
Continuous Model Validation using Reference Attribute Grammars

Mey, Johannes; Schöne, René; Hedin, Görel; Söderberg, Emma; Kühn, Thomas; Fors,
Niklas; Öqvist, Jesper; Aßmann, Uwe
Published in:
Proceedings of the 11th ACM SIGPLAN International Conference on Software Language Engineering (SLE ’18)

DOI:
10.1145/3276604.3276616

2018

Link to publication

Citation for published version (APA):
Mey, J., Schöne, R., Hedin, G., Söderberg, E., Kühn, T., Fors, N., ... Aßmann, U. (2018). Continuous Model
Validation using Reference Attribute Grammars. In Proceedings of the 11th ACM SIGPLAN International
Conference on Software Language Engineering (SLE ’18) (pp. 70-82). Association for Computing Machinery
(ACM). DOI: 10.1145/3276604.3276616

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1145/3276604.3276616
http://portal.research.lu.se/portal/en/publications/continuous-model-validation-using-reference-attribute-grammars(81ccfc56-5e31-4172-ba33-8f57d617e0b6).html

Continuous Model Validation using Reference
Attribute Grammars

Johannes Mey
Technische Universität Dresden

Germany
johannes.mey@tu-dresden.de

René Schöne
Technische Universität Dresden

Germany
rene.schoene@tu-dresden.de

Görel Hedin
Lund University

Sweden
gorel.hedin@cs.lth.se

Emma Söderberg
Lund University

Sweden
emma.soderberg@cs.lth.se

Thomas Kühn
Technische Universität Dresden

Germany
thomas.kuehn3@tu-dresden.de

Niklas Fors
Lund University

Sweden
niklas.fors@cs.lth.se

Jesper Öqvist
Lund University

Sweden
jesper.oqvist@cs.lth.se

Uwe Aßmann
Technische Universität Dresden

Germany
uwe.assmann@tu-dresden.de

Abstract
Just like current software systems, models are characterised
by increasing complexity and rate of change. Yet, these mod-
els only become useful if they can be continuously evaluated
and validated. To achieve su� ciently low response times
for large models, incremental analysis is required. Reference
Attribute Grammars (RAGs) o� er mechanisms to perform
an incremental analysis e� ciently using dynamic depen-
dency tracking. However, not all features used in conceptual
modelling are directly available in RAGs. In particular, sup-
port for non-containment model relations is only available
through manual implementation. We present an approach
to directly model uni- and bidirectional non-containment
relations in RAGs and provide e� cient means for navigating
and editing them. This approach is evaluated using a scalable
benchmark for incremental model editing and theJastAdd
RAG system. Our work demonstrates the suitability of RAGs
for validating complex and continuously changing models
of current software systems.

CCS Concepts • Theory of computation � Grammars
and context-free languages ; • Software and its engineer-
ing � System description languages; • Computing method-
ologies � Model veri� cation and validation;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro� t or commercial advantage and that copies bear
this notice and the full citation on the� rst page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci� c permission and/or a fee. Request
permissions from permissions@acm.org.
SLE ’18, November 5–6, 2018, Boston, MA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6029-6/18/11. . .$15.00
h� ps://doi.org/10.1145/3276604.3276616

Keywords Incremental model evaluation, bidirectional re-
lations, References Attribute Grammars

ACM Reference Format:
Johannes Mey, René Schöne, Görel Hedin, Emma Söderberg, Thomas
Kühn, Niklas Fors, Jesper Öqvist, and Uwe Aßmann. 2018. Con-
tinuous Model Validation using Reference Attribute Grammars.
In Proceedings of the 11th ACM SIGPLAN International Conference
on Software Language Engineering (SLE ’18), November 5–6, 2018,
Boston, MA, USA.ACM, New York, NY, USA,13pages.h� ps://doi.
org/10.1145/3276604.3276616

1 Introduction
More and more software systems rely on models to easily
reference, re� ne, and validate aspects of a business domain in
a cost-e� ective way [32]. With current software systems in-
creasing in complexity and rate of change [28], these models
become more complex and change continuously, too. While
maintaining and re� ning complex models is possible with
state-of-the-art tools [22], their continuous evaluation and
validation still poses problems for large complex models.

To approach continuous evaluation, researchers recently
appliedReference Attribute Grammars(RAGs) [14] to encode
and validate models, e.g., [6–8], because RAG systems o� er
mechanisms to perform an incremental analysis e� ciently
using dynamic dependency tracking [35]. Although RAG sys-
tems can e� ciently rewrite and re-evaluate complex, large
tree structures with derived information, including refer-
ences, there exists a fundamentalsemantic mismatchbetween
models, generally represented as graphs, and RAG trees.1

While conceptual models comprise classes with attributes
linked by inheritance, containment, and non-containment

1There is a striking similarity to the object-relational impedance mis-
match [18].

70

https://www.acm.org/publications/policies/artifact-review-badging

SLE ’18, November 5–6, 2018, Boston, MA, USA Mey, Schöne, Hedin, Söderberg, Kühn, Fors, Öqvist, and Aßmann

relations, RAGs feature production rules for abstract syn-
tax trees with nonterminal elements and tokens, as well as
attributes de� ning, amongst other things, cross-tree refer-
ences.2 Even though containment relations can be directly
mapped to nonterminal productions rules, non-containment
relations must be encoded manually by means of reference
attributes [7]. Moreover, bidirectional non-containment re-
lations cannot be mapped to RAGs without either requir-
ing manually de� ned lookup (potentially causing excessive
evaluation overhead) or the unmanaged redundancy of two
opposing directed relations. Consequently, naive implemen-
tations usually incur a performance overhead that reduces
the bene� ts of incremental model evaluation. In short, plain
RAGs are not directly usable for continuous validation of
conceptual models. To remedy this mismatch, we address
the following research questions in this paper:

RQ1 How can RAGs be used to de� ne models?
RQ2 What could improve the suitability of RAGs?
RQ3 Can improvements retain the e� ciency of incre-

mental RAG evaluations?

Consequently, we give a detailed account of typical issues of
models encoded with RAGs (RQ1). We propose an extension
to RAGs introducing a coherent notation for uni- and bidi-
rectional non-containment relations, bridging the semantic
gap between conceptual models and RAGs (RQ2). Moreover,
we provide a general implementation of bidirectional non-
containment relations for RAGs that permits editing and
navigating these relations consistently and e� ciently (RQ3).
Speci� cally, we provide a prototypical implementation based
on JastAdd[15], a system supporting RAGs, illustrating the
suitability of our approach. Investigating the e� ciency of
our solution in the presence of incremental evaluation, we
employ theTrain Benchmark[38] comparing the proposed
solution with both an idiomatic implementation using simple
lookup methods and a manually optimized implementation.

The paper is structured as follows. Section2 introduces
the model of theTrain Benchmarkused throughout the pa-
per as the running example. Section3 gives background on
models and RAGs. Section4 investigates typical encodings
of models with RAGs. Conversely, Section5 introduces bidi-
rectional relations to RAGs and describes the prototypical
implementation withJastAdd. Afterwards, Section6 evalu-
ates the suitability and e� ciency of the presented solution
both qualitatively and quantitatively. Finally, Section7 dis-
cusses related work and Section8 concludes the paper.

2 Running Example: Train Benchmark
To showcase the mismatch between RAGs and conceptual
modeling, we implement a continuous model validation
benchmark using plain RAGs and compare this to using

2Note that the termattributeis used both in the modelling and the attribute
grammar community with di� erent meanings (cf. Section3).

Figure 1. Metamodel, adapted from [38].

Figure 2. Example of a model instance, from [38].

