertainty of the previous Mount Roe Basalt ages (Arndt et al., 1991). The Black Range and Cajuput dykes also share a paleomagnetic remanence direction (Embleton, 1978) with that of the Mount Roe Basalt (Schmidt & Embleton, 1985; Strik et al., 2003), thus appearing to reinforce the correlation even further.

Nonetheless, near the southwestern edge of the Marble Bar Sub-basin (Figure 2), at least one dyke of the Black Range suite (herein referred to as the Pilga dyke, with new U–Pb geochronology presented below) intrudes the lowermost lava package—moderately tilted as noted above, and shown on published Geological Survey of Western Australia (GSWA) quadrangle maps as Mount Roe Basalt (Hickman, 2010, 2013; Hickman & Lipple, 1978; Van Kranendonk, 2000). What might be a northward, right-stepping en echelon offset of that dyke also appears to intrude lavas correlated with the Kylena basalt, which would be surprising, as the Kylena Formation (in its type locality) is definitively younger than Hardey Formation sandstone and has yielded ages in the range of ca 2760–2740 Ma (Blake et al., 2004). Such stratigraphic relationships prompted Van Kranendonk (2000) to conclude that the Pilga dyke ‘must belong to a younger set.’ Not all Fortescue stratigraphers agree, however, with the mapped correlations by GSWA in the Marble Bar Sub-basin. Blake (1993) maintained correlation of the lowest Marble Bar Sub-basin basalt package, which attains steep dips, with the subhorizontal Mount Roe Basalt of the Nullagine area, but correlated the overlying, subhorizontal lavas of his ‘Glen Herring Creek Sequence’ to the Hardey Formation rather than Kylena Formation (Figure 3). With further modification, Strik (2004) discovered that the lowest Marble Bar Sub-basin lava succession (with locally
steep dips) has a distinct paleomagnetic remanence from the Mount Roe Basalt in other regions of the northern Pilbara. According to paleomagnetic correlations by Strik (2004), the lowest lavas in the Marble Bar Sub-basin were named ‘Package 0’, and the overlying Glen Herring Creek Sequence lavas would more appropriately correlate to ‘Package 1’ of the Mount Roe Basalt (Strik et al., 2003). These alternative correlations could allow the entire Black Range suite of dykes, including the Pilga dyke, to occupy a single stratigraphic position consistent with available geochronology: penecontemporaneous to ‘Package 1.’

The present paper describes new geochronological and paleomagnetic data from the Black Range dyke swarm, and discusses how the new data can be interpreted in a new, integrated litho- and chronostratigraphy for the northern Pilbara region in Neoarchean times.

Figure 3. Alternative published stratigraphic correlations across the northern Pilbara craton, as of 2003, modified after Blake (1984). Unconformities are denoted by ‘U.’ Dashed lines: correlations of Blake (1984). Undecorated solid lines: correlations of Blake (1993) including GHCS, Glen Herring Creek Sequence. Solid lines marked with ‘*’ are correlations from published editions of the Marble Bar geological maps at 1:250 000 scale (Hickman, 2010, 2013; Hickman & Lipple, 1978) and 1:100 000 scale (Hickman & Van Kranendonk, 2008). Nulla-gine synclinorium stratigraphic sequence ‘packages’ P1–P6 follow Blake et al. (2004); the stratigraphy continues higher than shown. SP, Spinaway felsic porphyry of Lipple (1975), included within the Bamboo Creek Member of the Har-dey Formation by Thorne and Trendall (2001) and Hickman (2007).

Methods

Geochronological processing was made at the Department of Geology in Lund University, where dolerite dyke sample C09B03 (Pilga dyke) and C08BR3 (Black Range Dyke at Hillside) were crushed and milled in order to extract baddeleyite. Extraction was carried out using the water-based separation technique of Søderlund and Johansson (2002) with a Wilfley Table. The best-quality baddeleyite crystals were hand-picked and combined into fractions comprising between one to five crystals each, and placed in separate pre-cleaned Teflon capsules in a fume hood within the clean laboratory at Lund University. The baddeleyite grain fractions in the capsules were then washed thoroughly in steps with small quantities of ultrapure HNO3 and H2O. After washing the Teflon capsules containing the cleaned baddeleyite grains, a spike solution consisting of 205Pb, 233U and 236U was added to every capsule together with concentrated ultrapure HF. The capsules were then placed in an oven at 200°C for three days in order to dissolve the baddeleyite grains and homogenise the initial and spike U and Pb solutions together. In the clean laboratory at the Department of Geosciences in the Museum of Natural History (Stockholm), the Teflon capsules containing the sample solutions were then placed on a hot plate at 100°C until the combined solution evaporated in a fume hood. Ultrapure 6 M HCl and 0.25 M H3PO4 was then added to each capsule before being dried down once again on the hot-plate at 100°C, leaving a small sample droplet. These droplets in the capsules consist of the dissolved sample fraction and spike in H3PO4 that was then further redissolved in 2 mL of Si-gel prepared using a recipe of Gerstenberger and Haase (1997) before being loaded on outgassed Re filaments.

