Immunization with the Truncated Adhesin Moraxella catarrhalis Immunoglobulin D-Binding Protein (MID764-913) Is Protective against M. catarrhalis in a Mouse Model of Pulmonary Clearance.

Forsgren, Arne; Brant, Marta; Riesbeck, Kristian

Published in:
Journal of Infectious Diseases

Published: 2004-01-01

Citation for published version (APA):
Immunization with the Truncated Adhesin Moraxella catarrhalis Immunoglobulin D–Binding Protein (MID764–913) Is Protective against M. catarrhalis in a Mouse Model of Pulmonary Clearance

Arne Forsgren, Marta Brant, and Kristian Riesbeck
Department of Medical Microbiology, Malmo University Hospital, Lund University, Malmo, Sweden

Most Moraxella catarrhalis isolates express the outer membrane protein MID. In addition to its specific affinity for immunoglobulin D, MID functions as an adhesin and binds to human epithelium. The adhesive part is localized within MID764–913. Two mid-deficient M. catarrhalis isolates were constructed and examined in a mouse model of pulmonary clearance. M. catarrhalis devoid of MID was cleared more efficiently, compared with the wild-type counterparts. Furthermore, mice immunized with MID764–913 cleared M. catarrhalis much more efficiently, compared with mice immunized with bovine serum albumin. MID764–913 is suggested as a promising candidate in a future M. catarrhalis vaccine.

After Haemophilus influenzae and Streptococcus pneumoniae, Moraxella catarrhalis is the third most common bacterial agent in acute otitis media in children. M. catarrhalis is often implicated as a cause of sinusitis in both children and adults. In adults and the elderly, M. catarrhalis is a common cause of lower respiratory tract infections, particularly in those with predisposing conditions, such as chronic obstructive pulmonary disease. The emergence of M. catarrhalis as a significant cause of human disease and the increase of antibiotic resistance in the species have generated much interest in the identification of potential vaccine antigens [1].

Recently, a novel surface protein of M. catarrhalis that displays a high affinity for IgD (MID) was solubilized in Empigen (Calbiochem) and isolated by use of ion-exchange chromatography and gel filtration [2]. The apparent molecular mass of monomeric MID was estimated to be \(\sim200 \) kDa by use of SDS-PAGE. The mid gene was cloned and expressed in Escherichia coli. The complete mid nucleotide gene sequence was determined, and the deduced amino acid sequence consists of 2123 or 2139 residues, depending on 2 alternative translation starts. MID is most likely identical to the 200-kDa protein described by Fitzgerald et al. [3] and the Hag protein described by Pearson et al. [4]. The sequence of MID has no similarity to other immunoglobulin-binding proteins and was found to exhibit unique immunoglobulin-binding properties [2]. Thus, MID bound 2 purified IgD myeloma proteins, 4 IgD myeloma sera, and, finally, 1 IgD standard serum. No binding of MID was detected to IgG, IgM, IgA, or IgE myeloma proteins. MID was also attracted to the surface-expressed B cell receptor IgD, but not to other membrane molecules, on human peripheral blood lymphocytes [5]. The smallest fragment of MID with essentially preserved IgD binding comprised 238 aa residues (MID962–1200) [6]. Ultracentrifugation experiments and gel electrophoresis revealed that native MID962–1200 is a tetramer. Interestingly, tetrameric MID962–1200 attracted IgD \(\sim20 \)-fold more efficiently than did the monomeric form. Thus, a tetrameric structure of MID962–1200 was crucial for optimal IgD-binding capacity.

The mid gene was detected in all 98 strains studied, as revealed by homologic analysis of the signal peptide sequence and a conserved area in the 3′ end of the gene [7]. When the mid genes from 5 different strains were compared, an identity of 65.3%–85.0% and a homology of 71.2%–89.1% was detected. Gene analyses showed several amino-acid repeat motifs in the open-reading frames. Eighty-four percent of the Moraxella strains expressed MID-dependent IgD binding, as revealed by flow cytometric analysis. It was shown that bacteria reduced their expression of MID by removing a guanosine (G) in their poly(G) tracts downstream of the start codons. Moraxella strains isolated from the nasopharynx, blood, and sputum expressed MID at approximately the same frequency. In addition, no variation was observed between strains from different geographical origins. MID and the mid gene were found solely in M. catarrhalis; related Neisseria and Moraxella species did not express MID.

