Kynurenic Acid levels in cerebrospinal fluid from patients with Alzheimer's disease or dementia with lewy bodies.

Wennström, Malin; Nielsen, Henrietta; Orhan, Funda; Londos, Elisabet; Minthon, Lennart; Erhardt, Sophie

Published in:
International journal of tryptophan research: IJTR

DOI:
10.4137/IJTR.S13958

Published: 2014-01-01

Citation for published version (APA):
Introduction

Alzheimer’s disease (AD) and dementia with Lewy bodies (DLB) constitute the majority of cases with neurodegenerative dementia. Both diseases inevitably lead to severe impairment of cognitive functions and premature death. Neuropathologically, AD and to a large extent also DLB are characterized by accumulation of aggregated Aβ in senile plaques in the brain parenchyma.1–3 Also neurofibrillary tangles (NFTs) are characteristics in AD (aggregations of hyperphosphorylated tau protein),1,3 whereas patients with DLB, in addition to senile plaque, display Lewy bodies and Lewy neurites (intraneuronal accumulation of mainly α-synuclein).2 Accumulation of senile plaques and Lewy bodies is associated with inflammatory processes, and neuropathological studies describe activated astrocytes and microglia adjacent to senile plaques4 and Lewy bodies5,6 in AD and DLB patients, respectively. Also increased levels of pro-inflammatory cytokines have been found in the cerebrospinal fluid (CSF) of AD patients.7 In both AD and DLB patients, CSF levels of factors mediating inflammatory processes such as acute phase proteins and soluble adhesion molecules are elevated.8,9 The dementia-related inflammatory processes appear to play a critical role already at an early stage of the diseases. Indeed, several epidemiological studies have shown reduced risk of AD in individuals medicated with
anti-inflammatory drugs at early age. Also, individuals more than 90 years with elevated levels of C-reactive protein (CRP) have a five-fold risk of developing dementia, and individuals with a parental history of AD have higher production capacity of pro-inflammatory cytokines compared to individuals without a family history of dementia.

Inflammatory processes in the brain may influence several systems underlying disease progression. One of these, the kynurenine pathway of tryptophan degradation gives rise to several neuroactive metabolites. One branch of this pathway, taking place primarily in astrocytes, forms the neuroprotective metabolite kynurenic acid (KYNA). Another branch, primarily in resident and reactive microglia as well as in infiltrating macrophages, forms the excitotoxic metabolite quinolinic acid (QUIN). The latter is an N-methyl-D-aspartate (NMDA) receptor agonist, whereas KYNA blocks several receptors, including the glycine-site and the glutamate recognition-site of the NMDA receptor, the alpha7-nicotinic acetylcholine receptor, as well as the alpha-3-hydroxy-5-methylisoxazol-4-propansyra (AMPA) receptor at higher concentrations. KYNA is also known to stimulate the G protein-coupled receptor 35 (GPR35). Degradation of tryptophan into kynurenines is strongly influenced by inflammatory stimuli. This may be particularly relevant in dementia, known to be driven by inflammatory processes. The potential involvement of KYNA in neurodegenerative disorders was discussed already three decades ago, as studies showed significantly reduced KYNA levels in CSF and brains of patients with Huntington’s disease. Studies from the same time period also demonstrated the presence and action of KYNA in the primate hippocampus, a brain area crucial for memory storage. Additionally, experimental studies demonstrate that KYNA can prevent neurodegeneration in rat striatum.