The analyses were made on the Finnigan Triton mass spectrometer at the Department of Geosciences, Swedish Museum of Natural History in Stockholm following the same procedure as that employed by Gumsley et al. (2015). The Re filaments with the samples were loaded onto a carousel and mounted, and then heated, in the high vacuum chamber in the mass spectrometer. The Pb isotopes were measured after being heated and emitted in a temperature range of approximately 1210–1250°C. The isotopes 206Pb, 207Pb, 208Pb and 208Pb were measured in either static mode with Faraday detectors, or in peak-switching mode with a Secondary Electron Multiplier amplifier. Age, size and quantity of grains could be linked to whether static or peak-switching mode was used. Large samples with high 206Pb/208Pb ratios and strong and stable signals were preferentially measured in static mode. Upon completion of the Pb isotopic analyses, the filament temperatures were increased to...
Paleomagnetism and U-Pb geochronology of the Black Range dykes, Pilbara Craton, Western Australia

between 1310–1320°C, where 235U and 238U isotopes were emitted and measured. An ‘in-house’ program made by Per-Olof Persson (Department of Geosciences, Natural History Museum, Stockholm) with calculations following Ludwig (2001) was used for data handling, and final age calculations were made using Isoplot (Ludwig, 2001).

For paleomagnetic studies, we sampled 16 sites representing 14 separate dykes in the northeastern part of the Pilbara craton (Figure 2). Seven to 17 field-drilled, oriented, 2.5 cm-diameter core samples were collected from each site. Orientation was done with both solar and magnetic compasses. Although outcrops were screened with a compass for notable magnetic deflections by lightning, at some sites minor deflections were unavoidable owing to limited outcrop.

Magnetic remanence measurements were conducted at Michigan Technological University using an automated three-axis DC-SQUID 2G rock magnetometer housed in a magnetically shielded room. After measurement of the natural remanent magnetisation (NRM), the samples were cycled through the Verwey transition at ~120 K (Verwey, 1939) by immersing them into liquid nitrogen for about 2 h in order to reduce a viscous component carried by larger magnetite grains (Schmidt, 1993). The low-temperature treatment was followed by 15–20 thermal demagnetisation steps performed in an inert (nitrogen) atmosphere. Progressive demagnetisation was carried out until the magnetic intensity of the samples dropped below system noise level or until the measured directions became erratic and unstable (typically at 580–590°C).

The characteristic remanent magnetisation (ChRM) for samples displaying near-linear demagnetisation trajectories was isolated using principal-component analysis (Kirschvink, 1980). The best-fit line was used if defined by at least five consecutive demagnetisation steps that trended toward the origin and had a maximum angle of deviation less than 10°. The mean directions were calculated using Fisher statistics (Fisher, 1953). A site mean was accepted for further calculations if it was obtained from three or more samples, and the confidence circle radius (α_{95}) was smaller than 10°.

Table 1. 1D-TIMS baddeleyite isotopic data from the Pilga and Black Range dykes.