RAGs extended with non-containment relations. The bench-
mark used is theTrain Benchmark[38], in which a railway
network is modeled and validated using well-formedness
constraints. The hypothetical use case of the benchmark do-
main is an interactive editor for railway networks, which
are alternatingly modi� ed and validated.

Six patterns are described to� nd matches of inconsistent
model states, and transformations are given to eitherinject
more faults orrepairexisting ones.

2.1 The Train Metamodel

Figure1depicts the metamodel of theTrain Benchmark. It de-
� nesTrackElements, eitherSwitches orSegments, which
are monitored bySensors. Furthermore,Routes are speci-
� ed betweenSemaphores, following switches with certain
SwitchPosition s. Additional properties are de� ned using
attributes, which have either built-in data types or enumer-
ation types. Furthermore, and for clarity reasons omitted
in the diagram, each model element specializes an abstract
superclassModelElementand has an integer-valuedid .

The model is structured in a containment tree with a
RailwayContainer root and several non-containment rela-
tions between classes, e.g., therequires relation between a
Routeand aSensor, or the bidirectional relationmonitors /
monitoredBybetweenSensorandTrackElement.

Continuous Model Validation using Reference A� ribute Grammars SLE ’18, November 5–6, 2018, Boston, MA, USA

Figure 3. RouteSensorquery, from [38].

Figure 4. ConnectedSegmentsquery, from [38].

Figure2 shows an instance of the metamodel de� ning two
routes sharing a common segment.

2.2 Investigated Queries and Transformations

TheTrain Benchmarkde� nes six queries to cover a range of
di� erent query patterns. Each query de� nes an undesired
pattern of objects and relations. While we implemented all of
them, in this work, we focus on two of the queries,RouteSen-
sorandConnectedSegments. Both make use of bidirectional
references, the former features a negative match and few
relations, while the latter is more complex. Thus, two very
di� erent exemplary queries have been selected, showing
di� erent performance properties, as is shown in Section6.

RouteSensor.The queryRouteSensoridenti� es a missing
relation between aRoute and aSensor: A Route follows
a number of switches that are monitored by sensors. Each
such sensor is said to be required by theRoute, and if that
requiresrelation is missing, there is an error in the model.
Note that using RAGs, the required sensors of aRoutecould
be modelled by a derived attribute rather than by an explicit
relation, making this query obsolete. We have chosen this
query to show the e� ectiveness and e� ciency of the bidi-
rectional relationmonitoredBy. Theinject transformation
randomly deletes onerequires relation, whereas to repair,
a match is found using the query of Figure3and arequires
relation is added between the route and the sensor.

ConnectedSegments.Figure4 shows the queryConnected-
Segments. It matches any sensor monitoring more than� ve
Segments connected in a row. The motivation for choosing

monitoredBy

monitoredBy
«new»

connectsTo
«del»

«new»

connectsTo
«new»

connectsTo
«new»

segment1: Segment

sensor: Sensor segment2: Segment

segment3: Segment
monitoredBy

Figure 5. ConnectedSegmentsinject transformation,
from [38].

this query was its unusual structure matching a certain num-
ber of elements of the same type, and its inherent complexity.

To inject a potential fault, a new segment is inserted and
connected between two existing segments monitored by the
same sensor as shown in Figure5. Repairing deletes the
second segment of a match found by the query in Figure4.

3 Background on Models and RAGs
This section presents an overview of models and Reference
Attribute Grammars (RAGs).

3.1 Components of Structural Models

Models are considered in the commonly used formatEcore,
the reference implementation of the Essential Meta-Object
Facility (EMOF) standard by the Object Management Group
(OMG) [30, 37]. Ecore, which acts as the core metamodel
of the Eclipse Modeling Framework EMF, has been selected
because of its wide usage in the modelling community. The
basic required features of a conceptual model are classes
with single inheritance, named and directed relations with
cardinality, and attributes of classes. Models can have arbi-
trary relations between elements, resulting in object graphs.
In contrast, trees (as described by abstract grammars) have
only a hierarchical parent-child relation, and can thus be
seen as special cases of models. The Ecore metamodel is par-
ticularly suited for mapping to a grammar because it requires
a tree-shaped containment relation for metamodel elements:
Containment. Elements in the model are required to have
at most one container (parent) reference. This means that
the elements of an Ecore model form a set of trees with
additional non-containment model relations.
Spanning Tree. For reasons of simplicity, it is assumed that
each element has exactly one container reference, except for
one singular element which we call theroot element. This
requirement can be achieved easily for models adhering to
the containment requirement by adding an arti� cial root
node containing all elements with no existing container. It
can be noted that many models already have a spanning tree
to support serialization into a tree-structured format like
XML, JSON, or YAML.

SLE ’18, November 5–6, 2018, Boston, MA, USA Mey, Schöne, Hedin, Söderberg, Kühn, Fors, Öqvist, and Aßmann

3.2 Components of Reference Attribute Grammars

Reference Attribute Grammars (RAGs) [14] are abstract gram-
mars extended with derived attributes. They generalize the
original attribute grammars by Knuth [23] by supporting
that attributes are references to tree nodes.

Abstract Grammar. An abstract grammar de� nes valid
trees of objects (nodes), similar to the spanning trees de� ned
by an Ecore model. For containment relations, multiplicities
of 1, 0..1 , and0..* are supported. The abstract grammar
furthermore de� nesintrinsic attributes of objects, i.e., at-
tributes that are given values when the object is created.
When implementing programming languages, intrinsic at-
tributes are typically used for representing tokens, with prim-
itive types likeString or int . They can also reference other
objects, thereby giving certain support for non-containment
relations. Listing1 shows a simple example grammar with
six classes (classes are also known asnonterminals).

Listing 1. Example grammar.
A ::= b:B ; // class A with normal child b of type B
abstract B ::= < t:int > ; // abstract class with token t
C:B; // class C extends B
D:B ::= [E] ; // optional child (0..1 multiplicity)
E:B ::= F* ; // list child (0..* multiplicity)
F ::= < c:C> ; // intrinsic reference c of type C

Derived A� ributes. Derived attributes in a RAG are de-
� ned by directed equations placed in classes, and whose
right-hand sides may use any other attributes (intrinsic or
derived) accessible from that class. The attributes may have
primitive or reference values. In implementation of program-
ming languages, the derived attributes are typically used for
representing name bindings, types, validation errors (static-
semantic errors), generated code, etc.

There are many kinds of derived attributes:synthesized
andinheritedlike in Knuth’s attribute grammars,parame-
terized[14], higher-order[41], collection[26], circular [27],
etc., with slightly di� erent rules for how equations are writ-
ten and in what class they are placed. Listing2 shows the
de� nition of an example synthesized attribute.

Listing 2. Example synthesized attribute.
syn int F.d(); // F declares synthesized attribute d
eq F.d() { // F has equation for d

return getC().t(); // right-hand side given as method body
}

We use the notation of the RAG toolJastAdd[15] for the
derived attributes, but the ideas presented in this paper are
general and would apply to any RAG tool.

A� ribute evaluation. The value of a derived attribute is
computed automatically, on demand, when it is accessed
the � rst time. The value can be cached to speed up sub-
sequent accesses, thus enabling incremental evaluation. If
a part of the tree is changed (called an “edit”), caches of

Listing 3. BasicTrain Benchmarkgrammar without non-
containment relations.
RailwayContainer ::= Route* Region*;
abstract RailwayElement ::= < Id:int >;
Region : RailwayElement ::= TrackElement* Sensor*;
Semaphore : RailwayElement::= < Signal:Signal >;
Route : RailwayElement ::= < Active:boolean > SwitchPosition*;
SwitchPosition : RailwayElement ::= < Position:Position >;
Sensor : RailwayElement;
abstract TrackElement:RailwayElement;
Segment : TrackElement::= < Length:int > Semaphore*;
Switch : TrackElement ::= < CurrentPosition:Position >;

attributes that depend on those parts are cleared. These at-
tributes are then re-evaluated the next time they are accessed.
Technically, the containment relation is represented by im-
plicit intrinsic parent and child attributes, and a dependency
graph over attribute instances (both intrinsic and cached de-
rived) is computed dynamically, during attribute evaluation.
Each edit corresponds to a number of changes to intrinsic
attributes and the dependent derived attributes are found by
traversing the dependency graph starting from the changed
intrinsic attributes [35]. For the purpose of this paper, we
are primarily taking advantage of simple synthesized and
inherited attributes as well as their incremental evaluation to
provide automatic support for continuous model validation.

