Temperature Control of the ESS Phase Reference Line

Olofsson, Björn; Bernhardsson, Bo; Zeng, Rihua; Andersson, Pontus

2017

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Temperature Control of the ESS Phase Reference Line

Björn Olofsson*, Bo Bernhardsson*, Rihua Zeng**, and Pontus Andersson*

*Department of Automatic Control, Lund University, Lund, Sweden (bjorn.olofsson@control.lth.se)
**RF Group, Accelerator Division, European Spallation Source, Lund, Sweden

Introduction and Background

Fig. 1: Phase reference line of copper (left), heating cables and temperature sensors attached (middle), and insulation applied (right).

- Phase reference signals for all accelerating components along the 600 [m] linear accelerator.
- Radio-frequency (RF) wave in a rigid coaxial line made of copper. Temperature changes induce phase instability because of length variations of the line (17 [ppm/deg C]).
- Phase change $\Delta \phi$ between x_i and x_f at time t proportional according to

$$\Delta \phi \sim \int_0^t T(x,t) - T_{cal}(x) \, dx,$$

with T and T_{cal} the current temperature and the temperature at calibration, respectively.

- Requirement: $\max_{x,t} |T(x,t) - T_{cal}(x)| \leq 0.1$ [deg C] for 600 [m] phase reference line.

Requirements for temperature stabilization of the line within the requirements.

Models of the heat dynamics

Feedback control

Phase reference signals

Control Design

EPICS (controller implementation and monitoring)

x 30

Prototype Setup at Lund University

Fig. 2: Block diagram of the process dynamics (left) and schematics of phase reference line cross section with insulation (right).

- Feedback control used for temperature stabilization of the line within the requirements.
- Models of the heat dynamics developed and simulated using both analytic and numerical solutions of the partial differential equation for heat diffusion $\nabla^2 \cdot k \nabla T + Q = \rho \cdot c \cdot \frac{dT}{dt}$.
- Inputs and disturbances: Ambient air T_{air}, heat by controller u, and RF heat losses mgp.

Simulation Results

Fig. 3: Stationary temperature in cross section with heat losses in conductors (left) and time & radial temperature dependence (right).

- Analytic (black) and Numerical (red) Step Response from T_{air}
- Temperature on Copper
- Temperature on End Flanges
- Temperature on Direction Couplers
- Temperature on Direction Couplers
- Experimental Results

Further experimental results available in the report:

Fig. 4: A 4.5 [m] prototype with two directional couplers was setup and used for controller development and experimental evaluation.

- A prototype control system for temperature stabilization of the ESS phase reference line.
- Observed control error variations with respect to the calibrated temperature (also for out-of-loop temperature sensors) clearly within $\max_{x,t} |T(x,t) - T_{cal}(x)| \leq 0.1$ [deg C].

Conclusions