Resonance Enhancement with Antenna Modeling

Gerhard Kristensson and Margaret Cheney
Abstract

This paper develops theory for an iterative experimental approach to use one or more antennas to identify resonances of a scattering system, which could consist of the antennas and one or more scattering objects. We include realistic mathematical models for the antennas and for target(s), and we show that the resonances include effects from the antennas and wave propagation as well as the target scattering operator and its poles. We show how the effects of the antennas and wave propagation paths can be removed, to leave only the effect of the target scattering operator. We include simulations for the case of one and two cylindrical dipole antennas probing a dielectric sphere, and we show the effect of antenna resonances on the iterative experimental process.

1 Introduction

For remote target identification, one of the challenges is that targets look different from different viewing aspects. Consequently there has long been interest in making use of target features that are independent of viewing aspect [19, 25]; one class of such features are target resonances. A promising approach, the Singularity Expansion Method (SEM) was proposed by Baum [2, 3], in which he noted that each target has a scattering operator that has certain poles in the complex plane [14]. These poles do not depend on the viewing angle, but the challenge is to find a way to extract the poles from time-domain scattering data [30, 32, 34, 35].

An independent line of investigation determined the time-domain waveform that returns the most scattered energy from a target [10, 22]. In general, the best waveform is a single-frequency waveform whose frequency can be found experimentally by an iterative process in which each successive backscattered signal is time-reversed and retransmitted.

The fact that the solution to this problem involves an iterative time-reversal process thus makes a connection with a long line of work on time reversal, including [4, 16] and references in [16]. Much of this work addresses different types of problems, such as refocusing on a source through an inhomogeneous medium. Other previous work addresses the connection between eigenvalues of the time-reversal operator and target characteristics [6–9, 38]. To distinguish our use of iterative time-reversal from other types of problems whose solutions also involve a time-reversal process, we refer to our approach as the Resonance Enhancement Method (REM).

REM has been used experimentally to identify acoustic target resonances from a single-channel system [28, 39]. The paper [26] carried out two-channel simulations for idealized antennas and targets, and suggested a possible connection with Baum’s SEM method.

In this paper we extend the work of [26] to the case of more accurate modeling of antenna and target behavior. In particular, we address the issue of how the antenna affects our ability to obtain information about the target frequency response. In a subsequent paper we investigate the connection between this approach and the SEM method.
This work focuses on the case of one or more antennas, which could be spatially
distributed, and a target, which could consist of multiple scattering objects, em-
bedded in free space. We assume that the target is located in the far zone of each
antenna, and each antenna is located in the far zone of the scatterer. However, the
scatterer does not need to be in the far zone of the entire antenna configuration,
only in the far zone of each antenna.

We emphasize that the experiments are done in time domain; however much of
the analysis is carried out in the frequency domain for convenience.

2 Antenna description

The antennas used in this paper act both as a transmitting and a receiving device.
The generic geometry of a typical antenna is depicted in Figure 1, where the radiat-
ing part is colored red, and the supporting electronics with the detector/generator
(in green) is colored blue. The surrounding medium is assumed to be homogeneous,
lossless, and isotropic, characterized by the relative permittivity $\epsilon(k)$ and the
permeability $\mu(k)$. Here, $k = \omega/c$ is the wave number of the exterior medium, ω is the
angular frequency, and c is the light speed. The assumption of a lossless surrounding
material implies that $\epsilon(k)$ and $\mu(k)$ are real-valued numbers.

A transmission line feeds the antenna. The fields in a transmission line can be
characterized either by the voltage $V(k)$ and the current $I(k)$, or, equivalently, by the
amplitudes, $\alpha(k)$ and $\beta(k)$, of the two traveling waves. The quantities are monitored
at a fixed position (the reference plane), and the spatial behavior is irrelevant for
us in this paper, and therefore suppressed. For our needs, it is advantageous to use
the amplitudes of the two traveling waves on the feed.

The wave that propagates to the right (from the signal generator to the an-
tenna) has amplitude $\alpha(k)$, and the one that propagates to the left (output from
the antenna, which enters the detector) has amplitude $\beta(k)$; see Figure 1. The (pos-
sibly complex-valued) amplitudes $\alpha(k)$ and $\beta(k)$, which both have dimensions of
Volts (V), act like input and output, respectively, to the antenna configuration. In
terms of the voltage $V(k)$ and current $I(k)$ on the transmission line, the amplitudes
of the waves are defined by

$$\alpha(k) = \frac{1}{2} (V(k) + Z(k)I(k)),$$
$$\beta(k) = \frac{1}{2} (V(k) - Z(k)I(k))$$

with inverse

$$V(k) = \alpha(k) + \beta(k), \quad Z(k)I(k) = \alpha(k) - \beta(k)$$

where the transmission line characteristic impedance $Z(k) = \sqrt{\mu_0\mu(k)/\epsilon_0\epsilon(k)}$ is a
positive, real-valued function of k. Note that the characteristic impedance is the
same for all transmission lines, and it is generally frequency-independent.

In the surrounding space, there are two vectors that characterize the interaction
with the antenna, viz., the far field amplitude of the antenna in the far field zone,

\footnote{We allow for a dependence on the wave number k (or frequency), which can be used to model existing dispersion effects.}
$\alpha(k)$ and $\beta(k)$ are the exciting amplitude and the field E_0, respectively. The reference point (local origin) is denoted O. The outputs are the amplitude $\beta(k)$ and the far field amplitude $F^A(k, \hat{r})$. The far field amplitude depends linearly on the coefficient $\alpha(k)$, and we formally write the relation between the far field amplitude of the antenna and the excitation $\alpha(k)$ as

$$F^A(k, \hat{r}) = f(k, \hat{r})\alpha(k)$$

which defines the dimensionless vector $f(k, \hat{r}) \in \mathbb{C}^3$. Because the far-field electric field is perpendicular to the direction of propagation, the vectors $F^A(k, \hat{r})$ and $f(k, \hat{r})$ are restricted to the plane perpendicular to \hat{r}; in other words, the vector $f(k, \hat{r})$ can be thought of as being in the (complex) tangent space at \hat{r} to the unit sphere.

In receiving mode, the excitation of the antenna is made by an incident plane wave (see Figure 1)

$$E_0(k)e^{ik\hat{k}\cdot\hat{r}}$$
where \(k \) is the wave number of the surrounding material, the unit vector \(\hat{k} \) denotes the direction of the plane wave, and the constant, complex vector \(E_0(k) \) denotes the exciting field at the origin. This excitation generates a traveling wave in the port, which is quantified by the coefficient \(\beta(k) \). Due to linearity of the antenna system, the connection between \(E_0 \) and \(\beta(k) \) can be written as [11, 17, 21, 27]

\[
\beta(k) = \frac{2\pi i}{k} s(k, \hat{k}_i) \cdot E_0(k) \quad (2.3)
\]

for some dimensionless vector field \(s(k, \hat{k}_i) \). The extra factor \(2\pi i/k \) is included so that a reciprocal antenna has the property \(s(k, \hat{r}) = f(k, -\hat{r}) [12, 18, 33, 36] \).

The relation (2.3) is not a complete description of a receiving antenna. In general, there are two more contributions to the system. First, there is a term that quantifies the reflection of the received traveling wave in the transmission line by the electronics. With the assumption of the load matched to the transmission line (which can almost always be arranged), this term vanishes. Moreover, there is a scattering contribution generated by the incident plane wave. This term is usually appreciable, but we can ignore this contribution in this paper, as we amplify the re-radiated, time reversed signal \(\alpha(k) \) (the scalar \(A \) below). Thus, the scattered contribution is negligible compared to this re-radiated signal, and the scattered contribution can be ignored.