4 Encoding Models in Plain RAGs
To encode a conceptual model as a RAG, each of the basic
features of models need to be encoded: classes, single inheri-
tance, attributes of classes, containment relations, and non-
containment relations. Of these, the� rst four are straightfor-
ward, whereas the non-containment relations can be encoded
in di� erent ways. In this section, we will present di� erent
approaches to encode those relations, thus tackling RQ1.

4.1 Models without Non-containment Relations

We � rst look at how to encode models without non-contain-
ment relations. Model classes and their single inheritance
translates directly to RAG classes and their single inheri-
tance. Attributes of model classes translate to intrinsic RAG
attributes. The containment relation translates to normal,
optional, and list children in RAG classes. Listing3 shows
how theTrain Benchmarkmodel described in Section2 can
be written as a RAG (ignoring the non-containment rela-
tions). Here,Signal andPosition areenumtypes with the
possible values shown in Figure1.
Containment relations. RAGs give immediate support for
containment relations in the child direction, by generated
accessor methods. For example, from aRegionobjectr , the
TrackElementscan be accessed as follows:

r.getTrackElementLisr() // access all children
r.getTrackElement(i) // access a specific child

The inverse relation, from child to parent, is supported di-
rectly by an intrinsic attributeparent .

73

Continuous Model Validation using Reference A� ribute Grammars SLE ’18, November 5–6, 2018, Boston, MA, USA

4.2 Encoding Non-containment Relations

For non-containment relations, there is no obvious corre-
sponding feature in plain RAGs, so they need to be encoded.
This can be done either using names that must be resolved
or using intrinsic attributes. To support all cardinalities and
provide a common interface for both variants, we add an
arti� cial generic wrapper class,Ref, to the grammar. The
Ref node encapsulates one outgoing reference in a relation.
Using these newRef wrapper objects, we can extend the
basic abstract grammar from Listing3 as shown below.

Listing 4. Extending theTrain Benchmarkgrammar with
Ref nodes for non-containment relations.
Route ... ::= ... requires:Ref* [entry:Ref] [exit:Ref];
SwitchPosition ... ::= target:Ref;
Sensor ... ::= monitors:Ref*;
abstract TrackElement ... ::= connectsTo:Ref*;

Compared to the train model of Figure1, the bidirectional re-
lations (monitors/monitoredBy and target/positions),
only encode one of the directions. We will discuss later how
to handle bidirectional relations.

We have not yet shown the implementation of the class
Ref. We will discuss two di� erent strategies: one is based on
name analysis, and the other on intrinsic reference attributes.

4.2.1 Reference Resolution and Name Analysis

Reference resolution is a common problem in both the gram-
mar and the model world, since for both models and lan-
guages, serialization is commonly used, and references are
represented as some kind of names or identi� ers in the seri-
alized form. For programming languages, resolving names
can be a rather complex task, involving scoping and prece-
dence rules. In models, on the other hand, name resolution
is typically much easier. In Ecore, the most commonly used
serialization is the XML Metadata Interchange (XMI) format.
XMI supports both path expressions and global identi� ers to
describe references. However, we focus on global identi� er
resolution only, in order to simplify the problem. This name
resolution is much simpler than in programming languages
since it only involves a global identi� er namespace, and no
scoping or other complex mechanisms. AllRailwayElement
objects in the Train model have a unique identi� er, repre-
sented by the intrinsic attributeId in Listing 3.
Name Analysis Strategy. To use the name analysis strategy
for resolving references, we simply let theRef wrappers
contain the targetId of the reference, implementingRef as:

Ref ::= < Id:int >

The actual references making up the relation can then be
computed using a simple name analysis, speci� ed using de-
rived RAG attributes. This implementation has the advantage
that it makes it very simple to deserialize a model: simply
create the containment tree of objects, setting their localId
attributes. The name analysis RAG attributes take care of the

Listing 5. RAG-based computation of inverse relation.
coll Set<Sensor> TrackElement.monitoredBy() [new HashSet()];
Sensor contributes this

to TrackElement.monitoredBy()
for each monitors();

reference resolution completely automatically. A straightfor-
ward way to e� ciently implement the name analysis using
RAG attributes is to de� ne one derived attribute in the root
that computes a map fromId values to objects, and one
derived attribute in theRef object that looks up the appro-
priateRailwayElement, using theId value of theRef. Due
to attribute caching, the map is computed only once.
Intrinsic Reference Strategy. As we will see in Section6,
however, the name analysis solution has some performance
problems when using incremental evaluation. Therefore, we
also consider an alternative strategy, namely to use intrinsic
reference attributes, using the following implementation of
the Ref wrapper:

Ref ::= < Ref:ASTNode>

For this strategy, the deserializer will be slightly more com-
plex as it needs to explicitly set the intrinsic references. This
can be done in a second pass after building the containment
tree, i.e., in the same way as in an ordinary model tool. Seri-
alizing a model is very simple for both strategies.

4.2.2 Bidirectional References

So far, we have only discussed how to handle unidirectional
non-containment relations. For bidirectional relations, there
are two major options: double unidirectional references and
derived inverse references.
Double Unidirectional References. A bidirectional rela-
tion can be modelled simply as two unidirectional relations.
However, consistency is an issue when editing the model.
When adding or removing a reference in one direction, the
opposite direction has to be added or removed as well. One
possibility is to add special edit operations keeping the in-
variant of bidirectionality maintained, rather than to directly
use the primitive edit operations for intrinsic attributes.
Derived Inverse References.An alternative option is to
de� ne one of the directions as primary and model it as a uni-
directional reference. Then, a derived attribute can be used
to compute the opposite direction in order to automatically
maintain consistency. A disadvantage of this solution is the
di� erent treatment of the two directions, and that only one
of the directions can be edited directly. One solution here is
to add special edit operations that always edit the forward
direction of the relation.

Listing 5 shows an example of how to implement the in-
verse relationmonitoredBy from the forward relationmoni-
tors using RAG attributes and equations. For eachTrack-
Element, a setmonitoredBy is de� ned as acollectionat-
tribute, and eachSensorcontributes to the collections of all

74

SLE ’18, November 5–6, 2018, Boston, MA, USA Mey, Schöne, Hedin, Söderberg, Kühn, Fors, Öqvist, and Aßmann

its monitoredTrackElements. A collection attribute, indi-
cated by thecoll keyword, is de� ned by a set comprehen-
sion of so calledcontributionsthat can be anywhere in the
model [26].

4.2.3 Discussion

While the above solutions for implementing non-contain-
ment references are reasonably straightforward, they do call
for some boilerplate RAG code. Furthermore, while both
the name analysis and the inverse relation computation are
e� cient for normal (non-incremental) evaluation, they do
not have very good incremental performance, as indicated
by our measurements in Section6. The reason is that, at
least with globally valid names, the maps and sets involved
depend on essentially the whole model, so that most changes
will lead to re-computation of the complete name analysis,
the inverse relations, and all of their dependent attributes.

To improve the performance and avoid boilerplate code,
we therefore suggest speci� c support for relations in RAGs,
as will be discussed in the next section.