The neuroprotective aspect of KYNA together with its ability to impair cognitive function is particularly interesting from a dementia perspective, and has led to the idea that an inflammation-induced increase of endogenous KYNA production may contribute to the memory disruption and possibly be a mechanism to counteract the neurodegenerative processes seen in dementia. However, reports on KYNA levels in AD patients are inconclusive. Decreased KYNA levels, but response of endogenous antibodies directed against KYNA (indicating overproduction of KYNA), have been shown in blood from AD patients. Further, elevated or unchanged KYNA concentrations in the brain of AD patients have been found, and an earlier study has described reduced CSF KYNA levels in AD patients compared to healthy individuals. Additionally, experimental studies show cognitive deficits, such as impairments in working memory and contextual learning, in response to increased brain KYNA levels. Conversely, a clinical study has shown a positive association between cognitive function and plasma KYNA levels in AD patients. These contradictory reports highlight the need for studies correlating central KYNA levels in AD with cognitive functions. In addition, less is known about potential alterations in the kynurenine pathway in DLB patients, the second most common neurodegenerative dementia form. In the current study, we therefore investigated levels of KYNA in AD and DLB patients compared to healthy age-matched elders. We also investigated if cognitive functions in AD and DLB patients are associated with changes in CSF KYNA concentrations and whether KYNA correlates to the well-established AD biomarkers Aβ1-42, T-tau, and P-tau in these patients. Finally, we investigated the potential relationships between KYNA and a range of astrocyte-derived inflammatory markers previously shown to be altered in patients with dementia, including alpha 1-antichymotrypsin (ACT), monocyte chemotactic protein-1 (MCP-1), soluble intercellular adhesion molecule-1 (sICAM-1), and soluble vascular cell adhesion protein-1 (sVCAM-1).

Material and Methods

Patients. The studied groups, AD patients (n=19), DLB patients (n=18), and non-demented controls (Ctrls) (n=20), consist of samples from the Malmö Alzheimer Study randomly selected blindly to clinical, mental, genetic, and biomarker results. The entire study cohort has previously been described in detail. In brief, clinical diagnoses were made according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, by the American Psychiatric Association (DSM-IV, 1994) combined with National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Diseases Associations (NINCDS-ADRDA) diagnostic criteria for probable AD. Diagnosis of probable DBL was made according to the DLB consensus criteria. Cognitive status of patients and Ctrls was evaluated using the Mini Mental State Examination (MMSE). The basic CSF AD-biomarker (Aβ1-42, T-tau, P-tau181) profile of the subjects included in the Malmö Alzheimer Study has been described before. Height of AD patients was determined and described as length (meter). The ethics committee of Lund University approved the study, and the study procedures were in accordance with the Helsinki Declaration of 1975 (revised in 2000). All individuals (or their nearest relatives) gave informed consent to participate in the study.

Analysis of KYNA levels in CSF. CSF samples were collected as described before. All samples were freeze-thawed equal amount of times (four times) before the KYNA analysis. Importantly, KYNA is a stable compound and is not degraded even by repeated thawing. The analysis of KYNA was performed utilizing an isocratic reversed-phase high-performance liquid chromatography (HPLC) system, including a dual piston, high liquid delivery pump (Bischoff, Leonberg, Germany), a ReproSil-Pur C18 column (silica pore size, 3 μm (4×100 mm), Dr. Maisch GmbH, Ammerbuch, Germany), and a fluorescence detector (Jasco Ltd., Hachioji City, Japan) with an excitation wavelength of 344 nm and an emission wavelength of 420 nm.
wavelength of 398 nm (18 nm bandwidth). A mobile phase of 50 mM sodium acetate (pH 6.2, adjusted with acetic acid) and 7.0% acetonitrile was pumped through the reversed-phase column at a flow rate of 0.5 mL/minute. A total of 50 µL samples were manually injected (ECOM, Prague, Czech Republic). In all, 0.5 M zinc acetate (not pH adjusted) was delivered post column by a peristaltic pump (P-500, Pharmacia, Uppsala, Sweden) at a flow rate of 0.10 mL/minute. The signals from the fluorescence detector were transferred to a computer for analysis with Datalys Azur (Grenoble, France). The retention time of KYNA was approximately seven to eight minutes. The sensitivity of the HPLC system was verified by analysis of a standard mixture of KYNA with concentrations from 1 to 30 nM resulting in a linear standard plot. The precision of the HPLC method used in the present study was routinely tested within (intra-assay) and between days (interassay) during the days of these analyses. For the determination of intra-assay precision, aliquots (n = 8) of KYNA standards at concentrations of 1 and 10 nM were analyzed. The precision of the assay was calculated from the percentage coefficient of variation (CV) of the mean, according to the equation CV (%) = (standard deviation/mean)100. The CV values for 1 and 10 nM were 3.0 and 4.1%, respectively. Interassay precision was calculated by analyzing aliquots of the same KYNA standard (1 and 10 nM on the days the CSF samples were analyzed) three consecutive days. The CV for interassay precision was 4.3% for 1 nM and 3.9% for 10 nM. The samples were analyzed in singles. In all, 10 of 57 samples (17.5%) were analyzed in duplicates, and the mean CV was 2.8%.