For a reciprocal antenna \(s(k, \hat{r}) = f(k, -\hat{r}) \), and the receiving case is

\[
\beta(k) = \frac{2\pi i}{k} f(k, -\hat{k}_i) \cdot E_0(k). \quad (2.4)
\]

Under these assumptions, the antenna, both in transmitting and receiving mode, is characterized by a single complex vector field \(f(k, \hat{r}) \). The variation of this vector field with frequency and direction can complicate our efforts to obtain target information.

2.1 Antenna example

A center-fed, cylindrical dipole antenna of length \(2\ell \) and radius \(d \) illustrates the antenna characterization above. This antenna has an approximate far field amplitude [15]

\[
F^A(k, \hat{r}) = -\frac{iZ(k)I_0(k)\cos(k\ell\cos\theta) - \cos(k\ell)}{2\pi \sin \theta} \hat{\theta}
\]

where \(I_0(k) \) is the amplitude of the current at the antenna feed and \(\theta \) is the angle between the extension of the linear antenna (\(z \) axis) and the observation direction \(\hat{r} \); see the inset in Figure 2. This current \(I_0(k) \) and the voltage \(V_0(k) \) at the feed are related to the antenna impedance \(Z_{in}(k) \) and the amplitudes \(\alpha(k) \) and \(\beta(k) \) via

\[
\alpha(k) + \beta(k) = V_0(k) = Z_{in}(k)I_0(k) = \frac{Z_{in}}{Z(k)} (\alpha(k) - \beta(k))
\]

which implies

\[
\beta(k) = \frac{Z_{in} - Z(k)}{Z_{in} + Z(k)} \alpha(k) \quad \Rightarrow \quad Z(k)I_0(k) = \alpha(k) - \beta(k) = \frac{2Z(k)}{Z_{in} + Z(k)} \alpha(k).
\]
The antenna impedance has an approximate expression obtained by the induced-emf method. The result is [15, 24]

\[Z_{in}(k) = - \frac{iZ(k)}{2\pi \sin^2 k\ell} \left\{ 4S(k\ell, kd) \cos^2 k\ell - S(2k\ell, kd) \cos 2k\ell \right. \\
+ \left. \sin 2k\ell (2C(k\ell, kd) - C(2k\ell, kd)) \right\} \]

where the functions \(C(x, y) \) and \(S(x, y) \) are

\[
\begin{align*}
C(x, y) &= \ln \frac{2x}{y} - \frac{1}{2}C_{in}(2x) + \frac{i}{2}\text{Si}(2x) \\
S(x, y) &= \frac{1}{2}\text{Si}(2x) + \frac{i}{2}C_{in}(2x) - y
\end{align*}
\]

and the sine integral \(\text{Si}(x) \) and the modified cosine integral \(C_{in}(x) \) are [1, Sec. 5.2]

\[
\text{Si}(x) = \int_0^x \frac{\sin x}{x} \, dx
\]

and

\[
C_{in}(x) = \int_0^x \frac{1 - \cos x}{x} \, dx
\]

respectively. The antenna characteristic vector \(f(k, \hat{r}) \) then has the form

\[
f(k, \hat{r}) = -\frac{i}{\pi \frac{Z(k)}{Z_{in}(k) + Z(k)}} \frac{\cos (k\ell \cos \vartheta) - \cos (k\ell)}{\sin \vartheta} \hat{\vartheta}
\]

In fact,

\[
f(k, \hat{r})\alpha(k) = F^A(k, \hat{r}) = -\frac{iZ(k)I_0(k) \cos (k\ell \cos \vartheta) - \cos (k\ell)}{2\pi \sin \vartheta} \hat{\vartheta}
\]

\[
= -\frac{i}{2\pi} \frac{2Z(k)}{Z_{in} + Z(k)} \alpha(k) \frac{\cos (k\ell \cos \vartheta) - \cos (k\ell)}{\sin \vartheta} \hat{\vartheta}.
\]

From (2.5) we see that the cylindrical dipole antenna has its own resonance behavior. Its variation with \(k\ell \) is illustrated in Figure 2. The radius of the antenna in this example is \(d = 0.01\ell \). The far field pattern is evaluated at its maximum value at \(\vartheta = \pi/2 \) (horizontal plane), which is the direction of the main lobe in the frequency interval we are using in this paper, \(k\ell \in [0, 4.5] \) (at higher frequencies the horizontal plane is not the main lobe). The figure shows maximum radiation at \(k\ell \approx 1.9, 4.1 \) and zero radiation at \(k\ell = \pi \). At the latter frequency the antenna is completely mismatched to the transmission line \((|Z_{in}| \to \infty) \).

3 The scattering cycle

Our aim in this section is to develop a mathematical model for the received signals. We assume there are \(N \) antennas illuminating the target as shown in Figure 3. The
Figure 2: The antenna parameter \(|f(k, \vartheta = \pi/2)|\) as a function of \(k\ell\) for a cylindrical dipole antenna of length \(2\ell\) and radius \(d = 0.01\ell\).

The received signals are the \(\beta_i(k)\) in antennas \(i = 1, 2, \ldots, N\), due to scattering of the field from an excitation \(\alpha_j(k)\) in antenna \(j = 1, 2, \ldots, N\). More precisely, we consider the received signal \(\beta_i(k)\) after the transmitted signal has been scattered by the obstacle; see Figure 3. Each antenna is characterized in the simplified model (2.2) by the radiation characteristic vector \(f_j(k, \hat{r})\), \(j = 1, 2, \ldots, N\), which also contains the orientation of the specific antenna. The reference point of each antenna \(j\) is given by the local origin \(O_j\), \(j = 1, 2, \ldots, N\). We treat each antenna separately, and we neglect coupling between the antennas (in practice, they are separated by a large distance). If several antennas transmit simultaneously, the signal generated by each antenna has to be added by superposition.

The scattered field \(E_s(k, r)\) by the obstacle in the far zone from excitation \(E_0(k, r_0)\) is expressed in the far field amplitude \(F_s(k, \hat{r})\) and the scattering dyadic \(S(k, \hat{r}, \hat{k}_i)\) as [29]

\[
E_s(k, r) \approx F_s(k, \hat{r}) \frac{e^{ikr}}{r} = S(k, \hat{r}, \hat{k}_i) \cdot E_0(k, r_0) \frac{e^{ikr}}{r}.
\] (3.1)

where \(r\) is the distance from the local origin \(O'\) to the field point. Here \(\hat{k}_i\) denotes the direction of energy propagation for \(E_0\), i.e., of its Poynting vector. The scatterer can be composed of several different obstacles. Therefore, it suffices to have only one scattering dyadic. If there are several, non-interacting obstacles, the results are added by superposition. Our goal in scattering experiments is to obtain as much information as possible about \(S\).

The scattering dyadic \(S(k, \hat{r}, \hat{k}_i)\) is completely characterized by the scattering
Figure 3: The geometry of the scatterer V_s and its local origin O' and the antennas and their local origins $O_i, i = 1, 2, \ldots, N$. The common origin of the configuration is denoted O. The unit vectors \hat{R}_i are given by $\hat{R}_i = (r_0 - r_i)/|r_0 - r_i|, i = 1, 2, \ldots, N$. The transition matrix of the scatterer $T_{nn'}$, and the relation is [29]

$$S(k, \hat{r}, \hat{k}_i) = \frac{4\pi}{ik} \sum_{n,n'} \varepsilon^{l+\varphi+\rho'} A_n(\hat{r}) T_{nn'}(k) A_{n'}(\hat{k}_i). \tag{3.2}$$

Here the A_n denote the vector spherical harmonics (see Appendix A).