5 Extending RAGs to Support Models
Section4demonstrated how (bidirectional) non-containment
relations can be implemented in attribute grammars. How-
ever, both proposed implementation variants have disadvan-
tages concerning the need for boilerplate code and e� ciency.
Those disadvantages are the main concern of RQ2 and RQ3,
respectively. Hence, bidirectionality cannot be expressed di-
rectly, even though it is a structural property of the model.
As a third and better solution, we extend RAGs with explicit
high-level support for non-containment relations.

5.1 Extending RAGs with Non-containment
Relations

Adding non-containment relations to abstract grammar pro-
duction rules would be di� cult since bidirectional relations
belong to both sides of the relation equally. Therefore, we
specify the relations as separate clauses in the abstract gram-
mar. For each relation, information is supplied on source and
target classes, role names, direction, and cardinalities.

Assume two abstract grammar classes namedClass1 and
Class2. There can be several kinds of relations between
these classes which di� er in directionality and cardinality.

Unidirectional Relations. If there is a directed relation
from Class1 to Class2 calledrole1 and the cardinality of
this relation is 1, i.e., there is exactly one element of type
Class2 related to each element of typeClass1:

rel Class1.role1 - > Class2;

Unlike in UML or Ecore diagrams, the role name is positioned
next to the source of the relation rather than the target. This
is because the role can be seen as an attribute of the source.

The cardinality can also bezero-or-one, i.e., the relation is
optional, denoted as “?”, or zero-to-many, denoted as “* ”. The
cardinality is positioned next to the role name and, therefore,
also placed next to the source object of the relation.

rel Class1.role1* - > Class2;
rel Class1.role1? - > Class2;

Bidirectional Relations. For bidirectional relations, the no-
tation is extended to include a second role namerole2 and
cardinality on the right hand side of the rule and a bidirec-
tional arrow. In the bidirectional case, any combination of
cardinalities is supported. Examples:

rel Class1.role1 <- > Class2.role2;
rel Class1.role1* <- > Class2.role2?;
rel Class1.role1* <- > Class2.role2*;

5.2 A Grammar for the Train Model

To specify the model of Figure1, we extend the basic abstract
grammar from Listing3 with the following de� nitions of
non-containment relations:

Listing 6. RAG non-containment relations for theTrain
Benchmarkmodel.
rel Route.requires* - > Sensor;
rel Route.entry? - > Semaphore;
rel Route.exit? - > Semaphore;
rel SwitchPosition.target <- > Switch.positions*;
rel Sensor.monitors* <- > TrackElement.monitoredBy*;
rel TrackElement.connectsTo* - > TrackElement;

5.3 API for Non-containment Relations

For each role in a relation, an API is generated that allows the
relations to be accessed and edited. The API is slightly dif-
ferent depending on the cardinality of the role. All provided
methods contain the name of the role to ensure uniqueness.

Cardinality 1. Roles with a cardinality of one use an in-
terface similar to intrinsic attributes. The setter uses aset
pre� x, while the getter is simply the name of the role. For a
role namerole and classesSourceandTarget , the gener-
ated interface looks as follows:3

void Source.setRole(Target t);
Target Source.role();

Cardinality ?. If the role is optional, two additional meth-
ods are generated: one to check if the relation is present, and
another to clear it.

boolean Source.hasRole();
void Source.clearRole();

3We use AspectJ’s inter-type declaration syntax here. So to illustrate that
classAhas a methodvoid m(){...} , we write void A.m(){...} .

75

Continuous Model Validation using Reference A� ribute Grammars SLE ’18, November 5–6, 2018, Boston, MA, USA

Cardinality * . List roles require di� erent accessors. Meth-
ods pre� xed with addToandremoveFromare used to modify
the list. To access the list, the name of the role can be used
as with the other cardinalities. However, the returned list is
immutable to ensure consistency of bidirectional references
and validity of incremental evaluation, so only the provided
interface in the classSourceis able to modify the list.

void Source.addToRole(Target t);
void Source.removeFromRole(Target t);
void Source.clearRole();
java.util.List<Target> Source.role();

5.4 Ensuring Consistency

The generated API ensures consistency of bidirectionality
and upper bounds of cardinalities. For example, consider the
relation monitors /monitoredBy. Suppose we have a sen-
sors and track elementt . If s.addToMonitors(t) is called,
the bidirectional relations <-> twill be added, and this call
is equivalent tot.addToMonitoredBy(s) .

For relations with cardinality1 or ? on one or both roles,
setting or adding a role might mean that other relations need
to be removed to ensure consistency. For example, suppose
we calls.addToPositions(sp) wheres is a switch andsp
is a switch position. Ifsp has atarget/postitions relation
to some other switch, that relation must be removed.

Harkes and Visser [13] present all 16 combinations of
situations when adding a relation, considering endpoints
of cardinality1 and*, and how they need to be handled to
ensure bidirectionality and upper bounds. Our API handles
all these situations. (The cardinalities for? are similar to the
ones for cardinality1and are also handled.)

Like Harkes and Visser, we do not ensure lower bounds.
For many operations, ensuring lower bounds for individual
operations is not possible. For example, when deserializing,
both source and target must be created before a relation
between them can be added. Similarly, aone-to-onerelation
cannot be edited with simple add/remove relation operations
without temporarily violating the lower bound. Instead, our
API provides methods to check if lower bounds are violated.
These methods can be called after deserialization and after
edit operations, which is useful for debugging.

5.5 Implementation

We have implemented support for non-containment rela-
tions as a preprocessor toJastAdd. The preprocessor takes a
� le in the extended abstract grammar format (.relast), and
generates an abstract grammar in the old format (.ast) to-
gether with aJastAddaspect� le (.jadd) with Java methods
implementing the relation API. The generated code uses the
standardJastAddAPI.

To represent the relations, the generated abstract grammar
includes an intrinsic attribute (token) for each role, so bidi-
rectional relations are represented by two intrinsic attributes,

Listing 7. Extended grammar with three relations.
Root ::= A* B*;
A ::= < Name:String>;
B ::= < Name:String>;
rel A.r1 - > B;
rel A.r2? - > B;
rel A.r3* <- > B.r4*;

Listing 8. JastAddgrammar generated from Listing7.
Root ::= A* B*;
A ::= < Name:String> <_impl_r1:B > <_impl_r2:B >

<_impl_r3:ArrayList >;
B ::= < Name:String> <_impl_r4:ArrayList >;

Listing 9. (Simpli� ed) interface forr3 de� ned in Listing7.
public java.util.List A.r3() {

return Collections.unmodifiableList(get_impl_r3());
}
public void A.addToR3(B o) {

ArrayList list = get_impl_r3();
ArrayList<A> list2 = o.get_impl_r4();
list.add(o);
list2.add(this);
set_impl_r3(list);
o.set_impl_r4(list2);

}
public void A.removeFromR3(B o) {

ArrayList list = get_impl_r3();
if (list.remove(o)) {

ArrayList<A> list2 = o.get_impl_r4();
list2.remove(this);
set_impl_r3(list);
o.set_impl_r4(list2);

}
}

one on each end of the relation. For roles of cardinality? and
1, a simple intrinsic attribute is used. For list roles, Java’s
ArrayList s are employed.

For each role, one intrinsic attribute is used, resulting in
JastAddseeing a role as one atomic entity, even though it
might be a list. This not only entails that the attributes may
not be modi� ed, only reset, but also de� nes the granularity
of an attribute’s dependency tracking, which works on whole
lists rather than list element access. As an example, consider
the extended RAG grammar in Listing7. The preprocessor
creates two� les, the plain RAG grammar shown in Listing8
and an aspect� le, parts of which are shown in Listing9, i.e.,
the accessors for roler3 on classA.