Our previous work shows a strict correlation between hem-
agglutination and expression of MID in *M. catarrhalis* [8]. Isolated MID and a 150-aa recombinant MID–derived protein (MID764–913) bound to erythrocytes and type II alveolar epithelial cells. Antibodies to MID, MID764–913, or the consensus sequence MID775–804 effectively inhibited adherence to the alveolar epithelial cells. Since *M. catarrhalis* isolates expressing MID at high concentrations bound considerably more effectively to epithelial cells, compared with isolates expressing MID at low concentrations and 2 MID-deficient mutants, the MID protein and, in particular, the fragment MID764–913 are suggested to be attractive vaccine candidates.

In the present report, we demonstrate that MID is important for bacterial survival, in a mouse pulmonary clearance model, as revealed by MID-deficient *M. catarrhalis* mutants. In addition, mice immunized with the adhesive part of MID (MID764–913) more strongly cleared *M. catarrhalis* wild-type (wt) bacteria, compared with control mice immunized with bovine serum albumin.

Materials and methods. Female BALB/c mice (6–8 weeks old; Taconic) were used in all experiments. Animal-experimentation guidelines were followed, in accordance with the Swedish National Board for Laboratory Animals at Lund University, Lund, Sweden. Mice were immunized intraperitoneally with 50 μg of purified recombinant MID764–913 [6] emulsified in complete Freund’s adjuvant (Difco; Becton Dickinson) and received booster doses on days 14 and 48, with the same dose of protein in incomplete Freund’s adjuvant. Ten days after the last booster dose, mice were challenged with *M. catarrhalis*.

M. catarrhalis strains are described in table 1. All bacterial strains were grown on solid blood agar medium or in brain-heart infusion liquid medium (Oxoid). MID-deficient *M. catarrhalis* isolates were constructed by use of a standard protocol [8]. For the pulmonary clearance model, the procedure described by Unhanand et al. was followed [9]. Mice were sedated with enflurane in combination with oxygen. A bolus inoculum of 10⁸ cfu in PBS containing 0.15% gelatin (final volume, 20 μL) was deposited into the bronchial tubes by use of an intratracheal (int) cannula. Lungs were removed under sterile conditions, weighed, and homogenized by use of a DI 18 dispenser (IKA yellow line; Staufen). The homogenates were serially diluted and plated on blood agar plates, followed by incubation overnight at 37°C. Measurements of antibodies to MID764–913 and tests of the bactericidal activity were performed according to standard protocols [10].

Results. To study the influence of MID on pulmonary clearance in mice, MID-deficient mutants of 2 *M. catarrhalis* clinical isolates were constructed. Resulting mutants were deficient in MID, as revealed by Western blotting using polyclonal antibodies (PAb) against the sequence MID962–1208 [8]. Furthermore, the 2 mutants were deficient in expression of MID, as shown by flow cytometric analysis using the same PAbs. In addition, no significant difference in cell density and generation time was found between the wt and mutant strains (figure 1), nor could any difference in susceptibility to normal human and mouse serum be detected between MID-deficient mutants and wt bacteria.

In initial experiments, pulmonary clearance of 8 strains of *M. catarrhalis* from diverse clinical sources was investigated in the murine model system (table 1). After a bolus inoculum of 10⁸ cfu, recovery of bacteria from the lungs was followed by viable count, by use of disintegrated lungs. No correlation was detected between isolates from patients with sinusitis, bronchiolitis, otitis media, or septicemia. Surviving *M. catarrhalis* could not regularly be detected at ≥6 h after bacterial inoculation. Consequently, the importance of MID for pulmonary clearance was studied 3 h after bacterial inoculation. As shown in figure 2, the *M. catarrhalis* wt strain RH4 displayed slight net growth over the course of the 3-h experiment. In contrast, the derived mutant was cleared by 80% from the lungs. Another wt strain, BBH18, was cleared such that only 30% of the initial inoculum remained in the lungs at 3 h after inoculation. However, only 15% of the derived mutant bacteria could be detected.

| Table 1. *Moraxella catarrhalis* strains used in the present study. |
|-----------------|-----------------|-----------------|-----------------|
| Strain¹ | Site of isolation | Diagnosis (age of person derived from) | Reference |
| SÖ-1914 | Tympanic cavity | Otitis media (9 months)² | [2] |
| S7-1340 | Bronchoalveoli | Myeloma (56 years) | [6] |
| S6-4568 | Nasopharynx | Otitis media (1 year) | [7] |
| S6-688 | Nasopharynx | Leukemia, fever (29 years) | [7] |
| S6-177 | Nasopharynx | Upper respiratory tract infection (1 year) | [7] |
| Bc5 | Nasopharynx | | |
| BBH18 | Sputum | Exacerbation, COPD³ | [7] |
| BBH18Δmid | Sputum | | |
| RH4 | Blood | Septis | [7] |
| RH4Δmid | | | |