<table>
<thead>
<tr>
<th>Analysis no.</th>
<th>no. of (grains)</th>
<th>235U/Tb</th>
<th>238U/Tb</th>
<th>235U/238U</th>
<th>207Pb/206Pb</th>
<th>207Pb/206Pb (age, Ma)</th>
<th>Concordance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilga (C09B03): 2763.9 ± 1.3 Ma, 1/6 point 207Pb/206Pb minimum date</td>
<td>a (4)</td>
<td>4.6</td>
<td>0.015</td>
<td>3903.0</td>
<td>13.965</td>
<td>0.337</td>
<td>0.527</td>
</tr>
<tr>
<td></td>
<td>b (3)</td>
<td>3.0</td>
<td>0.021</td>
<td>2770.9</td>
<td>13.826</td>
<td>0.568</td>
<td>0.524</td>
</tr>
<tr>
<td></td>
<td>c (5)</td>
<td>9.0</td>
<td>0.054</td>
<td>1717.8</td>
<td>13.988</td>
<td>0.845</td>
<td>0.527</td>
</tr>
<tr>
<td></td>
<td>d (1)</td>
<td>15.5</td>
<td>0.093</td>
<td>693.5</td>
<td>14.185</td>
<td>1.458</td>
<td>0.536</td>
</tr>
<tr>
<td></td>
<td>e (2)</td>
<td>2.2</td>
<td>0.047</td>
<td>1337.5</td>
<td>13.971</td>
<td>0.745</td>
<td>0.528</td>
</tr>
<tr>
<td></td>
<td>f (4)</td>
<td>4.6</td>
<td>0.034</td>
<td>1771.7</td>
<td>13.876</td>
<td>0.589</td>
<td>0.515</td>
</tr>
<tr>
<td>Black Range (C08BR3): 2760.4 ± 1.0 Ma, 1/5 point 207Pb/206Pb minimum date</td>
<td>a (1)</td>
<td>43.6</td>
<td>0.019</td>
<td>3223.1</td>
<td>12.451</td>
<td>0.453</td>
<td>0.488</td>
</tr>
<tr>
<td></td>
<td>b (1)</td>
<td>74.4</td>
<td>0.042</td>
<td>1476.7</td>
<td>13.347</td>
<td>0.905</td>
<td>0.506</td>
</tr>
<tr>
<td></td>
<td>c (1)</td>
<td>43.1</td>
<td>0.010</td>
<td>6281.7</td>
<td>13.981</td>
<td>0.217</td>
<td>0.527</td>
</tr>
<tr>
<td></td>
<td>d (1)</td>
<td>52.5</td>
<td>0.057</td>
<td>1092.7</td>
<td>14.085</td>
<td>1.068</td>
<td>0.532</td>
</tr>
<tr>
<td></td>
<td>e (1)</td>
<td>49.4</td>
<td>0.005</td>
<td>11955.1</td>
<td>14.185</td>
<td>0.242</td>
<td>0.533</td>
</tr>
</tbody>
</table>

206Pb = common Pb; 206Pb, total Pb (radiogenic + blank + initial). 207Pb/206Pb ratio corrected for mass fractionation and spike. 206Pb/235U–206Pb tracer solution, blank (1 µg Pb and <0.1 pg U), and initial common Pb. Initial common Pb corrected with isotopic compositions from the model of Stacey and Kramers (1975) at the age of the sample. corr. = corrected

Results and discussion

Geochronology

Both mafic dyke samples yielded abundant fragments of euherdral baddeleyite with thin surface coatings, frosty in appearance, which are interpreted as zircon overgrowths (cf. Heaman & LeCheminant, 1993). Such overgrowths are well documented in mafic rocks of high metamorphic grade, but the north-central Pilbara has experienced only prehnite–pumpellyite metamorphism (Smith et al., 1982), dated by monazite at ca 2160 Ma (Rasmussen, Fletcher, & Sheppard, 2005). If zirconium mobilisation during that episode (or some other secondary event) caused the minor zircon overgrowth, then each analysis would measure a mixture of the primary baddeleyite cores, and a small contribution from secondary zircon rims, and thus underestimate the age of baddeleyite crystallisation. Our choices for calculating the data of the subsets (Table 1) are made with these factors under consideration.

From the Pilga sample C09B03 (Figure 4), six fractions were analysed, each combining between one and five grains. Fraction (d) was the only single-grain baddeleyite analysed. 207Pb/206Pb dates from the six analyses ranged between 2764 Ma and 2749 Ma, with concordance varying from 97% to 100%. The oldest 207Pb/206Pb date of 2769.4 ± 1.0 Ma on fraction (e) likely represents the best minimum estimate for the age of baddeleyite crystallisation.

From the Black Range Dyke sample C08BR3, five single grains were analysed. Two grains (fractions a, b), had variable concordance between 95 and 96% (Figure 4) and are not considered further. Fractions (c, d, e), however, were between 99 and 100% concordant and yielded variable 207Pb/206Pb dates between 2769 Ma and 2760 Ma. As such, the oldest 207Pb/206Pb date of 2769.4 ± 1.0 Ma on fraction (e) likely represents the best minimum estimate for the age of baddeleyite crystallisation.

These new two 207Pb/206Pb TIMS ages are comparable with the previously published weighted mean 207Pb/206Pb SHRIMP baddeleyite age of 2772 ± 2 Ma for the Black Range Dolerite Suite (Wingate, 1999), as shown in Figure 4b. The oldest TIMS analysis on our Black Range sample (fraction e) has a
$^{207}\text{Pb}/^{206}\text{Pb}$ age within error of the mean SHARP result from the same dyke and suggests that our preferred method of selecting the oldest-age fraction is the most accurate assessment of the variable TIMS data, at least in this instance. SHRIMP analyses on the interior domains of baddeleyite grains are better placed to avoid zircon overgrowths and generate unbiased ages of crystallisation, despite being less precise.