Note that consistency is ensured by setting and removing
both sides of the relation at once. The generated API is im-
plemented using the standardJastAddAPI for manipulating
intrinsic attributes. This ensures that incremental evaluation
of JastAddis used correctly when relations are added or
removed, i.e., a� ected attribute caches are invalidated.

76

SLE ’18, November 5–6, 2018, Boston, MA, USA Mey, Schöne, Hedin, Söderberg, Kühn, Fors, Öqvist, and Aßmann

Figure 6. Benchmark process, adapted from [38].

6 Evaluation
In this section, we will compare the described approaches of
Section4and Section5based on quantitative and qualitative
criteria in order to answer the three research questions.

6.1 Evaluation Setup

Figure6describes the process for evaluating theTrain Bench-
mark[38]. First, the model is read and an initial set of matches
is computed in theCheckphase. Then, the model is changed
and matches are recomputed. Modi� cation and recomputing
matches is iteratedn times. To speci� cally test the perfor-
mance of incremental model validation, only a small fraction
of the model is changed every time.

There are two scenarios:injectandrepair. In accordance
with [38], injectcreates a� xed number of 10 new faults with
n = 12 iterations, whereasrepair removes 5 percent of the
faults with n = 8 iterations. Thus, both a constant and a
proportional amount of changes is investigated. We split the
benchmark into individual runs for each query as opposed to
the Train Benchmarkpaper, where querying, injecting, and
repairing was executed together for all queries. Thus, we
have a detailed view on the performance of speci� c queries.
The benchmark can be scaled to evaluate the complexity of
queries w.r.t. increasing model sizes. For the smallest size 1,
approximately 5000 elements are generated. Other element
counts are shown in the measurements, e.g., in Figure7.

As described in the previous sections, we investigated
three di� erent approaches to compute the given queries:

Name Lookup Naive name resolution based on sym-
bolic references and collection attributes described in
the � rst part of Section4.2.1.

Intrinsic References Intrinsic references and collection
attributes for inverse part of bidirectional relations de-
scribed later in Section4.2.1.

Grammar Extension Intrinsic references and bidirec-
tional relations shown in the previous Section5.

Each approach can either use incremental evaluation or re-
compute all RAG attributes after every transformation. While
there is no implementation di� erence in using incremental
evaluation, we distinguish incremental and non-incremental
evaluation since they have di� erent runtime characteristics.
We compare these RAG-based approaches toTinkergraph(an
implementation of Apache Tinkerpop [9]), the fastest non-
incremental tool, and toVIATRA[3], the fastest incremental
tool, as of the published status in [38].

Listing 10. RouteSensorquery.
syn Collection<Match> Route.routeSensorMatches();
eq Route.routeSensorMatches() {

List<Match> matches = new ArrayList<>();
Collection<Sensor> requiredSensors = requiredSensors();
for (SwitchPosition sp : getSwitchPositionList()) {

Switch sw = sp.target();
for (Sensor sensor : sw. moni toredBy()) {

boolean validSensor = false ;
for (Sensor sensor2 : requiredSensors) {

if (sensor2 == sensor) {
validSensor = true ; break;

}
}
if (!validSensor) {

matches.add(new Match(this , sensor, sp, sw));
}

}
}
return matches;

}

6.2 Feasibility and Suitability (RQ1 and RQ2)

The feasibility of RAGs for de� ning and analysing models is
indicated by the presented implementation of the complete
Train Benchmark. To investigate the degree of suitability of
RAGs in general and the proposed extension in particular, the
three implementation variants4 are compared with respect
to conciseness and implementation e� ort we highlight some
of their di� erences. In general, two classes of di� erences can
be observed.

A� ribute/Accessor. In the name lookupand intrinsic ref-
erencesvariants, navigations are not performed uniformly:
some are performed using attributes and others by AST ac-
cessors. In contrast, in thegrammar extensionvariant, all
references are uniformly navigated by AST accessors.

Edit Directions. Transformations require edits of the rela-
tions. However, when relations are encoded by computed
attributes, like for thename lookupandintrinsic references
variants, these cannot be edited directly.

In the following, we discuss the implementations of the
two selected queries and the respective transformations de-
scribed in Section2.

RouteSensor: Query.The attribute for the� rst query,Route-
Sensor, is shown in Listing10. It remains identical for all
three approaches, with one exception, namely the call to
monitoredBy() (highlighted), which gets all sensors moni-
toring a switch. In thename lookupandintrinsic references
variants, it is an attribute speci� ed in Listing11, wherein a
handmade lookup map is used to retrieve the monitoring
sensors based on the id of a track element. The attribute
computing the map iterates over all sensors and builds up
4Available ath� ps://git-st.inf.tu-dresden.de/stgroup/trainbenchmark.

77

Continuous Model Validation using Reference A� ribute Grammars SLE ’18, November 5–6, 2018, Boston, MA, USA

the resulting map by inserting it into the list for the track
elements it monitors. In thegrammar extensionapproach,
the attributemonitoredBy is replaced by an accessor for the
bidirectional relation of the same name.

RouteSensor: Transformations. Transformations are im-
plemented by iterating over matches and inserting or remov-
ing associations between route and sensor pairs. Therepair
scenario is the same for all variants, with the only di� er-
ence being the use of bidirectional relations in thegrammar
extensionapproach and references in the other two. In the
inject scenario, the di� erence is shown in Listing12. Both
for name lookupandintrinsic references, a manual iteration
over the reference to sensors is required for their removal.
However, thegrammar extensionapproach requires only a
single call to remove a sensor from the required association.
This is an example of anedit directiondi� erence.

ConnectedSegments: Query.The query attribute forCon-
nectedSegmentsis nearly identical for all approaches and
shown in Listing13. The only di� erence is, again, the use of
references in the� rst two approaches. The attributetrans-
ConnectedSegmentscomputes all transitively connected
segments and allows a better caching behaviour.

ConnectedSegments: Transformations.For the transfor-
mations ofConnectedSegments, we can observe similar ef-
fects as forRouteSensor, resulting in shorter code for the
grammar extensionvariant.

6.3 Code Complexity Metrics Comparison

We use the following source code metrics to measure and
compare implementation size and complexity of queries,
transformations, and utility attributes:

LOC Lines of code, as a measure of total programming
e� ort

CFC Control � ow complexity (number of control� ow
constructsif , for andreturn)

AC Number of attributes, as a coarse grain indicator
for the number of additional attributes necessary to
achieve acceptable performance

The control� ow complexity metric (CFC) was introduced
by Vinju and Godfreyto avoid misleading estimates in raw
code complexity [40]. Table1 reports the results of apply-
ing the selected metrics to the three approaches. For each
implementation, we separately measured utility attributes,
queries, and transformations. Utility attributes are used to,
e.g., compute reverse relations and for resolving references.