We find the received signal $\beta_i(k)$ from an excitation in antenna j by analyzing the scattering and receiving process in a series of steps.

1. Assume the amplitude of the transmitting signal on the transmission line in antenna $j = 1, 2, \ldots, N$ is $\alpha_j(k)$.

2. This transmitted signal generates an electric field outside the antenna that radiates energy away from the antenna. Its far field amplitude (2.2) in a general direction \hat{r} is

$$F_j^A(k, \hat{r}) = f_j(k, \hat{r})\alpha_j(k).$$

The total electric field (2.1) at the local origin of the scatterer O' from antenna j is, in the far-field approximation,

$$E_j(k, r_0) \approx F_j^A(k, \hat{R}_j) \frac{e^{ikR_j}}{R_j} = f_j(k, \hat{R}_j)\alpha_j(k) \frac{e^{ikR_j}}{R_j},$$

where the distance between antenna j and the scatterer is $R_j = |r_0 - r_j|$ in the direction $\hat{R}_j = (r_0 - r_j)/R_j$ (unit vector in the direction $r_0 - r_j$).
3. The scattered field (3.1) at the local origin \(r_i \) of antenna \(i \) is
\[
E_s(k, r_i) \approx F_s(k, -\hat{R}_i) \frac{e^{ikR_i}}{R_i} = S(k, -\hat{R}_i, \hat{R}_j) \cdot E_j(k, r_0) \frac{e^{ikR_i}}{R_i}
\]
where \(F_s(k, \hat{r}) \) is the far field amplitude and \(S(k, \hat{r}, \hat{k}_i) \) is the scattering dyadic of the scatterer, respectively.

4. The received signal (2.4) in antenna \(i \) is
\[
\beta_i(k) = \frac{2\pi i}{k} f_i(k, \hat{R}_i) \cdot E_s(k, r_i) = \frac{2\pi i}{k} f_i(k, \hat{R}_i) \cdot S(k, -\hat{R}_i, \hat{R}_j) \cdot E_j(k, r_0) \frac{e^{ikR_i}}{R_i}
\]
where we have taken \(\hat{k}_i = -\hat{R}_i \).

5. We collect the results:
\[
\beta_i(k) = \frac{2\pi i}{k} \frac{e^{ik(R_i+R_f)}}{kR_i R_j} f_i(k, \hat{R}_i) \cdot S(k, -\hat{R}_i, \hat{R}_j) \cdot f_j(k, \hat{R}_j) \alpha_j(k).
\]
This is the received signal in antenna \(i \), due to an excitation in antenna \(j \), and the dimensionless amplification factor \(\Lambda_{ij} \) becomes
\[
\Lambda_{ij}(k) = \frac{\beta_i(k)}{\alpha_j(k)} = \frac{2\pi i k}{kR_i kR_j} e^{ik(R_i+R_f)} f_i(k, \hat{R}_i) \cdot S(k, -\hat{R}_i, \hat{R}_j) \cdot f_j(k, \hat{R}_j). \tag{3.3}
\]
Here the transmitting and receiving antennas are approximately modeled by \(f_j(k, \hat{r}) \) and \(f_i(k, \hat{r}) \), respectively, and the scatterer is modeled by the scattering dyadic \(S(k, \hat{r}, \hat{k}_i) \). The \(N \times N \) matrix \(\Lambda(k) \) is called the transfer matrix of the system. The diagonal terms in the matrix \(\Lambda(k) \) correspond to the signal received by the same antenna and the off-diagonal entries denote the received signal by the other antennas.

In matrix notation the map from transmitted signals \(\alpha(k) \) to the corresponding received signals \(\beta(k) \) is thus
\[
\beta(k) = \Lambda(k) \alpha(k) = D(k) \Delta(k) D(k) \alpha(k), \tag{3.4}
\]
where \(D(k) \) is the \(N \times N \) diagonal matrix with entries \(e^{ikR_i}/(kR_i) \), i.e.,
\[
D_{ij} = \delta_{ij} \frac{e^{ikR_i}}{kR_i}
\]
and
\[
\Delta_{ij}(k) = 2\pi i k f_i(k, \hat{R}_i) \cdot S(k, -\hat{R}_i, \hat{R}_j) \cdot f_j(k, \hat{R}_j). \tag{3.5}
\]
Both \(\Delta \) and \(\Lambda \) are dimensionless. Under the assumption that the scatterer consists of a reciprocal material (e.g., a dielectric material), the matrices \(\Delta \) and \(\Lambda \) are symmetric matrices, since [29]
\[
S(k, \hat{r}, \hat{k}_i) = S^T(k, -\hat{k}_i, -\hat{r}).
\]
where the superscript \(T \) denotes transpose. The matrices \(\Delta(k) \Delta^*(k) \), \(\Delta^*(k) \Delta(k) \), \(\Lambda(k) \Lambda^*(k) \), and \(\Lambda^*(k) \Lambda(k) \) are Hermitian, and, consequently, their eigenvalues are real and the eigenvectors corresponding to different eigenvalues are orthogonal. We note that because of the symmetry, the operation of taking the complex conjugate of \(\Lambda \) is the same as taking the adjoint.
3.1 Resonance Enhancement

The idea of the Resonance Enhancement Method is to amplify the peaks of S by experimentally producing multiples of $S(k)$ and its adjoint. These peaks correspond to resonances, which in theory are independent of the directions of the incident and scattered fields. The challenge, however, is that S cannot be directly measured; rather, what is measured is $\Lambda(k)$. On the other hand, many of the factors in (3.3) are known and can be removed. In particular, we assume that the antenna system response factors f_j are all known. The process of removing the system response is called equalization.

We note that the vectors f_i in (3.3) depend not only on the frequency k, but also on the direction \hat{R}_i from antenna to target. We assume that this direction is known from beamforming or antenna steering.

For the process of removing known factors, it is more convenient to write (3.4) and (3.5) in an expanded matrix notation. We construct a long vector in which the first 3 elements correspond to the 3 polarization components of the first antenna, the next 3 elements correspond to the 3 polarization components of the second antenna, etc. In particular, we denote by F the $3N \times N$ matrix

$$F = \begin{pmatrix} f_1 & 0 & 0 & \cdots & 0 \\ f_2 & 0 & 0 & \cdots & 0 \\ f_3 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ f_N & 0 & 0 & \cdots & 0 \end{pmatrix} = \begin{pmatrix} f_{1,1} & 0 & 0 & \cdots & 0 \\ f_{1,2} & 0 & 0 & \cdots & 0 \\ f_{1,3} & 0 & 0 & \cdots & 0 \\ 0 & f_{2,1} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & f_{N,3} \end{pmatrix}$$

where the $f_j = (f_{j,1}, f_{j,2}, f_{j,3})^T$ are 3×1 column vectors and where the hats denote (possibly complex) unit vectors: $\hat{f}_j = f_j/|f_j|$. Here M is a nonsingular $N \times N$ matrix, and \hat{f}_i corresponds to the polarization of the field at the target due to illumination from antenna i.

