Multiband diversity antenna performance study for mobile phones

Avendal, Johan; Ying, Zhinong; Lau, Buon Kiong

Published in: International Workshop on Antenna Technology (iWAT), 2007

DOI: 10.1109/IWAT.2007.370109

2007

Document Version: Peer reviewed version (aka post-print)

Link to publication

ABSTRACT: Spatial diversity is a popular multiple antenna system technique, due to simplicity in implementation. However, its application has thus far been limited to systems where the electrical separation between adjacent antennas typically exceeds half a wavelength. This is because a more compact design induces higher antenna correlation and impedance mismatch, which results in lower diversity gains. In this paper, the performance of a compact multiband diversity antenna is investigated in both simulations and measurements. The dual-antenna structure is designed for the future WCDMA bands of WCDMA850, WCDMA1800 and 3G EU (UMTS), where the antenna separation at the WCDMA850 band is 0.24*wavelength. The measured results indicate that an average effective diversity gain of 7.3 dB at the 1% probability level can be achieved for the three bands.
\[\rho_e = \frac{|S_{11}S_{22} + S_{12}S_{21}|}{(1 - |S_{11}|^2)(1 - |S_{22}|^2)}, \]

(1)

where \(S_{ij} \) is the s-parameter reflection coefficient for the input signal reflecting from port \(j \) into port \(i \).

The envelope correlation coefficient as calculated from the radiation patterns in spherical coordinates \(\Omega = (\theta, \phi) \) [8] is

\[\rho_e = \frac{\int (XPR \cdot E_{\theta\theta}(\Omega)E^*_{\theta\theta}(\Omega) + E_{\phi\phi}(\Omega)E^*_{\phi\phi}(\Omega))d\Omega}{\int (XPR \cdot G_{\theta\theta}(\Omega)P_{\theta\theta}(\Omega) + G_{\phi\phi}(\Omega)P_{\phi\phi}(\Omega))d\Omega}, \]

(2)

where \(G_{\theta\theta}(\Omega)E_{\theta\theta}(\Omega) \) and \(G_{\phi\phi}(\Omega)E_{\phi\phi}(\Omega) \) are the vertical \((\theta)\) and horizontal \((\phi)\) polarized complex radiation patterns of antennas \(X \) and \(Y \) in the diversity system, \(P_{\theta\theta}(\Omega) \) is the incident power spectrum for the different polarizations, and \(XPR \) (cross polar discrimination) is the time averaged vertical-to-horizontal power ratio.

In this paper the combining technique used to combine the diversity signals is selection combining [3]. The effective diversity gain [9] at a given probability level (e.g., 1% or 50%) is given by

\[DG_{\text{eff}} = DG \cdot e_{\text{ref}} = \left(\frac{P_{\text{div}}}{P_{\text{ref}}}\right) e_{\text{ref}}, \]

(3)

where \(DG \) is the diversity gain, \(e_{\text{ref}} \) is the total radiation efficiency (including both ohmic and impedance mismatch losses) of the reference antenna, \(P_{\text{div}} \) is the power level after diversity combining, and \(P_{\text{ref}} \) is the power level at the reference antenna. \(P_{\text{div}} \) and \(P_{\text{ref}} \) are taken at the given probability level and \(P_{\text{ref}} \) is the antenna with the higher power).

COMPACT ANTENNA PROTOTYPE

The two antennas used in this study are based on previous antennas presented in [10] and [11]. The left antenna (port 1) in Fig. 1 is a PIFA-based antenna [10]. The big patch excites the most power for the lower (WCDMA850 band) while the upper branch controls the WCDMA1800 band. A shorted parasitic patch creates the resonance for the UMTS band. The right monopole-based antenna (port 2) [11] in Fig. 1 has a dense meandering patch on the right side which controls the WCDMA850 band. The bigger branch on the upper side facilitates the resonance for the WCDMA1800 band while the smaller, shorted parasitic element creates a capacitive load and tunes the resonance for the UMTS band. The dimensions for the PIFA (antenna 1) are 40×18×7 mm (xyz) (see Fig.1 for coordinates) and 40×16×7 mm (xyz) for the monopole. (antenna 2). The spacing between the feed points of the two antennas is 84 mm or 0.24\(\lambda \) (for WCDMA850)

The length of the whole multiple antenna structure is 100 mm but since there is no conductor under the monopole, the length of the ground plane is only 84 mm.

PERFORMANCE EVALUATIONS

Simulation and Experimental Setups

The amplitude and phase of \(E_{\theta} \) and \(E_{\phi} \) and efficiencies of the prototype diversity antenna are simulated in the method-of-moments software IE3D [12]. The results are exported to a Matlab program where the diversity performance metrics of envelope correlation and effective diversity gain are calculated. The prototype antenna is also manufactured and measured to verify the simulated results (see Fig. 1). The amplitude and phase of \(E_{\theta} \) and \(E_{\phi} \) and total efficiencies of the antennas are measured in a Satimo anechoic chamber [13].