In general, complexity scores decrease fromname lookup
to intrinsic references, and fromintrinsic referencesto gram-
mar extension. This holds especially for the utility attributes.
The intrinsic referencesapproach removes the need for ref-
erence resolving attributes, and thegrammar extensionap-
proach additionally has no need of manual reverse relation
accessors. One exception is a query not described in detail in

Listing 11. Attribute monitoredBy used byname lookup
andintrinsic referencesfor RouteSensorquery.
syn Collection<Sensor> TrackElement.monitoredBy() {

return getRoot().monitoredByMap().get(this .id());
}

Listing 12. Inject transformation inRouteSensorfor name
lookupandintrinsic references(-/red) compared togrammar
extension(+/green) approach.

public void activate(final Collection<Match> matches) {
- List <SensorRef> refsToBeRemoved= new ArrayList <>() ;

for (final Match match : matches) {
- for (SensorRef ref : match. getRoute()
- . getRequiredSensors()) {
- if (ref . getSensor() == match. getSensor()) {
- refsToBeRemoved. add(ref) ;
- }
- }
- }
- for (SensorRef ref : refsToBeRemoved) {
- ref . removeSelf() ;
+ match. getRoute() . removeRequiredSensor(
+ match. getSensor()) ;

}
driver.flushCache();

}

Listing 13. ConnectedSegmentsquery.
syn Collection<Match> Sensor.connectedSegmentsMatches();
eq Sensor.connectedSegmentsMatches() {
List<Match> matches = new ArrayList<>();

for (Segment segment: monitoredSegments()) {
sequenceLoop: for (List<Segment> segmentSequence :

segment.transConnectedSegments()) {
if (segmentSequence.size() < 5) continue ;
for (int index = 0; index < 5; index++) {

if (! this .monitors(segmentSequence.get(index)))
continue sequenceLoop;

}
matches.add(new Match(this , segment,

segmentSequence));
}

}
return matches;

}

Table 1. Code Complexity in theTrain Benchmark.

Name Intrinsic Grammar
Metric Aspect lookup references extension

LOC
Utility 304 254 165
Queries 258 258 263
Transformation 295 295 262

CFC
Utility 86 64 42
Queries 77 77 79

AC
Utility 37 27 15
Queries 26 26 27

78

SLE ’18, November 5–6, 2018, Boston, MA, USA Mey, Schöne, Hedin, Söderberg, Kühn, Fors, Öqvist, and Aßmann

this paper (SwitchMonitored), which is more complex in the
grammar extensionimplementation due to a di� erent way
to write the query using a bidirectional relation.

As an example, Listing12shows theinject transformation
for RouteSensorfor all approaches. Using thegrammar ex-
tensionapproach, this method has 7 LOC with a CFC of 1,
whereas using the other two approaches results in 15 lines
and a CFC of 3.

Concluding the observations, using thegrammar extension
approach, we can reduce the complexity when modelling
bidirectional relations used for matching query patterns and
transformations. While the queries themselves are almost
identical in all variants, most utility attributes are not re-
quired with the proposedgrammar extensionand transfor-
mations become much more concise. Thus, it is easier to
implement those, increasing the suitability of RAGs, which
addresses RQ2 posed in Section1.

6.4 Quantitative Evaluation (RQ3)

Finally, the benchmark was run for the presented variants
using the con� guration presented in Section6.1. The mea-
surements were performed on a Intel E5-2643 server with
64 gigabytes of memory using Ubuntu 16.04. All tools were
run with Oracle Java, version 1.8.0_171, with a maximum
heap size of 32G. We measured all phases as shown in Fig-
ure6and show the combined times for reading and checking
the initial model in Figure7, as well as the median of the
combined times for transforming and rechecking the trans-
formed model in Figures8 and9. Included as diagrams are
both inject and repair scenario for theConnectedSegments
andRouteSensorqueries. In all diagrams, the median execu-
tion time of 10 runs for each model size is depicted. In case of
an overall time out, no measurements of the run are taken.

Read and Check Phase.For theRead and Checkphase, we
only included a diagram for therepair scenario, as the times
for the injectscenario are very similar, because model load-
ing times by far exceed query processing times. In both cases,
a linear growth of the execution time with model size for all
tools and for both queries can be observed. However, the in-
cremental and non-incrementalgrammar extensionapproach
are fastest, followed byTinkerGraphandVIATRA.

Transformation and Recheck Phase. Regarding transfor-
mation and recheck, there are subtle di� erences depending
on both the query and the scenario.

For RouteSensorin the repair case and for both queries
in the injectscenario, similar observations can be made. All
incremental tools perform better than their non-incremental
counterparts. ForRouteSensor, this is because only a non-
containment reference is removed or added in theinjector
repair scenario, respectively. Thus, nearly all the analysis
can be read from cache.

For the sizes 1 and 2 inConnectedSegments(and size 1 in
RouteSensor), there are less than 20 matches, resulting in no
repairs (because of the set 5% to be� xed) and, thus, almost
incremental tools do not require any re-evaluation. In larger
sizes, a linear growth can be seen for all tools, because either
the query is run again in case of a non-incremental tool, or
a large part of the analysis has to be recomputed in case of
incremental tools. The repair operation forConnectedSeg-
mentsremoves a complete segment, invalidating the analysis
for all segments transitively connected to it. This results in
a scenario where the incremental bookkeeping overhead
exceed the bene� ts of partial re-evaluation.

For both queries in theinjectcase, only a� xed number of
changes is made to the model, thus a near constant time is
needed for transformation and recheck.

Summarizing the benchmark results, we were able to show
that in most cases the presentedJastAddvariants, especially
the grammar extensionvariant, perform similarly to other
incremental tools while providing a concise, yet� exible no-
tation for complex model queries and analysis.

7 Related Work
As discussed in Section3, the general mismatch between
conceptual models and RAGs shares signi� cant similarities
with the object-relational impedance mismatch [18]. In both
cases, the lack of bidirectional relationships in one domain
leads to manual implementations prone to errors and poor
performance.Rumbaugh[33] already identi� ed this issue in
1987. Various researchers followed his example and intro-
duced� rst-class relationships to query and programming lan-
guages. For instance, [34] introduced relationships to object
models and [1] to database programming languages. At the
same time,Bock and Odell[5] � rst argued for relationships
in object-oriented programming languages. Afterwards, mul-
tiple other approaches emerged that introduced� rst-class
relationships, such as [4, 29]. More recently, relationships
were employed to continuously validate [2] and evaluate [12]
object-relational models. Closing the loop,Jäkel et al. [20]
extended SQL adding relationships to perform queries upon
compartment role object models [24]. For a detailed survey
the reader is referred to [25, 36].

In contrast to these, there are a plethora of dedicated
tools for generating, querying, and transforming models.
Discussing all of them is beyond the scope of this paper. The
interested reader is referred to [22] for a thorough compari-
son. Henceforth, we only discuss approaches for incremental
model queries and validation. An early approach for incre-
mental evaluation of queries was presented in [31] and later
on used for materialized views in [10]. Later,Jackson[19]
designedAlloy, a lightweight modelling notation with a for-
mal underpinning also supporting incremental simulation of
model changes. Since then, tools evolved to deal e� ciently

79

Continuous Model Validation using Reference A� ribute Grammars SLE ’18, November 5–6, 2018, Boston, MA, USA

Name Lookup

Name Lookup (Incremental)

Intrinsic References

Intrinsic References (Incremental)

Grammar Extension

Grammar Extension (Incremental)

TinkerGraph

VIATRA (Incremental)

l
l

l
l

l
l

l

l

l

l

1
8k

2
15k

8
66k

32
271k

128
1.1M

512
4.6M

100

1000

10000

Model size
#Elements

E
xe

cu
tio

n
tim

es
 [m

s]

(a) RouteSensor.

l
l

l

l
l

l

l
l

1
8k

2
15k

8
66k

32
271k

128
1.1M

512
4.6M

Model size
#Elements

(b) ConnectedSegments.

Figure 7. ReadandCheckphases in therepair case.

l
l l l l l l l

l l

1
8k

2
15k

8
66k

32
271k

128
1.1M

512
4.6M

0.1

1

10

100

1000

Model size
#Elements

E
xe

cu
tio

n
tim

es
 [m

s]

(a) RouteSensor.

l l l l l l l l l
l

1
8k

2
15k

8
66k

32
271k

128
1.1M

512
4.6M

Model size
#Elements

(b) ConnectedSegments.