The S matrix also expands to accommodate each polarization and each antenna separately. We denote the expanded $3N \times 3N$ scattering matrix by S, and the diagonal matrix whose elements consist of the expanded vector of antenna beam patterns by F. We can then write (3.4) as $\beta = \Lambda \alpha$ where

$$\Lambda = DM\hat{F}^T \hat{S} \hat{F} MD = M[DF^T \hat{S} \hat{F} D]M. \quad (3.6)$$

We note that D and M commute because they are both diagonal.
We write (3.6) as $\Lambda = QSQ$, where Q contain known factors whose effect we can remove, and it is S^α that we construct iteratively. The factors Q and S are defined differently, depending on which quantities are known. In particular, we consider the following cases:

1. None of the system parameters or ranges from antennas to target are known. In this case, we take $Q = I$ and $S = \Lambda$. This corresponds to the case in which no equalization is attempted during the iterative resonance enhancement process.

2. The matrix $F(k)$ is known, but the ranges from the antennas to the target are unknown. In this case, we take $Q = M$, and $S = DF^T SFD$. Here S is an $N \times N$ matrix.

3. The antenna characteristics matrix F is unknown, but the ranges of D are known. In this case we take $Q = D$ and $S = MF^T SFM$.

4. Not only is the matrix F known, but the ranges from the antennas to the target are also known, and hence the matrix D is known. In this case, we take $Q = MD$ and $S(k) = F^T S F$. The matrix Q includes both the system responses and propagation factors.

In the REM process, we begin with a vector of initial signals $\alpha^0(k)$ on the antenna array. The signals $\alpha^0(k)$ give rise to transmitted fields which scatter from the target and give rise to the associated vector of received signals $\beta^0(k) = \Lambda(k)\alpha^0(k)$. The received signals $\beta^0(k)$ are then corrected for the antenna responses and possibly also for propagation, by multiplying by the weight matrix $Q^{-1}(k)$. The resulting signals are complex conjugated, which in the time domain corresponds to time-reversing them. The result is a candidate for a new signal to be transmitted. We amplify all these signals by the same scalar normalizing factor of A, which is chosen so that each successive transmitted vector α of waveforms has the same total energy $\pi^{-1} \sum_j \int |\alpha^0_j(k)|^2 Z(k) \, dk$ (see appendix), and before transmitting, we again multiply the resulting signals by $Q^{-1}(k)$ to pre-distort them to correct for the transmitting antennas and possibly also the propagation path. Thus the next signal in the REM iteration process is

$$\alpha^1(k) = Q^{-1}(k)A \left(Q^{-1}(k)\beta^0(k) \right)^* = Q^{-1}(k)A \left(Q^{-1}(k)\Lambda(k)\alpha^0(k) \right)^* = Q^{-1}(k)A Q^{-1}(k)Q(k)S^*(k)Q(k) \left(\alpha^0(k) \right)^* = Q^{-1}(k)A S^*(k)Q(k) \left(\alpha^0(k) \right)^*. $$

Here * denotes complex conjugation. At the next step, the new signal to be transmitted is

$$\alpha^2(k) = Q^{-1}(k)A \left(Q^{-1}(k)\beta^1(k) \right)^* = Q^{-1}(k)A \left[\Lambda(k)\alpha^1(k) \right]^* = Q^{-1}(k)A Q^{-1}(k) \left[\Lambda(k)\alpha^1(k) \right]^* = Q^{-1}(k)A Q^{-1}(k)Q(k)S(k)Q(k) \left[\alpha^0(k) \right]^* = Q^{-1}(k)A S^*(k)A^* S(k)Q(k) \alpha^0(k) = R(k)\alpha^0(k),$$
where the time reversal matrix is
\[R(k) = Q^{-1}(k)|A|^2S^*(k)S(k)Q(k). \] (3.7)

Because \(S \) is symmetric, the matrices \(S^*(k)S(k) \) and \(R \) are Hermitian, and consequently their eigenvalues are real and the eigenvectors corresponding to different eigenvalues are orthogonal.

We see that after even or odd numbers of iterations, the transmitted signals are
\[\alpha^{2n}(k) = R^n(k)\alpha^0(k), \quad \alpha^{2n-1}(k) = AQ^{-1}(k)S^*(k)Q(k)R^{n-1}(k)(\alpha^0(k))^*, \]
where
\[R^n(k) = |A|^{2n}Q^{-1}(k)[S^*(k)S(k)]^nQ(k). \]

We note that the effect of \(2n \) iterations of the REM process is to raise the product \(S^*(k)S(k) \) to the \(n \)th power. Although we do not explicitly treat noise in this paper, we note that noise is different at each iteration and consequently the REM process improves the signal-to-noise ratio for \([S^*(k)S(k)]^n \).

The question of what time-domain waveforms the process converges to can be answered by noting that as the iterations proceed, peaks in the frequency domain sharpen. Thus the REM iterations in general converge to a single frequency waveform whose frequency is that at which the largest eigenvalue of \(R \) is greatest. [10, 22, 26].

The application of \(Q^{-1} \) can involve some practical difficulties. In particular, \(Q^{-1} \) corresponds to an infinite impulse response (IIR) filter, whose application in the time domain can involve an infinite-duration signal. Various techniques are known [23] for approximating an IIR filter by a finite impulse response (FIR) filter and these could be used here.

4 Simple examples

4.1 One single cylindrical dipole antenna

Let the antenna be a cylindrical dipole antenna of length \(2\ell \) and radius \(d \), (see Section 2.1) located at \(\hat{R}_1 = -R_1\hat{z} \), as shown in Figure 4. From (2.5), the far field pattern of the antenna is
\[f(k, \hat{r}) = -\frac{i}{\pi Z_{in} + Z} \frac{Z}{\sin \vartheta} \cos(k\ell \cos \vartheta) - \frac{Z}{\sin \vartheta} \cos(k\ell) \vartheta. \]

The scattering cycle in Section 3 results in \((\hat{R}_1 = -\hat{z}) \) [see (3.3)]
\[\Lambda_{11}(k) = 2\pi k e^{2i k R_1} f(k, -\hat{z}) \cdot S(k, \hat{z}, -\hat{z}) \cdot f(k, -\hat{z}). \]

Let the scatterer be a homogeneous, dielectric, spherical scatterer of radius \(a \). Then \(T_{nn'} = \delta_{n n'}\delta_{n n'}\delta_{m m'}\delta_{l l'}\), and the scattering dyadic in the backscattering direction is [29, p. 389]
\[S(k, \hat{z}, -\hat{z}) = -\frac{1}{2ik}I_{2\delta_{hh}(k)} \]
where I_2 is the two-dimensional unit dyadic, and where

$$s_b(k) = \sum_{l=1}^{\infty} (2l+1)(-1)^l (t_{2l}(k) - t_{2l}(k)).$$

(4.1)

The transition matrix entries are

$$t_{rl} = - \frac{j_l(ka)(k_1a_j(k_1a))'}{h_l^{(1)}(k_1a)} - \gamma_r(h_l^{(1)}(ka))'j_l(k_1a),$$

where ϵ_1 and μ_1 are the permittivity and the permeability of the material inside the sphere, and

$$\gamma_r = \delta_{r1} \frac{\mu_1}{\mu} + \delta_{r2} \frac{\epsilon_1}{\epsilon}.$$

The lambda factor then becomes (note that $-\hat{z}$ corresponds to $\vartheta = \pi/2$)

$$\Lambda_{11}(k) = \frac{e^{2ikR_1}}{k^2 R_1^2 \pi} a(k) \left(\frac{Z}{Z_{in} + Z} \right)^2,$$