Analysis of additional CSF markers. Complete results regarding CSF levels of sICAM-1, sVCAM-1, and ACT have been previously reported for the entire Malmö Alzheimer Study (Refs. 8 and 9). In addition, CSF levels of MCP-1 were determined using a commercially available quantitative enzyme-linked immunosorbent assay (ELISA) kit (R&D Systems) according to the manufacturer’s instructions.

Statistical analysis. Statistical analysis was performed using the SPSS software (version 12.0.1 of Windows, SPSS Inc., Chicago, IL, USA). Normal distribution of the variables was tested using the Kolmogorov–Smirnov test. The independent sample t-test was used for comparisons between two groups, and the one-way ANOVA analysis, followed by Bonferroni post hoc test, was used for multiple comparisons. Correlations were investigated using the Pearson correlation test. The two-sided χ² test was used to test frequency differences among the groups. Results are presented as means ± standard deviation or range (age and MMSE in Table 1). P < 0.05 was considered significant.

Results

Characteristics of individuals included in the CSF analysis. Table 1 gives the demographic data and MMSE scores of the investigated dementia patients and non-demented Ctrlrs (Table 1). Dementia patients had significantly lower MMSE scores (P < 0.001), compared to Ctrlrs (Table 1). AD and DLB patients had significantly lower Aβ1–42 CSF levels and higher P-tau CSF levels compared to Ctrlrs, and AD patient had significantly higher T-tau levels compared to Ctrlrs (Table 1). Age and use of anti-hypertensive medication and NSAIDs were similar in all groups (data not shown).

Cerebrospinal levels of KYNA. KYNA values were normally distributed within all investigated groups regardless of whether groups were divided based on gender (Ctrlrs P = 0.953, female Ctrlrs P = 0.978 and male Ctrlrs P = 0.905; AD P = 0.978, female AD P = 0.982 and male AD P = 1.000; DLB P = 0.194, female DLB P = 0.787 and male DLB P = 0.265). As previous studies have shown age-dependent changes in CSF KYNA levels, we first investigated whether age correlates with KYNA within the different analyzed groups. No correlation between the two variables was found, and thus age was not included as a covariate in the statistical analysis. Comparison analysis showed no difference in CSF KYNA levels when the groups were compared to each other (ANOVA P = 0.968) (Fig. 1A). As earlier studies suggest a gender-dependent difference in CSF levels of KYNA, we also analyzed CSF KYNA levels after subdividing the Ctrlrs and the patient groups into males and females. Comparison analysis showed no significant changes in CSF KYNA levels between female Ctrl and female DLB patients compared to their male counterparts (2.92 ± 0.39 vs 2.75 ± 0.33 nM, P = 0.747 and 3.45 ± 0.85 vs 1.91 ± 0.43 nM, P = 0.157, respectively). However, a significant increase in KYNA CSF levels was found in female AD patients compared to male AD patients (3.42 ± 0.30 vs 2.39 ± 0.26 nM, P = 0.019) (Fig. 1B). The gender-dependent difference between female and male AD patients was even greater when length was taken into account (2.11 ± 0.50 vs 1.39 ± 1.51 nM/m, P = 0.007). No significant changes in KYNA levels were seen when comparing female DLB or AD patients to female Ctrlrs, or male DLB or AD patients to male Ctrlrs (data not shown).