Figure 8. Transformation and Recheckphases in theinjectcase.

l

l l
l

l
l

l

l
l

l

1
8k

2
15k

8
66k

32
271k

128
1.1M

512
4.6M

0.01

0.1

1

10

100

1000

10000

Model size
#Elements

E
xe

cu
tio

n
tim

es
 [m

s]

(a) RouteSensor.

l l

l

l

l

l

l

l

1
8k

2
15k

8
66k

32
271k

128
1.1M

512
4.6M

Model size
#Elements

(b) ConnectedSegments.

Figure 9. Transformation and Recheckphases in therepair case.

80

SLE ’18, November 5–6, 2018, Boston, MA, USA Mey, Schöne, Hedin, Söderberg, Kühn, Fors, Öqvist, and Aßmann

with large and complex models, e.g.,Adapton[11], EMF-
incquery[39] now known asVIATRA[3], Active Operation
Framework[21], and recentlyNMF [16]. In general, these
approaches support incremental queries of large, complex
models, yet usually lack an underlying formal foundation.

Conversely, our approach is based on the well-studied
concept of attribute grammars. To our knowledge, the ear-
liest work combining attributes and relations was done in
the Cactis[17] system. Similar to our approach, relations
were expressed explicitly and attributes were evaluated on
demand and incrementally. However,Cactissupported only
synthesized attributes without reference values, and had no
speci� c support for containment relations.IceDust 2[13] is a
data modeling language that supports derived attributes and
relations, and implements several strategies for incremental
evaluation. It di� ers from our approach in many ways. For ex-
ample, it does not have speci� c support for the containment
relation, and no subtyping, so it does not have the equivalent
of an abstract grammar. Furthermore, its derived attributes
are limited from an attribute grammar viewpoint, for ex-
ample not supporting inherited, higher-order, nor circular
attributes. Interestingly, the derived bidirectional relations
of IceDust 2have some similarities with the expressiveness
of collection attributes, e.g., reversing edges in a relation as
was shown in Listing5. A more related approach combin-
ing RAGs and metamodels isJastEMF[7]. Compared to our
approach,JastEMFmakes use of RAGs to specify semantics
but does not try to express the full metamodel in RAGs. The
non-containment relations are handled by the EMF frame-
work and not by RAGs. In addition,JastEMFdoes not have
support for incremental evaluation.JavaRAG[8] is another
related approach allowing RAGs to be added on top of any
spanning tree, as long as a traversal API can be implemented.
JavaRAGhas been used to add a RAG to an EMF metamodel.
However, like withJastEMF, non-containment relations are
handled by the underlying EMF framework, and there is no
support for incremental evaluation.RACR[6] is an exten-
sion of RAGs that supports incremental evaluation and graph
rewriting, but does not contain support for explicit relations.
Our suggested approach for extension with relations could
similarly be translated toRACR.

8 Conclusion
Dealing with more complex and continuously changing mod-
els is one of the major challenges for current software sys-
tems. Approaching this challenge, we propose to employ
RAGs to bene� t both from their concise means to express
structure and from their e� cient incremental evaluation
of de� ned computation. This� rst step a� rms our � rst re-
search question. However, there is still a mismatch between
models and RAGs, which leads to a manual speci� cation
and resolution of non-containment relations resulting in
possible errors and potentially ine� ciency. To remedy this

mismatch and answer RQ2, we introduced non-containment
relations to RAG speci� cations, which especially support
bidirectionality, and presented a generic implementation us-
ing the JastAddsystem. We employed theTrain Benchmark
to show the e� ciency of this extension compared to other
approaches, answering RQ3. This paper illustrates the suit-
ability and e� ciency of RAGs to handle large and complex
conceptual models with bidirectional relations.

Future Work Further exploration of using RAGs for mod-
els could look into making use of more advanced derived
attributes. For instance, higher-order attributes allow com-
plete derived models to be computed and further attributed,
and circular attributes can be used for� x-point properties.

As a second path, we will look into refurbishingJastEMF
to the latest versions of both, EMF andJastAdd. This will
enable tight integration of RAGs and EMF, while still have
an incremental evaluation.

Comparing our current implementation of theTrain Bench-
mark use case to others like VIATRA focusing on pattern
matching, another possible extension would be a declara-
tive speci� cation of tree (or graph) patterns. Out of such a
declaration, attributes could automatically be generated to
match those patterns still pro� ting from both bidirectional
relations and incremental evaluation.

Acknowledgments
This work is partly supported by the German Research Foun-
dation (DFG) in the SFB 912 “Highly Adaptive Energy-Ef-
� cient Computing”, the project “RISCOS” and within the
Research Training Group “Role-based Software Infrastruc-
tures for continuous-context-sensitive Systems” (GRK 1907),
and by the German Federal Ministry of Education and Re-
search within the project “OpenLicht”. This work is also
partly supported by the Swedish Governmental Agency for
Innovation Systems (VINNOVA) in the PIIA project 2017-
02371 and by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation (KAW).

References
[1] Antonio Albano, Giorgio Ghelli, and Renzo Orsini. 1991. A Rela-

tionship Mechanism for a Strongly Typed Object-Oriented Database
Programming Language.. InVLDB, Vol. 91. 565–575.

[2] Stephanie Balzer and Thomas R. Gross. 2011. Verifying Multi-object
Invariants with Relationships. InECOOP 2011 – Object-Oriented Pro-
gramming, Mira Mezini (Ed.). Springer, Berlin, Heidelberg, 358–382.
h� ps://doi.org/10.1007/978-3-642-22655-7_17

[3] Gábor Bergmann, István Dávid, Ábel Hegedüs, Ákos Horváth, István
Ráth, Zoltán Ujhelyi, and Dániel Varró. 2015. Viatra 3: A Reactive
Model Transformation Platform. InTheory and Practice of Model Trans-
formations, Dimitris Kolovos and Manuel Wimmer (Eds.). Springer
International Publishing, Cham, 101–110.

[4] Gavin Bierman and Alisdair Wren. 2005. First-Class Relationships
in an Object-Oriented Language. InECOOP 2005 - Object-Oriented
Programming. Springer, 262–286.

81

Continuous Model Validation using Reference A� ribute Grammars SLE ’18, November 5–6, 2018, Boston, MA, USA

[5] Conrad Bock and James Odell. 1998. A more complete model of re-
lations and their implementation: Roles.Journal of Object-Oriented
Programming11, 2 (1998).

[6] Christo� Bürger. 2015. Reference Attribute Grammar Controlled Graph
Rewriting: Motivation and Overview. InProceedings of the 2015 ACM
SIGPLAN International Conference on Software Language Engineering
(SLE 2015). ACM, New York, NY, USA, 89–100.

[7] Christo� Bürger, Sven Karol, Christian Wende, and Uwe Aßmann.
2011. Reference Attribute Grammars for Metamodel Semantics. In
Software Language Engineering, Brian Malloy, Ste� en Staab, and Mark
van den Brand (Eds.). Springer, Berlin, Heidelberg, 22–41.

[8] Niklas Fors, Gustav Cedersjö, and Görel Hedin. 2015. JavaRAG: A Java
Library for Reference Attribute Grammars. InProceedings of the 14th

International Conference on Modularity (MODULARITY 2015). ACM,
New York, NY, USA, 55–67.h� ps://doi.org/10.1145/2724525.2724572

[9] The Apache Software Foundation. 2018. Apache TinkerPop.h� p:
//tinkerpop.apache.org/

[10] Dieter Gluche, Torsten Grust, Christof Mainberger, and Marc H. Scholl.
1997. Incremental updates for materialized OQL views. InDeductive
and Object-Oriented Databases, François Bry, Raghu Ramakrishnan,
and Kotagiri Ramamohanarao (Eds.). Springer, Berlin, Heidelberg, 52–
66. h� ps://doi.org/10.1007/3-540-63792-3_8

[11] Matthew A. Hammer, Khoo Yit Phang, Michael Hicks, and Je� rey S.
Foster. 2014. Adapton: Composable, Demand-driven Incremental Com-
putation. InProceedings of the 35th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’14). ACM, New
York, NY, USA, 156–166.h� ps://doi.org/10.1145/2594291.2594324

[12] Daco Harkes and Eelco Visser. 2014. Unifying and Generalizing Rela-
tions in Role-Based Data Modeling and Navigation. InSoftware Lan-
guage Engineering, Benoît Combemale, David J. Pearce, Olivier Barais,
and Jurgen J. Vinju (Eds.). Springer, Cham, 241–260.