Interpretation of the Pilga dyke data is hindered by the absence of a SHRIMP result on the same intrusion as a reference. The preferred 2764 ± 3 Ma result provides a minimum date for dyke emplacement, but it remains unclear whether the Pilga and Black Range dykes are strictly coeval, or whether the Pilga dyke could have intruded several million years after the other dykes in the Black Range suite. Regardless, the Pilga data are clearly more similar to the SHRIMP results from the Mount Roe Basalt, rather than the Kylena Formation, with implications for Fortescue Group correlations between Marble Bar Sub-basin and other outcrop areas.

Paleomagnetism

Most sites exhibited one or two components of remanent magnetisation (Figure 5). Most samples showed a consistent high unblocking temperature (~500–580°C) ChRM with steep downward directions, generally N to E in declination. Low–moderate-temperature components were generally scattered or had a weak tendency toward low inclinations to the WNW or ENE; in only two sites were such overprints coherent enough to produce a clustered mean direction (site BR4, D 299°, I 10°, α95 = 8°, N = 6/7; and site B05, D = 305°, I = 35°, α95 = 10°, N = 8/12), which could possibly date from the regional low-grade metamorphic event at ca 2160 Ma (Rasmussen et al., 2005). Exceptions to these general trends were observed in samples with anomalously high values of NRM intensity and parallel components removed by both liquid nitrogen treatment and moderate levels (300–500°C) of thermal demagnetisation. We strongly suspect such sites to be affected by lightning; some sites with consistent and anomalous moderate-temperature components (e.g. BR1,
Paleomagnetism and U-Pb geochronology of the Black Range dykes, Pilbara Craton, Western Australia

BR5) are interpreted to represent the distal tangential magnetic field about the point of lightning impact. The other two sites with coherent, non-modal ChRM directions (BR6, B10; both toward the SW but with opposing signs of inclination) did not have the same demagnetisation behaviour as the modal sites: rather than sharp unblocking spectra restricted to >500°C, those two sites’ ChRM vectors had distributed unblocking through ~250–570°C (Figure 5j). The origin of their remanence vectors is uncertain, but they are clearly anomalous relative to the Black Range suite as a whole (Table 2).

Figure 6 summarises data from each of the nine sites that are included in the mean Black Range suite paleomagnetic direction. We replicate the SE-down ChRM direction for the Black Range Dyke itself at the Hillside locality (Embleton, 1978), but we find that such a direction lies, together with that of the Cajuuput Dyke (ibid.) and its easterly satellite dyke (Strik et al., 2003), at the outer edge of the modal distribution of NE-down remanence directions (Figure 7). We attribute the differences in remanence of the various Black Range suite dykes to paleosecular variation of the Neoarchean geodynamo. An alternative interpretation might be that the Black Range and Cajuput dykes are older than other dykes in the swarm; the Pilga and other dykes bearing the mean NE-down ChRM could be a few million years younger as allowed by our new 207Pb/206Pb age constraints (Figure 4). That model, however, would require a complex pattern of ChRM oscillations in stratigraphic sequence: from NW-down of Package 0 (Strik, 2004), to SE-down of the Black Range and Cajuput dykes (Embleton, 1978; this study), to NE-down of the Pilga and other dykes (this study), and back to SE-down in the higher Fortescue basalt packages (Schmidt & Embleton, 1985; Strik et al., 2003). We prefer the simpler model of a single age for the Black Range Dolerite Suite, with its NE-down ChRM falling neatly between those of Package 0 and Package 1 basalts (Strik, 2004). In local coordinates, the mean Black Range suite direction (Table 2) is parameterised by D = 031.5°, I = 78.7°, k = 40, and A95 = 8.3°, and the corresponding paleomagnetic pole, calculated from the mean of nine virtual geomagnetic poles, is at 03.8°S, 130.4°E, K = 13, and A95 = 15.0°.