CSF levels of markers for inflammatory processes. Comparisons of the measured MCP-1 CSF concentrations showed no significant differences between non-demented

Table 1. Demographic data of individuals included in the CSF analysis.

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>CTRL</th>
<th>AD</th>
<th>DLB</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (M/F)</td>
<td>10/10</td>
<td>9/10</td>
<td>8/10</td>
</tr>
<tr>
<td>Agea</td>
<td>76 (71–84)</td>
<td>75 (72–79)</td>
<td>77 (71–84)</td>
</tr>
<tr>
<td>MMSE±</td>
<td>29 (27–30)</td>
<td>***21 (14–30)</td>
<td>***21 (14–28)</td>
</tr>
<tr>
<td>T-tau (ng/L)b</td>
<td>336.65 ± 42.37</td>
<td>**583.79 ± 59.06</td>
<td>403.67 ± 44.10</td>
</tr>
<tr>
<td>P-tau (ng/L)b</td>
<td>62.70 ± 4.61</td>
<td>*76.95 ± 5.80</td>
<td>*81.17 ± 3.70</td>
</tr>
<tr>
<td>Aβ1–42 (ng/L)b</td>
<td>646.19 ± 43.62</td>
<td>***414.11 ± 20.64</td>
<td>**474 94 ± 39.67</td>
</tr>
</tbody>
</table>

Notes: aData are presented as means and (range). bData are presented as means and standard deviation. *indicates a significant difference at the P < 0.05 level compared to controls (CTRL). **indicates a significant difference at the P < 0.01 level compared to CTRL. ***indicates a significant difference at the P < 0.001 level compared to CTRL.
Correlations analysis. Next we investigated potential links between CSF KYNA levels, AD biomarkers (Aβ1-42, T-tau, and P-tau), and cognitive function (total MMSE scores). A positive correlation between KYNA and P-tau (Table 2) and a trend to a significant correlation between KYNA and T-tau (Table 2) was found in the AD patients group. The correlation between P-tau and CSF KYNA levels and the tendency to correlate between T-tau and KYNA was not found in the Ctrl group or DLB group, and no correlation between KYNA CSF levels and the AD biomarkers Aβ1-42 and MMSE was detected in any of the investigated groups (Table 2). We also investigated the relationship between KYNA levels and other inflammatory markers shown to be secreted by reactive astrocytes i.e., MCP-1,25 ACT,26 sVCAM-1,33 and sICAM-1.34 Our correlation analysis showed a positive correlation between KYNA and sICAM-1 (KYNA; r = 0.597, P = 0.007) in the AD group, but not in the DLB or Ctrl group. No correlations between sVCAM-1, ACT, or MCP-1 levels and KYNA levels were found in any of the investigated groups.

Discussion

The present study shows that CSF KYNA levels are not significantly changed when comparing a small patient cohort of AD and DBL to age- and gender-matched Ctrls. Our study further shows that KYNA levels are significantly higher in those female AD patients compared to male AD patients, a result not found in Ctrls or in DBL. Finally, correlation analysis demonstrates a significant correlation between CSF KYNA levels and CSF P-tau and between CSF KYNA and CSF Aβ1-42 in the AD group. CSF KYNA was not significantly correlated to CSF T-tau, CSF Aβ1-42, or the cognitive test battery MMSE in any of the investigated groups.

Notably, our analysis of CSF KYNA levels revealed a mean concentration just below 3 nM in healthy elders (71–84 years), a concentration almost two-folded higher compared to values found in younger (18–66 years) healthy individuals (approximately 1.5 nM).35 This result is in line with a previous study demonstrating an age-dependent increase in CSF KYNA levels, as individuals more than 50 years were shown to display a significant increase in CSF KYNA concentrations compared to individuals below 50 years.22 The CSF KYNA levels in our study did not significantly correlate with age, but because the individuals included in the study were carefully age matched, it may well be that the age range was too narrow to yield a significant correlation between age and CSF KYNA levels. Although a previous study reports decreased CSF levels of KYNA in AD patients,22 we were unable to confirm this finding. It should however be noted, as mentioned in the Introduction, that consensus regarding KYNA alterations in AD is still lacking. This inconsistency may highlight the heterogeneity of disease, which the high variances of KYNA values within the analyzed groups in our study may indicate. Notably, we found no evidence of a direct involvement of KYNA alterations in DBL pathogenesis, as no significant changes in CSF KYNA levels were detected in this patient group.