[13] Daco C. Harkes and Eelco Visser. 2017. IceDust 2: Derived Bidirectional
Relations and Calculation Strategy Composition. In31st European
Conference on Object-Oriented Programming (ECOOP 2017) (Leibniz
International Proceedings in Informatics (LIPIcs)), Peter Müller (Ed.),
Vol. 74. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 14:1–14:29.h� ps://doi.org/10.4230/LIPIcs.ECOOP.2017.14

[14] Görel Hedin. 2000. Reference attributed grammars.Informatica (Slove-
nia) 24, 3 (2000), 301–317.

[15] Görel Hedin and Eva Magnusson. 2003. JastAdd: an aspect-oriented
compiler construction system.Science of Computer Programming47, 1
(2003), 37–58.h� ps://doi.org/10.1016/S0167-6423(02)00109-0

[16] Georg Hinkel. 2018. NMF: A Multi-platform Modeling Framework. In
Theory and Practice of Model Transformation (Lecture Notes in Computer
Science). Springer, Cham, 184–194.

[17] Scott E. Hudson and Roger King. 1989. Cactis: A Self-adaptive,
Concurrent Implementation of an Object-oriented Database Manage-
ment System.ACM Trans. Database Syst.14, 3 (Sept. 1989), 291–321.
h� ps://doi.org/10.1145/68012.68013

[18] Christopher Ireland, David Bowers, Michael Newton, and Kevin
Waugh. 2009. A classi� cation of object-relational impedance mis-
match. InAdvances in Databases, Knowledge, and Data Applications,
2009. DBKDA’09. First International Conference on. IEEE, 36–43.

[19] Daniel Jackson. 2002. Alloy: A Lightweight Object Modelling Notation.
ACM Trans. Softw. Eng. Methodol.11, 2 (April 2002), 256–290.h� ps:
//doi.org/10.1145/505145.505149

[20] Tobias Jäkel, Thomas Kühn, Stefan Hinkel, Hannes Voigt, and Wolf-
gang Lehner. 2015. Relationships for Dynamic Data Types in RSQL. In
Datenbanksysteme für Business, Technologie und Web (BTW). 157–176.

[21] Frédéric Jouault and Olivier Beaudoux. 2016. E� cient OCL-based
Incremental Transformations.. InOCL@ MoDELS. 121–136.

[22] Na� seh Kahani, Mojtaba Bagherzadeh, James R. Cordy, Juergen Dingel,
and Daniel Varró. 2018. Survey and classi� cation of model transfor-
mation tools.Software & Systems Modeling(12 March 2018).

[23] Donald E Knuth. 1968. Semantics of context-free languages.Mathe-
matical systems theory2, 2 (1968), 127–145.

[24] Thomas Kühn, Stephan Böhme, Sebastian Götz, and Uwe Aßmann.
2015. A Combined Formal Model for Relational Context-Dependent
Roles. InProceedings of the 2015 ACM SIGPLAN International Conference
on Software Language Engineering. ACM, 113–124.

[25] Thomas Kühn, Max Leuthäuser, Sebastian Götz, Christoph Seidl, and
Uwe Aßmann. 2014. A Metamodel Family for Role-Based Modeling and
Programming Languages. InSoftware Language Engineering. Lecture
Notes in Computer Science, Vol. 8706. Springer, 141–160.

[26] Eva Magnusson, Torbjörn Ekman, and Görel Hedin. 2009. Demand-
driven evaluation of collection attributes.Automated Software Engi-
neering16, 2 (2009), 291–322.

[27] Eva Magnusson and Görel Hedin. 2007. Circular reference attributed
grammars-their evaluation and applications.Science of Computer
Programming68, 1 (2007), 21–37.

[28] Stephan Murer, Carl Worms, and Frank J Furrer. 2008. Managed evo-
lution. Informatik-Spektrum31, 6 (2008), 537–547.

[29] Stephen Nelson, David J. Pearce, and James Noble. 2008. First Class
Relationships for OO Languages. InProceedings of the 6th Interna-
tional Workshop on Multiparadigm Programming with Object-Oriented
Languages (MPOOL 2008). h� p://hdl.handle.net/2142/11788

[30] Object Management Group (OMG). 2016. Meta-Object Facility (MOF)
Speci� cation, Version 2.5.1. OMG Document Number formal/2016-11.
h� p://www.omg.org/spec/MOF/2.5.1

[31] Raghu Ramakrishnan, Kenneth A. Ross, Divesh Srivastava, and S.
Sudarshan. 1994. E� cient Incremental Evaluation of Queries with
Aggregation. InProceedings of the 1994 International Symposium on
Logic Programming (ILPS ’94). MIT Press, Cambridge, MA, USA, 204–
218.

[32] Je� Rothenberg, Lawrence E Widman, Kenneth A Loparo, and Nor-
man R Nielsen. 1989.The nature of modeling. Vol. 3027. RAND Corpora-
tion, Santa Monica, CA.h� ps://www.rand.org/pubs/notes/N3027.html

[33] James E. Rumbaugh. 1987. Relations as Semantic Constructs in an
Object-Oriented Language. InOOPSLA. 466–481.

[34] Marc H. Scholl and Hans-Jörg Schek. 1990. A relational object model.
In ICDT ’90, Serge Abiteboul and Paris C. Kanellakis (Eds.). Springer,
Berlin, Heidelberg, 89–105.h� ps://doi.org/10.1007/3-540-53507-1_72

[35] Emma Söderberg and Görel Hedin. 2012.Incremental Evaluation of
Reference Attribute Grammars using Dynamic Dependency Tracking.
Technical Report 98. Lund University. LU-CS-TR:2012-249, ISSN
1404-1200.

[36] Friedrich Steimann. 2000. On the representation of roles in object-
oriented and conceptual modelling.Data & Knowledge Engineering35,
1 (2000), 83 – 106.h� ps://doi.org/10.1016/S0169-023X(00)00023-9

[37] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
2008.EMF: Eclipse Modeling Framework. Pearson Education.

[38] Gábor Szárnyas, Benedek Izsó, István Ráth, and Dániel Varró. 2017.
The Train Benchmark: cross-technology performance evaluation of
continuous model queries.Software & Systems Modeling(Jan. 2017),
1–29. h� ps://doi.org/10.1007/s10270-016-0571-8

[39] Zoltán Ujhelyi, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth,
Benedek Izsó, István Ráth, Zoltán Szatmári, and Dániel Varró. 2015.
EMF-IncQuery: An integrated development environment for live
model queries.Science of Computer Programming98 (2015), 80–99.

[40] J. J. Vinju and M. W. Godfrey. 2012. What Does Control Flow Really
Look Like? Eyeballing the Cyclomatic Complexity Metric. In2012 IEEE
12th International Working Conference on Source Code Analysis and
Manipulation. 154–163.h� ps://doi.org/10.1109/SCAM.2012.17

[41] H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. 1989. Higher Order At-
tribute Grammars. InProceedings of the ACM SIGPLAN 1989 Conference
on Programming Language Design and Implementation (PLDI ’89). ACM,
New York, NY, USA, 131–145.h� ps://doi.org/10.1145/73141.74830

82