(4.2)

and, with equalization Option 4 of Section 3.1, the time reversal matrix is [see (3.7)]

$$R_{eq}(k) = \left| s_b(k) \right|^2 \text{ (equalized)}$$

(4.3)

or alternatively, if we assume the range R_1 is known, then with (non-) equalization Option 3 of Section 3.1, we have

$$R(k) = \left| \frac{Z}{Z_{in} + Z} \right|^4 \left| s_b(k) \right|^2 \text{. (not equalized)}$$

(4.4)

4.2 Two cylindrical dipole antennas

The two cylindrical dipole antennas, located at r_1 and r_2, respectively [see Figure 5], generate an amplification factor

$$\Lambda(k) = 2\pi ik \left(\begin{array}{c} \frac{e^{ikR_1}}{kR_1} a(k) \\ \frac{\epsilon_1 R_1}{k^2 R_1} b(k) \\ \frac{\epsilon_1 R_2}{k^2 R_2} c(k) \\ \frac{\epsilon_1 R_2}{k^2 R_2} \end{array} \right)$$

$$= 2\pi ik \left(\begin{array}{cc} \frac{e^{ikR_1}}{kR_1} & 0 \\ 0 & \frac{\epsilon_1 R_2}{kR_2} \end{array} \right) \left(\begin{array}{c} a(k) \\ b(k) \\ c(k) \\ d(k) \end{array} \right) \left(\begin{array}{cc} \frac{e^{ikR_1}}{kR_1} & 0 \\ 0 & \frac{\epsilon_1 R_2}{kR_2} \end{array} \right),$$

(4.4)
Figure 5: The geometry of the spherical scatterer (radius a) and two simple horizontal electrical dipoles at $R_1 = -R_1 \hat{z}$ and $R_2 = -R_2 (\hat{x} \sin \theta + \hat{z} \cos \theta)$. The antennas are in the far field of the spherical scatterer.

where

$$
\begin{align*}
 a(k) &= f_1(k, \hat{R}_1) \cdot S(k, -\hat{R}_1, \hat{R}_1) \cdot f_1(k, \hat{R}_1) \\
 b(k) &= c(k) = f_2(k, \hat{R}_2) \cdot S(k, -\hat{R}_2, \hat{R}_1) \cdot f_1(k, \hat{R}_1) \\
 d(k) &= f_2(k, \hat{R}_2) \cdot S(k, -\hat{R}_2, \hat{R}_2) \cdot f_2(k, \hat{R}_2).
\end{align*}
$$

Here we specify the positions of the antennas as $R_1 = -R_1 \hat{z}$ and $R_2 = R_2 \hat{R}_2$, where $\hat{R}_2 = -\hat{x} \sin \theta - \hat{z} \cos \theta$. Note that with our definition of the angle θ in Figure 5, the scattering angle2 is not θ but $\pi - \theta$. Note also that we have arranged the two cylindrical dipole antennas in the same direction. Other configurations are, of course, possible.

For the homogeneous, dielectric, spherical scatterer in Section 4.1, we have [29, p. 387]

$$
\begin{bmatrix}
 S_{\parallel\parallel}(k, \hat{r}, \hat{z}) & S_{\parallel\perp}(k, \hat{r}, \hat{z}) \\
 S_{\perp\parallel}(k, \hat{r}, \hat{z}) & S_{\perp\perp}(k, \hat{r}, \hat{z})
\end{bmatrix} = \frac{1}{ik} \begin{bmatrix}
 S_1(k) & 0 \\
 0 & S_4(k)
\end{bmatrix},
$$

where the two diagonal elements $S_1(k)$ and $S_4(k)$ are defined as

$$
\begin{align*}
 S_1(k) &= \sum_{l=1}^{\infty} \frac{2l + 1}{l(l+1)} (\pi_l (-\cos \theta) t_{1l} + \tau_l (-\cos \theta) t_{2l}) \\
 S_4(k) &= \sum_{l=1}^{\infty} \frac{2l + 1}{l(l+1)} (\pi_l (-\cos \theta) t_{2l} + \tau_l (-\cos \theta) t_{1l})
\end{align*}
$$

2The cosine of the scattering angle is defined as the scalar product between the incident direction and the observed one.
where \((P_l(x)\) denotes the Legendre polynomials) \(\left\{\begin{array}{l}
\pi_l(x) = P'_l(x) \\
\tau_l(x) = l(l+1)P_l(x) - xP'_l(x).
\end{array}\right\}
\)

In spherical unit vectors, the scattering dyadic becomes [29, p. 206] (in the geometry of Figure 5, we have \(\hat{e}_{\|} = \hat{x}, \hat{e}_{\perp} = -\hat{\theta} = -\hat{x}\cos\theta + \hat{z}\sin\theta,\) and \(\hat{e}_{\perp} = \hat{e}_{\perp} = -\hat{y}\))

\[
S(k, -\hat{R}_2, -\hat{z}) = -\hat{\theta}S_{\|}(k, -\hat{R}_2, -\hat{z})\hat{x} + \hat{y}S_{\perp}(k, -\hat{R}_2, -\hat{z})\hat{y}
= -\frac{\hat{\theta}S_1\hat{x}}{ik} + \frac{\hat{y}S_4\hat{y}}{ik}
\]
and for the two back scattering contributions we have

\[
S(k, -\hat{z}, -\hat{z}) = -\frac{1}{2ik}I_2s_b(k), \quad S(k, -\hat{R}_2, \hat{R}_2) = -\frac{1}{2ik}I_2s_b(k)
\]
where the sum \(s_b(k)\) is defined in (4.1).

Let the antennas both be oriented along the \(x\)-axis with a phase difference \(\delta\). The radiation characteristic vectors \(f_1(k, \hat{r})\) and \(f_2(k, \hat{r})\) are

\[
f_1(k, -\hat{z}) = \frac{i}{\pi} Z (1 - \cos(k\ell)) \hat{x}
\]
since \(\hat{\vartheta}_1 = \pi/2\) and \(\hat{\vartheta}_1 = -\hat{x}\), and

\[
f_2(k, \hat{R}_2) = \frac{i}{\pi} e^{i\delta} \frac{Z}{Z_{in} + Z} \frac{\cos(k\ell\sin\theta) - \cos(k\ell)}{\cos\theta} \hat{\vartheta}
\]
since \(\hat{\vartheta}_2 = \pi/2 + \theta\) and \(\hat{\vartheta}_2 = -\hat{\vartheta}\).