Levels of KYNA in CSF from female AD patients were significantly higher compared to those of male AD patients, and similar findings were seen in DBL females compared to males although this difference was not significant. This finding is in line with previous studies demonstrating higher CSF and...
KYNA levels in younger females (age less than 47 years),23,28 which indicates a gender-dependent regulation of KYNA secretion. Previous studies have shown a negative correlation between CSF KYNA concentrations and body height,23 and it is assumed that a tall person, because of a longer spinal compartment, exhibits a larger surface for resorption of metabolites from the CSF, which results in lower concentrations. However, the gender difference in CSF KYNA in AD patients was even greater when taking height into account. Interestingly, we found no difference in CSF KYNA levels between healthy elder females or males. The significance of this result is elusive, and because the number of individuals included in the gender divided groups is small, it may be that the lack of differences is because of low statistic power. However, given that the measured levels of KYNA in our healthy elder individuals are much higher than what is usually seen in younger individuals (as described above), it is tempting to speculate that age-dependent increase in KYNA may even out the difference. Another potential explanation is the fact that the elder women have passed their menopause and thereby lack estrogen production. Interestingly, previous studies have shown that estrogen affects the activity of tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO), two rate-limiting enzymes of tryptophan metabolism along the L-Kynurenine pathway.29 Activity of TDO is enhanced by estrogen via the hypothalamic–pituitary–adrenal axis,30 and IDO expression has been shown to be upregulated in immune cells in response to estrogen.31 If lack of estrogen production underlies the absence of difference in elder healthy Ctrls, it also indicates that altered KYNA in female patients is a consequence of a gender-dependent pathology-induced increase in KYNA secretion. Notably, DLB has a male preponderance,32 and thus our cohort is atypical for this disorder, which could affect the results. Nevertheless, we found no significant difference between male DLB patients and male Ctrls (P = 0.157), which may be a result of insufficient statistical power (n = 8 DLB patients and n = 10 Ctrls).

Despite previous findings describing an association between MMSE and serum KYNA levels in AD patients,21 we found no correlation between CSF KYNA levels and MMSE, regardless of gender, in any of the investigated groups. It should however be pointed out that the MMSE test consists of different tasks evaluating hippocampal-dependent cognition such as spatial orientation, memory, and also calculation, language, and construct ability.36 Previous experimental rodent studies foremost links altered KYNA levels to hippocampal-dependent cognition. Spatial discrimination, passive avoidance and object exploration/recognition, is enhanced in KAT II knock-out mice with reduced brain KYNA levels37 and impaired memory, passive avoidance and elevated brain KYNA, is associated with reduced cognitive flexibility in offspring of dam rats fed with KYNA-containing chow under the gestational period.38,39 In bypass patients, KYNA has been shown to function as a predictor of poor cognitive performance related to frontal executive functions and memory.40 The lack of a correlation between CSF KYNA and MMSE in the present study could thus be related to the design of the cognitive test.