Reliability of our new Black Range dykes pole is affirmed by an inverse baked-contact test with a Round Hummock dyke in the western part of our study area, near Obisnake Creek. Site C09B02, from a N- to NNE-striking dyke, yields a steep NE-downward ChRM typical of the Black Range suite. About 1.5 km to the south, the same Black Range dyke is cross-cut by a NW-striking dyke of the Round Hummock swarm (site I09R4). In that locality, the younger Round Hummock dyke carries a NW-down remanence direction (Figure 8) that is typical for the Round Hummock swarm, which has a preliminary ID-TIMS U–Pb baddeleyite date of ca 1070 Ma (D. Evans and A. Gumsley, unpublished; details to presented in a forthcoming manuscript). The Black Range dyke samples from that site, all within 5 m of the Round Hummock dyke, carry a ChRM at moderate unblocking temperatures between 300 and 375°C, likely held by contact-metamorphic pyrrhotite generated at the time of Round Hummock intrusion. Although the baked Black Range dyke remanence is likely a crystallisation-remagnetisation rather than a thermal-remagnetisation, effects from the time of Round Hummock intrusion are clearly apparent. For the purposes of the present contribution, this positive inverse baked-contact test demonstrates that the Black Range suite characteristic remanence is older than ca 1070 Ma. A second baked-contact test was attempted at site C09B08, where a member of the Black Range suite is...
intruded by another Round Hummock dyke, which is 23 m wide at the intersection. Round Hummock dyke samples there (site I09R5) yield a typical NW-moderate-down ChRM direction from that swarm, but Black Range dyke rocks within 2 m of the contact have a steeper NW-down direction that is intermediate between the Round Hummock remanence and other Black Range directions (Table 2). As no more distant rocks were sampled from that particular Black Range intrusion, the test remains inconclusive.

As a final attempted test on the age of Black Range dykes’ remanence, fine-grained mafic pebbles (‘basalt droplets’) in the granite boulder volcanic conglomerate unit of Van Kranendonk et al. (2006b) were individually sampled from a locality within a few hectometres of the exposed tip of the Black Range Dyke. Low-temperature components are generally directed north and upward, parallel to Earth’s present magnetic field at the sampling site (Figure 9a); some samples exhibited only this presumably recent component. Other samples, collected from one side of the outcrop, show a univectorial, west-horizontal magnetisation that unblocks at temperatures generally below 500°C (Figure 9b); that direction is dissimilar to all previously documented paleomagnetic results from the northern Pilbara cratonic region and must represent a very localised overprint of unknown age. Among clasts located at the other side of the outcrop, six out of eight specimens carry a distinct ChRM after removal of the low-temperature present-field component; these higher-temperature directions, retaining stability as demagnetisation end-points from about 500 to 540°C, are quite dispersed (labelled ‘SEP’ in Figure 9c). The six stable end-point (SEP) vectors have a resultant mean length of 3.01; a test for uniformity against a unimodal alternative (Fisher, Lewis, & Embleton, 1987, p. 110) cannot be rejected at the 95% confidence level, a positive statistical test. The unblocking temperatures from the suite of
'basalt droplet' clasts, however, are lower than either Black Range dykes (this study) or Mount Roe Basalt (Strik, 2004; Strik et al., 2003), so the test must be considered only tentatively positive. The data are consistent with a low-temperature phreatomagmatic recrystallisation or solid-state remagnetisation of the basalt droplets prior to their incorporation into the conglomerate, which was formed penecontemporaneously to the Black Range Dyke intrusion (Van Kranendonk et al., 2006b). Most definitively, the steep NE-down mean ChRM observed in the Black Range Dolerite Suite is not observed as a consistent overprint at the conglomerate site. The Shipunov, Muraviev, and Bazhenov (1998) test on that Black Range mean direction and the six conglomerate clast end-points also indicates consistency of their being drawn from a uniform ('random') distribution at the 95% confidence level.

In addition to the field tests described above, including the positive inverse baked-contact test at Obstinate Creek, an additional consideration on the age of the Black Range suite mean magnetic remanence, is the fact that its pole is distinct from all younger poles derived from Western Australia, and also all Precambrian poles generated in rocks of the North Australian craton after the latter has been restored to the West-South Australian reference frame according to Li and Evans (2011). There is broad similarity of our new Black Range suite pole to that of the first paleomagnetic analysis on the Ediacaran–Cambrian Arumbera Sandstone in central Australia (Embleton, 1978).
However, that younger direction is likely a mid-Carboniferous overprint related to the Alice Springs Orogeny (Li, Powell, & Thrupp, 1990), and Paleozoic overprinting of the Black Range suite is precluded by our field stability tests. To summarise the quality of the new Black Range suite pole: on the seven-point reliability scale (Q) of Van der Voo (1990), it scores six out of seven points, lacking only dual polarity of the remanence. That criterion is met, however, by the Nullagine succession in the same region (Strik et al., 2003; Table 3).