The scattering dyadic then simplifies to

\[
\left\{\begin{array}{l}
a(k) = f_1(k, -\hat{z}) \cdot S(k, \hat{z}, -\hat{z}) \cdot f_1(k, -\hat{z})
= \frac{1}{2ik\pi^2} \left(\frac{Z}{Z_{in} + Z}\right)^2 (1 - \cos(k\ell))^2 s_b(k)
\end{array}\right\}
\]

\[
b(k) = c(k) = f_2(k, \hat{R}_2) \cdot S(k, -\hat{R}_2, -\hat{z}) \cdot f_1(k, -\hat{z})
= \frac{e^{i\delta}}{ik\pi^2} \left(\frac{Z}{Z_{in} + Z}\right)^2 (1 - \cos(k\ell)) \left(\frac{\cos(k\ell\sin\theta) - \cos(k\ell)}{\cos\theta}\right) S_1(k)
\]

\[
d(k) = f_2(k, \hat{R}_2) \cdot S(k, -\hat{R}_2, \hat{R}_2) \cdot f_2(k, \hat{R}_2)
= \frac{e^{2i\delta}}{2ik\pi^2} \left(\frac{Z}{Z_{in} + Z}\right)^2 \left(\frac{\cos(k\ell\sin\theta) - \cos(k\ell)}{\cos\theta}\right)^2 s_{b}(k)
\]

The time reversal matrix \(R(k)\) in (3.7) can now be formed. Without equalization, \(i.e.,\) using equalization Option 3 of Section 3.1 with known ranges \(R_1\) and \(R_2\) (and thus removal of \(D\) in (3.4)), we get

\[
R(k) = 4\pi^2 k^2 \begin{pmatrix}
a^*(k) & b^*(k) \\
c^*(k) & d^*(k)
\end{pmatrix}
\begin{pmatrix}
a(k) & b(k) \\
c(k) & d(k)
\end{pmatrix}
\]

(4.6)
We can also form an equalized version of the time-reversal matrix (Option 4 in Section 3.1). We obtain

$$R_{eq}(k) = \frac{1}{\pi^2} \begin{pmatrix} s_b^*(k) & 2e^{-i\delta}S_1^*(k) \\ 2e^{-i\delta}S_1^*(k) & e^{-2i\delta}s_b^*(k) \end{pmatrix} = \begin{pmatrix} s_b(k) & 2e^{i\delta}S_1(k) \\ 2e^{i\delta}S_1(k) & e^{2i\delta}s_b(k) \end{pmatrix} \quad (4.7)$$

5 Numerical illustrations

In Figure 6, we illustrate the differential scattering cross section in the backward direction (RCS), $\frac{d\sigma}{d\Omega}(k, -\hat{k}_i, \hat{k}_i)/\pi a^2$ as a function of ka for a homogeneous, dielectric sphere of radius a. The definition of the differential scattering cross section in the backward direction (RCS) is [29, p. 207]

$$\frac{d\sigma}{d\Omega}(k, -\hat{k}_i, \hat{k}_i) = 4\pi \frac{|S(k, -\hat{k}_i, \hat{k}_i) \cdot E_0(k)|^2}{|E_0(k)|^2}$$

where $E_0(k)$ is the amplitude of the incident field at the origin of the scatterer. For a spherical dielectric scatterer, this expression simplifies to [29, p. 390]

$$\frac{d\sigma}{d\Omega}(k, -\hat{k}_i, \hat{k}_i) = \frac{|s_b(k)|^2}{k^2a^2} = \frac{1}{k^2a^2} \sum_{l=1}^{\infty} (2l + 1)(-1)^l \left| t_{\tau l}(k) - t_{2l}(k) \right|^2 \quad (5.1)$$

where we used the sum $s_b(k)$ defined in (4.1). The explicit values of the permittivity and the permeability of the sphere in the figure are $\epsilon_1/\epsilon = 16$, $\mu_1/\mu = 1$, respectively. This value of the permittivity is chosen for clarity and illustrative value of the figures. A smaller value of the permittivity pushes the resonances to higher frequencies with similar resonance structure.

The detailed frequency behavior of the differential scattering cross section in the backward direction depends on the frequency behavior of the transition matrix entries $t_{\tau l}$ in (5.1), which have poles in the lower complex ka plane. These poles give rise to resonances in the differential scattering cross section in the backward direction and in the eigenvalues of Λ or Δ. Some of these resonances are very sharp and they correspond to poles close to the real ka axis.

The locations of the poles closest to the origin for the geometry in this numerical example are given in Table 1. In Figure 7, we show the locations of the poles in the complex ka plane. Poles with the same l value are connected by lines. From the figure, we observe that the poles appear in families, corresponding to the same τ and l indices. There are no poles in the complex upper-half plane and the poles are symmetrically located in the third and forth quadrant of the complex ka plane (only forth quadrant shown).

The plot of the differential scattering cross section in the backward direction is thus a plot of the behavior on the real axis of a function that is the magnitude squared of a meromorphic complex-valued function. The resonances in Figure 6 correspond uniquely to the poles of the transition matrix, and the location of the first poles with indices (τ, l) are displayed in the figure. Comparing Figures 6 and 7,
Figure 6: The differential scattering cross section $\frac{1}{\pi a^2} \frac{d\sigma}{d\Omega}(k, -\hat{k}_i, \hat{k}_i)$ in the backward direction as a function of ka for a homogeneous dielectric sphere. The location of the real value of the poles in Table 1 is marked with a dashed curve, and the corresponding (τ, l) values are displayed in parenthesis; see also Figure 7.

Figure 7: The poles in the complex ka-plane of the transition matrix $t_{\tau l}$. The red triangles mark the poles for $\tau = 1$ and the green diamonds correspond to $\tau = 2$. Note the scale on the imaginary axis.
we notice that the resonances occur approximately at \(ka \) corresponding to the real part of the complex pole of a certain transition matrix entry. The closer the pole is to the real axis, the better is the agreement. We also observe that the sharpness of the resonance is related to the value of the imaginary part of the pole — the smaller the imaginary part, the sharper the resonance. The small shift in frequency comes from the "background" part of the meromorphic function that is analytic in the neighborhood of the pole; see [37] and Appendix B. The height of the resonance is related to the residue of the corresponding pole, but it also affected by the properties of the function near the poles. These poles are the singularities of the Singularity Expansion Method (SEM) [3].

<table>
<thead>
<tr>
<th>(\tau)</th>
<th>(l)</th>
<th>(z_0 = x_0 - iy_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.754 - 0.0240i</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1.053 - 0.0724i</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1.096 - 0.0068i</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1.377 - 0.0118i</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1.419 - 0.0016i</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1.541 - 0.0459i</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1.701 - 0.0018i</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1.729 - 0.0003i</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1.893 - 0.0261i</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1.920 - 0.0820i</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2.008 - 0.0003i</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>2.030 - 0.00006i</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2.207 - 0.0975i</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2.237 - 0.0115i</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2.306 - 0.00004i</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>2.324 - 0.00001i</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2.333 - 0.0546i</td>
</tr>
</tbody>
</table>

Table 1: The locations of the poles \(z_0 \) of the transition matrix entries, \(t_{\tau l} \), closest to the origin and the real axis in the complex \(ka \)-plane for a homogeneous dielectric sphere with material data \(\epsilon_1/\epsilon = 16 \) and \(\mu_1/\mu = 1 \).

5.1 One single antenna

In this first configuration, we employ a single central-fed, cylindrical dipole antenna and a spherical scatterer. The geometry of the antenna in the first pair of examples is specified by \(\ell = 1.5a \) and \(d/\ell = 0.01 \). In Figure 8 and 9, we show the first three powers of the time reversal matrices for the equalized case in (4.3) and for the unequalized case in (4.4) (the matrices are just \(1 \times 1 \) in this case). The equalized case shown in Figure 8 is almost identical to the differential scattering cross section in Figure 6. The only difference is that the curves in Figure 6 are divided by \((ka)^2\). This division diminishes the higher frequencies in Figure 6 and, for this reason, the two figures differ slightly.