Our correlation analysis yielded no significant correlations with the AD biomarkers T-tau or Aβ1–42, but we found a significant positive correlation between P-tau and KYNA levels. CSF levels of P-tau are routinely used to aid clinical diagnostics, as increased levels of P-tau are indicative of intraneuronal hyperphosphorylation of tau41 causing NFTs. Previous in vitro studies have shown an increase of tau hyperphosphorylation in neurons exposed to QUIN,42 another metabolism of the kynurenine pathway, and in vivo studies have shown hyperphosphorylation of cytoskeletal intermediate filament proteins in astrocytes and neurons in rats after intrastral administration of QUIN.43 Moreover, an immunohistological postmortem study shows co-localization of P-tau and QUIN positive NFTs with TDO, a key enzyme regulating the kynurenine pathway.44 Although, there are no previous reports describing a direct impact of KYNA on neuronal tau hyperphosphorylation or a relationship between KYNA production and P-tau formation, our data suggest that also KYNA might be implicated in this pathological event. The previously demonstrated link between P-tau and QUIN highlights the importance of analyzing this metabolite also in dementia pathology. QUIN is a NMDA receptor agonist45 and is foremost produced in microglia.46 Production of QUIN is strongly affected by inflammatory actions, as cytokines have been shown to enhance the production of QUIN in macrophages.47 Furthermore, QUIN is known to stimulate astrocyte secretion of chemokines48 and cytokines.49 Immunohistological studies on brain tissue from AD patients have shown increased immunoreactivity of QUIN in senile plaques,50 and increased levels of QUIN levels have been found in plasma from AD patients.13,21 Unfortunately, because of lack of sufficient amount of CSF we were unable to analyze QUIN in this study, but would like to stress the importance of including this metabolite in future studies for their role in kynurenine pathway in dementia.

Finally, we analyzed the relationship between KYNA levels and factors secreted by astrocytes in response to inflammatory stimuli. We found no relationship between ACT, MCP-1,
or sVCAM-1 and KYNA levels, which may be explained by the fact that these variables, in particular MCP-1 and sVCAM-1, are secreted not solely from reactive astrocytes but also by a range of other cell types. Thus, KYNA may, in response to inflammatory actions, be produced independently of ACT, MCP-1, or sVCAM-1. A significant correlation was however found between sICAM-1 and KYNA in the AD group. This glycoprotein is expressed by endothelial cells, astrocytes, and infiltrating immune cells (macrophages and leukocytes) and is implicated in the migration of immune cells across the endothelium. Inflammatory events and elevated levels of cytokines upregulate the expression of sICAM-1. Further in vitro studies have shown a direct correlation between levels of shedded sICAM-1 and cell surface ICAM-1 suggesting that increased levels of sICAM-1 in the CSF is indicative of up-regulation of surface-bound ICAM-1 in the brain. Interestingly, KYNA is also produced in endothelial cells and elicits firm arrest of immune cells on the endothelium, an event mediated by ICAM-1. Hence, although the positive correlation between KYNA and sICAM-1 does not prove a direct causality between increased KYNA levels and increased sICAM-1, it is tempting to speculate that the correlation between KYNA levels and sICAM-1 levels mirrors this intimate relationship.

Conclusion

Our study showed no significant alterations in CSF KYNA levels in either AD or DLB patients compared to those of Ctrl. Further, no correlation between KYNA levels and cognitive decline in these patients was observed. However, the number of individuals included in this study was relatively small, and further studies on larger patient cohorts are required to understand the potential role of KYNA in AD and DLB. The inconsistency of KYNA alterations in AD may also be because of the heterogeneity of the disease. Furthermore, our correlation analysis shows that KYNA may be implicated in AD-related hyperphosphorylation of tau and infiltration of immune cells.

Author Contributions

Conceived and designed the experiments: MW, SE. Analyzed the data: MW, HN, FO. Wrote the first draft of the manuscript: MW. Contributed to the writing of the manuscript: HN, SE. Agree with manuscript results and conclusions: LM, EL. Jointly developed the structure and arguments for the paper: MW, SE. Made critical revisions and approved final version: HN, EL. All authors reviewed and approved of the final manuscript.

REFERENCES

28. Atras A, Gisslen M, Nordin C, Lindstrom L, Schwierle L. Acute psychiatric symptoms in HIV-1 infected patients are associated with increased levels of kynurenic acid in cerebrospinal fluid. Brain. 2007;21(3):86–91. [Research Support, Non-U.S. Gov't, Extramural Research Support, Non-U.S. Gov't].