¹ Most *M. catarrhalis* strains were from Sweden, except for BBH18 and RH4, which were from Denmark.
² *Streptococcus pneumoniae* was also isolated.
³ COPD, chronic obstructive pulmonary disease.
Figure 1. Comparison of the growth rates of the wild-type *Moraxella catarrhalis* parent strains and the MID-deficient mutants. A. *M. catarrhalis* RH4 and RH4Δmid. B. BBH18 and BBH18Δmid. Bacteria were grown in brain-heart infusion liquid medium at 37°C, with agitation at 200 rpm. Samples were obtained every 30 min, and the optical density at 600 nm (OD$_{600}$) was determined. Data are from 1 representative experiment of 3 experiments performed.

The importance of MID was also studied after immunization of mice with MID$^{764–913}$, a truncated fragment of MID that previously has been shown to be critical for adherence to epithelial cells [8]. Serum samples from mice immunized with MID$^{764–913}$ showed a >10,000-fold increase in antibody titer but no significant increase in bactericidal titer. However, immunized mice had a significantly improved efficiency to clear 2 clinical isolates of *M. catarrhalis* from the lungs (figure 2B).

Discussion. The molecular interactions that occur between the pathogen and the host cell are among the earliest events in bacterial infections. These interactions are required for extracellular colonization and internalization to occur and are usually mediated by adhesins on the surface of the microbe. The pathogenesis of *M. catarrhalis* is not completely understood, but, in recent years, an increasing number of virulence factors involved in adhesion and colonization have been determined. We have shown that MID is a highly conserved outer membrane protein (OMP) and have suggested that it plays an important role in the pathogenesis of *M. catarrhalis* [7, 8]. Recently, we demonstrated that MID is an adhesin, by promoting attachment to alveolar epithelial cells, and that the adhesive part of MID is localized within the 150-aa fragment MID$^{764–913}$.

Our observations have been confirmed by Lafontaine et al., who have shown that the Hag protein, which is most likely
identical to MID, is an adhesin for cells derived from human lungs and the middle ear [11]. However, Hag-deficient mutants adhered at wt levels to Chang conjunctival epithelial cells. Partly in contrast with the our results and those of Holm et al. [11], Pearson et al. [4] tested 1 isogenic hag mutant only and showed that it was attached at wt levels to several cell lines, including Chang, Hep-2, 16HBE14 bronchial-epithelial cells, and, finally, NCI-H292 epithelial cells derived from a lungmucocoeplidermoid carcinoma. Other studies with M. catarrhalis have identified ubiquitous surface protein (Usp) A1, UspA2, UspA2H, OMP CD, OMP M. catarrhalis adherence protein (McaP), and Moraxella lipooligosaccharide as potential adhesins [1, 4, 11–14]. However, of these, only UspA1, UspA2H, and OMP McaP have been directly shown to mediate adherence to human cells.

The low virulence of M. catarrhalis in laboratory animals has hampered protection experiments and pathogenicity studies. The most frequently used animal model for the study of pulmonary clearance of M. catarrhalis is a mouse model [9]. This model consists of transoral inoculation of bacteria into the lung and enumeration of surviving bacteria after removal and homogenization of lungs. It has been shown that antibodies against the OMP Cop B of M. catarrhalis, immunization with detoxified lipooligosaccharide from M. catarrhalis, and homogenization of lungs. It has been shown that antibodies against the OMP Cop B of M. catarrhalis, immunization with detoxified lipooligosaccharide from M. catarrhalis (as well as vaccine regimens involving intra Peyer’s patch), and intranasal and int routes of immunization with killed M. catarrhalis enhance pulmonary clearance of the pathogen. Furthermore, in an aerosol-challenge model, passive immunization with antisera to the bacterial strain used for challenge was shown to enhance clearance [15]. In light of hitherto discovered M. catarrhalis OMPs [1, 4, 11–14] and the increased understanding of the pathogenesis of M. catarrhalis, MID and its adhesive domain MID764–913 [2, 6–8] are very promising components to be included in a future vaccine against M. catarrhalis.

References