![Fig. 1 Manufactured antenna](image-url)
The measured results from Satimo are then evaluated in the aforementioned Matlab® program for diversity performance. In [14], it was concluded that a three-dimensional uniformly distributed case could be used when calculating the envelope correlation coefficients and diversity gains. For this reason, a uniform distribution of the incident waves is assumed when calculating the results (for IE3D and Satimo) in Fig. 3a and Tab. 1.

Results and Discussions

The s-parameters simulated in IE3D and those measured in a network analyzer are given in Fig. 2. The agreement between the simulation and measurement is quite good. However, it can be seen in Fig. 2b that the maximum value for the S_{12}-parameter for the lowest WCDMA850 band is about -4 dB in simulations, while it is about -9 dB in the measurements. Since there is a 5 dB difference in the coupling, the correlations coefficient calculated from the measurement results is expected to be lower and thus the diversity gain higher for the lowest band. Moreover, it is also observed in Figs. 2d and 2f that the measured S_{11} and S_{22}-parameters are shifted in phase with respect to the simulated parameters in the vicinity of the lowest band. In contrast, good agreement is obtained between simulated and measured phase of S_{12} (see Fig. 2e). Therefore, the phase behavior is also expected to contribute to discrepancies between the envelope correlations obtained from the simulated and measured results using (1).

The above observations are confirmed in Fig. 3 where it can be seen that the envelope correlation coefficient is indeed much lower for the lowest band in measurements than in simulations.

Tab. 1 Diversity gain and effective diversity gain at 1% probability [dB] from simulations and measurements

<table>
<thead>
<tr>
<th>Frequency [MHz]</th>
<th>869</th>
<th>881.5</th>
<th>894</th>
<th>1805</th>
<th>1842.5</th>
<th>1880</th>
<th>2110</th>
<th>2140</th>
<th>2170</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diversity gain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE3D (simulated)</td>
<td>6.53</td>
<td>7.02</td>
<td>7.48</td>
<td>10.15</td>
<td>10.17</td>
<td>10.16</td>
<td>10.13</td>
<td>10.11</td>
<td>10.09</td>
</tr>
<tr>
<td>Satimo (measured)</td>
<td>10.08</td>
<td>10.10</td>
<td>9.95</td>
<td>10.20</td>
<td>10.20</td>
<td>10.20</td>
<td>10.20</td>
<td>10.20</td>
<td>10.17</td>
</tr>
<tr>
<td>Effective diversity gain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE3D (simulated)</td>
<td>3.84</td>
<td>3.77</td>
<td>3.76</td>
<td>8.69</td>
<td>9.03</td>
<td>9.25</td>
<td>9.03</td>
<td>8.95</td>
<td>8.88</td>
</tr>
<tr>
<td>Satimo (measured)</td>
<td>6.77</td>
<td>7.15</td>
<td>5.94</td>
<td>7.65</td>
<td>7.47</td>
<td>7.06</td>
<td>8.48</td>
<td>7.45</td>
<td>7.96</td>
</tr>
</tbody>
</table>
Because of the lower measured envelope correlation coefficient for the lowest band, both the measured diversity gains and the measured effective diversity gains are approximately 3 dB higher than their simulated counterparts for the lowest band (see Tab. 1). On the other hand, the agreement between simulated and measured diversity gains is very good for the two higher bands. However, since the efficiencies for the two higher bands are lower in the measurements than in the simulations, the measured effective diversity gains are lower than the simulated gains.

One possible reason for the aforementioned higher measured coupling for the lowest band (see Fig. 2b) is that the simulated diversity antenna is not exactly identical to the manufactured antenna of Fig. 1. In particular, the simulated version does not include the metallic feeding cables (soldered onto the ground plane at several points) and the SMA connectors, which extends beyond the ground plane at right angles. The practical feeding arrangement can influence the current flow on the ground plane and reduce the coupling predicted by simulation. Due to space constraint, a more comprehensive description and analysis of the present work, including the radiation patterns of the prototype diversity antenna, are relegated to [15].

CONCLUSIONS

The diversity performance of a compact prototype antenna structure, consisting of two triband antennas, has been examined for the WCDMA850, WCDMA1800 and UMTS bands. It is shown that significant diversity gains can be obtained, even at the lowest band where the antenna separation is merely 0.24\(\lambda\). In particular, effective diversity gains of up to 7 dB (at 1% probability level) can be achieved for the WCDMA850 band, while at the higher frequency bands of WCDMA1800 and UMTS the gains are as high as 8-9 dB.

ACKNOWLEDGMENTS

Helpful advice and discussions with Thomas Bolin and Vanja Plicanic of Sony Ericsson Mobile Communications AB are gratefully acknowledged.

REFERENCES