When the time reversal matrix is iterated, the largest value of the largest eigenvalue is amplified and all other values diminish. The largest value of the largest eigenvalue corresponds to the position of a largest resonance that is excited in the transition matrix. The position of this pole is shown by a dashed vertical line in the figures. Which resonance that is amplified depends on the excitation. We notice that different resonances are amplified in the equalized and in the unequalized cases.
The curves in Figures 8 and 9 illustrate this difference in excitation very clearly. The reason is that in the unequalized case the scattering characteristics, shown by the curve in Figure 8, are multiplied by a frequency taper (antenna characteristics), which is shown by the dashed curve in Figure 9. This frequency taper suppresses certain frequencies — in particular in an interval close to the largest resonance (1,5). This observation emphasizes the importance of equalization.

Figures 8 and 9 also point to a shortcoming of the equalization procedure: if there is no measured signal in a certain frequency band, no amount of equalization can amplify a non-existent signal. Similarly, attempts to amplify a very weak signal in a band are likely to amplify noise in that band.

A slightly smaller antenna, $\ell = 0.9a$ is employed in Figure 10. This figure depicts the behavior of the unequalized data. The equalized behavior is identical to the curves in Figure 8. Since the antenna is smaller, its frequency taper is shifted towards higher frequencies, and, in this case, the amplification occurs close to the largest resonance (1,5).

5.2 Two antennas

In Section 4.2, we analyzed the configuration of two identical cylindrical dipole antennas in a spatially distributed configuration. The time reversal matrices for the unequalized and the equalized cases are given in (4.6) and (4.7), respectively. The largest eigenvalues of R and R_{eq} are illustrated in Figure 11. The antenna parameters in this figure are $\ell = 1.5a$, $d = 0.01\ell$, $\delta = 90^\circ$, and $\theta = 30^\circ$.

The two antennas illuminate the target in a different way (spatially distributed illumination) compared to the one antenna case in Section 4.1, and as a consequence, different resonances are amplified. In particular, for the longer antenna configuration in Figure 11, the unequalized case amplifies the minor resonance (1,2), while the equalized case amplifies the main resonance (1,5). In Figure 12, the antennas are smaller: $\ell = 0.9a$, $d = 0.01\ell$, $\delta = 90^\circ$, and $\theta = 30^\circ$, and both the unequalized and the equalized iterations amplify the main (1,5) resonance. We conclude that properties of the illumination is important for the result.

6 Conclusions

We have shown, for realistic target and antenna models, that the iterative REM procedure can provide information about target resonances. We have shown that the process converges to the resonances of the overall antenna-target system, and we have proposed some approaches for removing the antenna response and range effects when these are known. We have shown that different antenna responses can result in different target resonances being identified.

We note that because the process uses data that is sampled in the time domain, the REM process converges automatically even to very narrow frequency-domain peaks. The only sampling issue that arises is in plotting the frequency-domain response.
Figure 8: The value of the equalized R_{eq}^n for $n = 1, 2, 3$ for a single cylindrical dipole antenna. The value is normalized with maximum absolute value of R_{eq} in the interval. The position of the first resonance in the transition matrix (1,5) is shown by a dotted vertical line. The second dotted line, (1,3), shows the position of the resonance of the unequalized data. In this example $\ell = 1.5a$ and $d = 0.01\ell$.

Figure 9: The same data as in Figure 8 but with unequalized data. The dashed curve shows the frequency taper of the antenna that is multiplied to the scattering data. The value is normalized with maximum absolute value of R in the interval.
Figure 10: The value of the unequalized R^n for $n = 1, 2, 3$ for a single cylindrical dipole antenna with data $\ell = 0.9a$ and $d = 0.01\ell$. The value is normalized with maximum absolute value of R in the interval. The equalized case is identical to the curves in Figure 8. The dashed curve shows the frequency taper due to the antenna that is multiplied to the scattering data. The position of the largest resonance in the transition matrix is shown by a dotted vertical line.

A variety of interesting questions are left for the future.

- One of the advantages of REM over simply measuring the broadband response once and raising it to a power is the improvement in the signal-to-noise ratio of the resonance response. How much additive noise [20, 28] can REM accommodate?

- How does the REM process perform in the presence of interference?

- Can we use time-gating to identify resonances of a buried target?

- Is it possible to include a constraint that the transmitted waveform should have constant amplitude, and if so, does the modified process still provide target resonances?

- How can we best use the information provided by REM for target classification?

- How much extra information can be obtained from the use of polarization diversity?

- How can we use the REM process to identify the SEM poles in a stable way? The issue of extracting the SEM poles we take up in a subsequent paper.
Figure 11: The largest eigenvalue $\lambda(ka)$ of R (red curve) and R_{eq} (black curve) for two identical cylindrical dipole antennas in Figure 5. The value is normalized with maximum absolute value of λ_{max} in the interval. The position of the corresponding pole in the transition matrix is shown by a dashed vertical line. In this example $\ell = 1.5a$, $d = 0.01\ell$, $\delta = 90^\circ$, and $\theta = 30^\circ$.

Figure 12: The same data as in Figure 11, but the excitation is made with a shorter antenna $\ell = 0.9a$.
Appendix A Spherical vector waves

The vector spherical harmonics are defined as [5,29]

\[
\begin{align*}
A_{1n}(\hat{r}) &= \frac{1}{\sqrt{l(l+1)}} \nabla \times (r Y_n(\hat{r})) = \frac{1}{\sqrt{l(l+1)}} \nabla Y_n(\hat{r}) \times r \\
A_{2n}(\hat{r}) &= \frac{1}{\sqrt{l(l+1)}} r \nabla Y_n(\hat{r}) \\
A_{3n}(\hat{r}) &= \hat{r} Y_n(\hat{r}),
\end{align*}
\]

where the spherical harmonics are denoted by \(Y_n(\hat{r})\) defined as

\[
Y_n(\hat{r}) = Y_n(\theta,\phi) = \sqrt{\frac{2l+1}{2\pi} \frac{(l-m)!}{(l+m)!}} P_m^l(\cos \theta) \left\{ \cos m\phi, \sin m\phi \right\},
\]

where \(P_m^l(x)\) are the associated Legendre functions, and where the Neumann factor is defined as

\[
\varepsilon_m = 2 - \delta_{m0}, \quad i.e., \quad \begin{cases}
\varepsilon_0 = 1 \\
\varepsilon_m = 2, \quad m > 0.
\end{cases}
\]

The index \(n\) is a multi-index for the integer indices \(l = 1, 2, 3, \ldots\), \(m = 0, 1, \ldots, l\), and \(\sigma = e,o\) (even and odd in the azimuthal angle).\(^3\) From these definitions we see that the first two vector spherical harmonics, \(A_{1n}(\hat{r})\) and \(A_{2n}(\hat{r})\), are tangential to the unit sphere \(\Omega\) in \(\mathbb{R}^3\) and they are related as

\[
\begin{align*}
\hat{r} \times A_{1n}(\hat{r}) &= A_{2n}(\hat{r}) \\
\hat{r} \times A_{2n}(\hat{r}) &= -A_{1n}(\hat{r}).
\end{align*}
\]

The vector spherical harmonics form an orthonormal set over the unit sphere \(\Omega\) in \(\mathbb{R}^3\), \(i.e.,\)

\[
\iint_{\Omega} A_{\tau n}(\hat{r}) \cdot A_{\tau n'}(\hat{r}) \, d\Omega = \delta_{nn'} \delta_{\tau\tau'},
\]

where \(d\Omega\) is the surface measure on the unit sphere.