Our new paleomagnetic pole for the Black Range dyke suite (Figure 10) lies midway between poles from two unconformity-bounded sequences in the lowermost Fortescue Group: the informally named Package 1, which is generally correlated with the Mount Roe Basalt (Strik et al., 2003), and the stratigraphically lower Package 0 (Strik, 2004) that is restricted to the Marble Bar Sub-basin and also generally mapped as Mount Roe Basalt (e.g. Hickman, 2010, 2013). Because ages from the rocks mapped as Mount Roe Basalt are either imprecise (Arndt et al., 1991) or of uncertain correlation to the type locality (Van Kranendonk et al., 2006b), the progression of paleomagnetic poles among the Mount Roe Basalt and related units may provide an independent chronometer for magmatism and sedimentation across the northern Pilbara. The poles (Table 3) sweep across the craton in rough

Figure 9. Phreatomagmatic breccia test from the tip of the Black Range Dyke. (a) Equal-area projection of vector component directions. Squares, low- and mid-temperature components of magnetisation; diamonds, stable end-point (SEP) vectors from samples in the outcrop area less affected by the localised mid-temperature overprint. (b) Orthogonal projection diagram of a sample with a mid-temperature overprint. (c) Orthogonal projection diagrams of samples with both low- and high-temperature components.

<table>
<thead>
<tr>
<th>Paleomagnetic pole</th>
<th>Code</th>
<th>Age (Ma)</th>
<th>Method</th>
<th>Pole (N, E)</th>
<th>A95 (°)</th>
<th>1234567 (Q)</th>
<th>Test</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortescue Package 0</td>
<td>P0</td>
<td>>2772 ± 2</td>
<td>SHRIMP-B</td>
<td>-01, 093</td>
<td>8</td>
<td>011101 (5)</td>
<td>F</td>
<td>Strik, 2004; Wingate, 1999</td>
</tr>
<tr>
<td>Black Range suite</td>
<td>BRS</td>
<td>2772 ± 2</td>
<td>SHRIMP-B</td>
<td>-04, 130</td>
<td>15</td>
<td>11110100 (6)</td>
<td>G, M</td>
<td>Strik et al., 2003; Van Kranendonk et al., 2006b</td>
</tr>
<tr>
<td>Fortescue Package 1</td>
<td>P1</td>
<td>ca 2770</td>
<td>(Strat, APW)</td>
<td>-41, 160</td>
<td>4</td>
<td>1111000 (5)</td>
<td>G, M</td>
<td>Strik et al., 2003; Van Kranendonk et al., 2006b</td>
</tr>
<tr>
<td>Fortescue Package 2</td>
<td>P2</td>
<td>ca 2766 ± 2</td>
<td>SHRIMP-Z</td>
<td>-47, 153</td>
<td>15</td>
<td>1011000 (4)</td>
<td>G, M</td>
<td>Blake et al., 2004; Strik et al., 2003</td>
</tr>
<tr>
<td>Mt Jope volcanics pre-fold</td>
<td>MV</td>
<td>>2750 ± 5</td>
<td>SHRIMP-Z</td>
<td>-41, 129</td>
<td>20</td>
<td>1011000 (4)</td>
<td>f</td>
<td>Hall, 2005; Schmidt & Embleton, 1985</td>
</tr>
<tr>
<td>Fortescue Package 4–7</td>
<td>P4–7</td>
<td>ca 2730</td>
<td>SHRIMP-Z</td>
<td>-50, 138</td>
<td>13</td>
<td>11100100 (4)</td>
<td>M</td>
<td>Blake et al., 2004; Strik et al., 2003</td>
</tr>
<tr>
<td>Fortescue Package 8–10</td>
<td>P8–10</td>
<td>ca 2715</td>
<td>SHRIMP-Z</td>
<td>-59, 186</td>
<td>6</td>
<td>11100100 (4)</td>
<td>M</td>
<td>Blake et al., 2004; Strik et al., 2003</td>
</tr>
<tr>
<td>Southern Hamersley VH</td>
<td>SVH</td>
<td>2717 ± 2</td>
<td>SHRIMP-Z</td>
<td>-65, 204</td>
<td>12</td>
<td>10100100 (3)</td>
<td>–</td>
<td>Blake et al., 2004; Sumita, Hatakeyama, Yoshihara, & Hamano, 2001</td>
</tr>
</tbody>
</table>

Code, abbreviation shown in Figure 10. (Strat, APW), age estimate from stratigraphic correlation and simple interpolation along a paleomagnetic apparent polar wander path. A95, Fisher's (1953) confidence cone radius. Q, reliability from Van der Voo (1990). The fourth criterion of a field stability test, if positive, is abbreviated as follows: c, inverse baked-contact test; f, intrasuccessional fold test; t, tectonic fold test; G, intrasuccessional conglomerate test; M, magnetostratigraphy test of stratabound reversals in sequence. In these abbreviations, upper-case symbols indicate primary paleomagnetic remanence; lower-case symbols indicate ancient remanence that might be primary but not demonstrated conclusively by the test.
stratigraphic order from NW to SE, and in the absence of a more complex oscillatory apparent polar wander (as in the alternative model of variable Black Range suite ages discussed above), the ages of remanence acquisition should decrease monotonically in that direction. The most parsimonious interpretation of apparent polar wander progression begins with Package 0 sedimentation and basaltic volcanism being restricted to the Marble Bar Sub-basin, followed by folding of that sequence, then intrusion of the Black Range dykes at ca 2772 Ma, and followed further by deposition of the Package 1 sequence and younger clastic and volcanic strata across a much larger area of the craton. During that succession of events, the Pilbara craton crossed polar areas of Earth’s surface. Although Strik (2004) expressed concern about the tectonic feasibility of an approximately 180° change in magnetic remanence declination between Package 0 and Package 1, such a shift in declination naturally arises from simple translation by a rigid tectonic block across the geographic pole.

The above model of a simple polar crossing at ca 2772 Ma generates specific correlations of unconformity-bound sequences in the lower Fortescue Group, especially in the Marble Bar Sub-basin (Figure 11). The correlations adopted herein are identical to those suggested by Strik (2004) and would require revision to geological quadrangle maps published by the GSWA (e.g. Hickman, 2010, 2013; Hickman & Van Kranendonk, 2008). On those maps that include the Marble Bar Sub-basin, the ‘Kylena Formation’ (correlated paleomagnetically to Package 1 of Strik et al., 2003) would need to be reassigned to the Mount Roe Basalt. If new lithostratigraphic designations for the immediately underlying ‘Hardey Formation’ sandstone unit and lower Package 0 lavas are desired, then local names from the Marble Bar Sub-basin would need to replace ‘Mount Roe Basalt’ as currently mapped in that area. The U–Pb TIMS age of 2767 ± 3 Ma from an isolated outcrop of shallowly dipping strata near the tip of the Black Range

Figure 10. Apparent polar wander path for Pilbara craton during Fortescue Group deposition. Pole abbreviations given in Table 3. Darker shading denotes the mean Black Range suite (BRS) pole and its nine-constituent site-mean virtual geomagnetic poles.

Figure 11. Revised correlations of lower Fortescue Group strata across northern Pilbara craton, according to paleomagnetic and ID-TIMS 207Pb/206Pb geochronologic data. Abbreviations as in Figure 3, plus the following: P0, Package 0 of Strik (2004); PCF, Pear Creek Formation.
Dyke (Van Kranendonk et al., 2006b) could reasonably apply to either of the two lowest volcanic packages of the Fortescue Group, although paleomagnetic analysis on those particular-dated strata could help resolve the issue. At stratigraphically higher levels, the conglomeratic ‘Pear Creek Formation’ could retain its unique name in the Marble Bar Sub-basin, or it might eventually be incorporated within the Hardey Formation if age constraints permit. As summarised above, the Spinaway porphyry lies within sedimentary rocks of the Hardey Formation in the Nullagine region and has been dated by U–Pb SHRIMP on zircon at 2766 ± 2 Ma (Blake et al., 2004). Our preferred correlations are consistent with that date and younger ages from the Fortescue Group (ibid.).

Conclusions

The present study has produced a revised, high-quality paleomagnetic pole from the Black Range suite of maﬁc dykes, constrained by minimum 206Pb/238U ages on baddeleyite from two intrusions at 2769 ± 1 Ma (the Black Range Dyke itself) and 2764 ± 3 Ma (the Pilga dyke). The best estimate for the crystallisation age of the Black Range Dolerite Suite remains 2772 ± 2 from an earlier study (Wingate, 1999), but our data include the Pilga dyke as a likely member of that swarm—contrary to earlier suggestions. The new paleomagnetic data indicate a polar crossing by the Pilbara craton during initial development of rifting and volcanism as manifested by lowermost strata in the Fortescue Group. New correlations of those strata indicate that rifting began in the localised region of the Marble Bar Sub-basin and was followed by Black Range suite emplacement at 2772 ± 2 Ma and subsequent development of craton-wide magmatism and sedimentation.