The parity of the vector spherical harmonics is

\[
A_{\tau n}(-\hat{r}) = (-1)^{l+\tau+1} A_{\tau n}(\hat{r}), \quad \tau = 1, 2. \quad (A.1)
\]

The radiating solutions to the Maxwell equations in a homogeneous, isotropic media are defined as (outgoing spherical vector waves)

\[
\begin{align*}
u_{1n}(kr) &= \frac{\xi(kr)}{kr} A_{1n}(\hat{r}) \\
u_{2n}(kr) &= \frac{1}{k} \nabla \times \left(\frac{\xi(kr)}{kr} A_{1n}(\hat{r}) \right)
\end{align*}
\]

\(^3\)The index set at several places in this paper also denotes a four index set, and includes the \(\tau\) index. That is, the index \(n\) can denote \(n = \{\sigma,l,m\}\) or \(n = \{\tau,\sigma,l,m\}\).
Here, we use the Riccati-Bessel functions \(\xi_l(x) = x h_l^{(1)}(x) \), where \(h_l^{(1)}(x) \) is the spherical Hankel function of the first kind [31]. These vector waves satisfy
\[
\nabla \times (\nabla \times \mathbf{u}_{\tau n}(kr)) - k^2 \mathbf{u}_{\tau n}(kr) = 0, \quad \tau = 1, 2
\]
and they also satisfy the Silver-Müller radiation condition [13]. Another representation of the definition of the vector waves is
\[
\begin{align*}
\mathbf{u}_{1n}(kr) &= \frac{\xi_l(kr)}{kr} A_{1n}(\hat{r}) \\
\mathbf{u}_{2n}(kr) &= \frac{\xi'_l(kr)}{kr} A_{2n}(\hat{r}) + \sqrt{l(l+1)} \frac{\xi_l(kr)}{(kr)^2} A_{3n}(\hat{r}).
\end{align*}
\]
A simple consequence of these definitions is
\[
\begin{align*}
\mathbf{u}_{1n}(kr) &= \frac{1}{k} \nabla \times \mathbf{u}_{2n}(kr) \\
\mathbf{u}_{2n}(kr) &= \frac{1}{k} \nabla \times \mathbf{u}_{1n}(kr).
\end{align*}
\]

In a similar way, the regular spherical vector waves \(v_{\tau n}(kr) \) are defined [5].
\[
\begin{align*}
v_{1n}(kr) &= \frac{\psi_l(kr)}{kr} A_{1n}(\hat{r}) \\
v_{2n}(kr) &= \frac{\psi'_l(kr)}{kr} A_{2n}(\hat{r}) + \sqrt{l(l+1)} \frac{\psi_l(kr)}{(kr)^2} A_{3n}(\hat{r})
\end{align*}
\]
where the \(\psi_l \) are the Riccati-Bessel functions \(\psi_l(x) = x j_l(x) \), and where \(j_l(x) \) is the spherical Bessel function [31].

Appendix B Resonances and poles of the transition matrix entries

The connection between the singularities of the transition matrix \(t_{\tau l} \) and the peaks in the differential scattering cross section in the backward direction, \(\sigma_{b}(ka) = \frac{\partial \sigma}{\partial \Omega}(k, -\hat{k}, \hat{k})/\pi a^2 \), is described in the literature, see e.g., Reference 37. In this appendix, we review some of the details.

Denote the location of a pole in a transition matrix entry by \(z_0 = x_0 - iy_0 \), where \(y_0 > 0 \), and denote for simplicity \(ka = x \in \mathbb{R} \). In a neighborhood of the pole on the real axis, the transition matrix entry has the form
\[
t_{\tau l}(x) = \frac{t_{bg}(x)}{x - z_0},
\]
where the background transition matrix \(t_{bg}(x) \) is a slowly varying analytic function. On the real axis, close to the pole \(z_0 \), the differential scattering cross section in the backward direction \(\sigma_{b}(x) \) has the form
\[
\sigma_{b}(x) = \frac{1}{x^2} \left| s_{bg}(x) \pm (2l + 1) \frac{t_{bg}(x)}{x - z_0} \right|^2 = \frac{\sigma_{bg}(x)}{|x - z_0|^2} = \frac{\sigma_{bg}(x)}{(x - x_0)^2 + y_0^2}
\]
where $s_{bg}(x)$ and $\sigma_{bg}(x)$ (background contribution) are smooth functions in the neighborhood of x_0. The maximum of the differential scattering cross section occurs at $x = x_m$, determined by

$$
\left((x_m - x_0)^2 + y_0^2\right) \sigma'_{bg}(x_m) - 2\sigma_{bg}(x_m) (x_m - x_0) = 0,
$$

where prime denotes differentiation w.r.t. x. If $\sigma'_{bg}(x_m) = 0$ (constant background), then we conclude the maximum occurs at $x_m = x_0$.

If $\sigma'_{bg}(x_m) \neq 0$, then the maximum is slightly shifted away from x_0. To proceed, it is convenient to introduce $f(x) = \sqrt{\sigma_{bg}(x)} > 0$ (note that $\sigma_{bg}(x) > 0$ in a neighborhood of $x = x_0$). Then (B.1) can be written

$$
\left((x_m - x_0)^2 + y_0^2\right) f'(x_m) = f(x_m) (x_m - x_0).
$$

This root $x = x_m$ satisfies the approximate equation (use a linear approximation $f(x) \approx f(x_0) + f'(x_0) (x - x_0)$)

$$
\left((x_m - x_0)^2 + y_0^2\right) f'(x_0) \approx (f(x_0) + f'(x_0) (x_m - x_0)) (x_m - x_0),
$$

with solution

$$
x_m \approx x_0 + y_0^2 \frac{f'(x_0)}{f(x_0)},
$$

which quantifies the small shift of the resonance due to non-constant background, i.e., $\sigma_{bg}(x_0) \approx \sigma'_{bg}(x_m) \neq 0$. Note that a decrease in the value of y_0^2, decreases the shift.

Appendix C Energy and power flow

The received and transmitted power at time t are

$$
P_r(t) = \frac{|\beta(t)|^2}{Z}, \quad P_t(t) = \frac{|\alpha(t)|^2}{Z}
$$

respectively, and the total energy received and transmitted are (Parseval’s theorem is used)

$$
E_r = \frac{1}{\pi} \int_0^\infty \frac{|\beta(k)|^2}{Z} \, dk, \quad E_t = \frac{1}{\pi} \int_0^\infty \frac{|\alpha(k)|^2}{Z} \, dk
$$

We observe that the power densities of the transmitted and received signals are $|\alpha(k)|^2 / Z$ and $|\beta(k)|^2 / Z$, respectively.

If we transmit the spatially distributed waveform determined by $\alpha(k)$, which scatters from the target and results in the spatially distributed signal corresponding to $\beta(k)$ on the receiving antennas, then our ability to detect the presence of the target is determined by the ratio E_r / E_t. The optimal detectability [10] is thus

$$
\sup_{\alpha} \frac{E_r}{E_t} = \sup_{\alpha} \frac{\int_0^\infty \frac{|\beta(k)|^2}{Z} \, dk}{\int_0^\infty \frac{|\alpha(k)|^2}{Z} \, dk}.
$$

Discussion of the effect of noise on the power method can be found in [20].
Appendix Acknowledgments

We would like to thank Ivars Kirsteins for helpful comments and discussions. The work of M.C. was supported in part by the Air Force Office of Scientific Research under contract numbers FA9550-14-1-0185 and FA9550-18-1-0087.

References

Consequently, the US Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Research Laboratory or the US Government.