Acknowledgements

We thank D. Chad Moore, Ian Rose and Taylor Kilian for ﬁeld assistance; Martin Van Kranendonk for logistical advice; and Jennifer Kasbohm, Blair Schoene and Michael Wingate for discussions during preparation of the manuscript. Michael Wingate and Sergei Pisarevsky are also thanked for their constructive reviews of the manuscript. Funding was provided by the U.S. National Science Foundation, Swedish Research Council, Royal Physiographic Society in Lund, and Yale University.

Disclosure statement

No potential conﬂict of interest was reported by the authors.

ORCID

D. A. D. Evans https://orcid.org/0000-0001-8952-5273
A. P. Gumsley https://orcid.org/0000-0003-1395-3065

References

5. Audrius Cecys, 2004: Tectonic implications of the ca. 1.45 Ga granitoid magmatism at the southwestern margin of the East European Craton.

11. Fredrik Terfelt, 2006: Upper middle Cambrian through Furongian of Scandinavia with focus on trilobites, paleoenvironments and correlations.

Litholund Theses

Dissertations

5. Audrius Cecys, 2004: Tectonic implications of the ca. 1.45 Ga granitoid magmatism at the southwestern margin of the East European Craton.

11. Fredrik Terfelt, 2006: Upper middle Cambrian through Furongian of Scandinavia with focus on trilobites, paleoenvironments and correlations.

15. **Tobias Hermansson, 2007**: The tectonic evolution of the western part of the Svecofennian orogen, central Sweden: Insight from U/Pb and 40Ar/39Ar geochronology at Forsmark.

16. **Pia Söderlund, 2008**: 40Ar-39Ar, AFT and (U-Th)/He thermochronologic implications for the low-temperature geological evolution in SE Sweden.

17. **Anders Cronholm, 2009**: The flux of extraterrestrial matter to Earth as recorded in Paleogene and Middle Ordovician marine sediments.

19. **Linda Larsson-Lindgren, 2009**: Climate and vegetation during the Miocene: evidence from Danish palynological assemblages.

20. **Ingemar Bergelin, 2010**: 40Ar/39Ar whole-rock geochronology of Mesozoic basalts in Scania: evidence for episodic volcanism over an extended period of ca. 80 Myr.

21. **Johanna Mellgren, 2011**: Conodont biostratigraphy, taxonomy and palaeoecology in the Darriwilian (Middle Ordovician) of Baltoscandia: with focus on meteorite and extraterrestrial chromite-rich strata.

26. **Lorraine Tual, 2016**: P–T evolution and high-temperature deformation of Precambrian eclogite, Sveconorwegian orogen.

27. **Mimmi Nilsson, 2016**: New constraints on paleoreconstructions through geochronology of mafic dyke swarms in North Atlantic Craton.

29. **Anders Lindskog, 2017**: Early–Middle Ordovician biotic and sedimentary dynamics in the Baltoscandian paleobasin.
30. Ashley Gumsley, 2017: Validating the existence of the supercraton Vaalbara in the Mesoarchaean to Palaeoproterozoic.
Validating the existence of the supercraton Vaalbara in the Mesoarchaean to Palaeoproterozoic

One of the earliest known potential crustal configurations is that of Vaalbara, which incorporates ancient crust in southern Africa and Western Australia. In this thesis, six papers are presented that have tested the validity of the existence of Vaalbara using new temporal and spatial constraints from the geological record of anonymously large, short-lived volcanic provinces. We achieved this by sampling many of these ancient volcanic units in South Africa and Australia, and made age determinations which were complemented by paleomagnetic studies. The principle conclusion is that these data provide little support for a direct connection between these two ancient pieces of crust from 3 to 2 billion years ago. Instead, it is proposed that these pieces of crust that formed Vaalbara was part of a much larger continent in the middle Archean to early Proterozoic. This continent or supercontinent included pieces of ancient crust in the U.S.A., Canada, Finland, Russia, Ukraine, as well as in India, and to which herein is referred to as ‘Supervaalbara’.

The author, Ashley Gumsley, is a geologist trained at both Lund University in Sweden and the University of Johannesburg in South Africa. He has worked as an exploration geologist looking for economic deposits of copper and gold in Botswana and Tanzania before deciding to pursue a career in research. Ashley’s academic interests are in Precambrian geology, utilizing mostly geochronologic and paleomagnetic tools to solve fundamental problems in our knowledge (or lack thereof) of the history Earth, its origin and evolution.