Nonequivalent cascaded convolutional codes obtained from equivalent constituent convolutional encoders

Höst, Stefan; Johannesson, Rolf; Zyablov, Viktor V.

Published in:
[Host publication title missing]

DOI:
10.1109/ISIT.1998.708943

1998

Link to publication

Citation for published version (APA):
Höst, S., Johannesson, R., & Zyablov, V. V. (1998). Nonequivalent cascaded convolutional codes obtained from equivalent constituent convolutional encoders. In [Host publication title missing] (pp. 338). DOI: 10.1109/ISIT.1998.708943
Nonequivalent Cascaded Convolutional Codes Obtained from Equivalent Constituent Convolutional Encoders

Stefan Höst and Rolf Johannesson
Dept. of Information Technology
Lund University
P.O. Box 118
S-221 00 Lund, Sweden
stefanhQit.lth.se, rolf@it.lth.se

Viktor V. Zyablov
Inst. for Problems of Information Transmission
of the Russian Academy of Science
B. Karetnyi per., 19 , GSP-4
Moscow, 101447 Russia
zyablov@ippi.ras.ru

Abstract — Cascaded convolutional codes with conventional convolutional codes as constituent codes are powerful and attractive to use in communication systems where very low error probabilities are needed. This paper clearly demonstrates the dramatic effect that the replacement of the inner convolutional encoder by an equivalent one could have on the cascaded convolutional code.

I. INTRODUCTION

The cascade of two convolutional encoders without an inner encoder but with matched rates is a cascade of a rate $R_o = b_o/c_o$ outer encoder of memory m_o and a rate $R_i = b_i/c_i$ inner encoder of memory m_i, where $b_i = c_o$. The cascaded convolutional code C_c is encoded by the rate $R_c = R_o R_i = b_o/c_i$ convolutional encoder of memory $m_c = m_o + m_i$.

Let the information sequence $v_c(D)$ of the cascaded rational encoder $G_c'(D)$ be encoded as the cascaded codeword $v(D)$,

$$v(D) = u_c(D)G_c(D) = u_c(D)G_o(D)G_i(D),$$

where $G_o(D)$ and $G_i(D)$ are the rational generator matrices of the outer and inner encoders, respectively.

II. NONEQUIVALENT CASCADED ENCODERS FROM EQUIVALENT CONSTITUENT ENCODERS

Let

$$G_c'(D) = G_o'(D)G_i'(D)$$

be the generator matrix of the cascaded convolutional code, where $G_o'(D) = T_o(D)G_o(D)$ and $G_i'(D) = T_i(D)G_i(D)$. We show that $G_c'(D)$ and $G_c(D) = G_o(D)G_i(D)$ are, in general, not equivalent.

If only the outer generator matrix $G_o'(D)$ is replaced by an equivalent generator matrix $G_o''(D)$, then the new cascaded generator matrix $G_c''(D)$ will be equivalent to the cascaded generator matrix $G_c(D)$.

Since it is the code sequences from the outer encoder that serve as information sequences for the inner encoder,

the cascaded convolutional code is a proper (assuming $R_o < 1$) subset of the inner convolutional code, $C_c \subset C_i$. Replacing the inner encoder with an equivalent inner encoder changes the mapping from the inner information sequences to the inner code sequences and, therefore, also the subset of the inner convolutional code. In general, we will obtain a different cascaded convolutional code when we replace the inner encoder by an equivalent one. This fact will be illustrated by examples. We also notice that since $C_c \subset C_i$, catastrophicity of the inner generator matrix does not imply catastrophicity of the generator matrix for the cascade.

Can the inner generator matrix be chosen such that we obtain the same cascaded convolutional code, i.e., such that $G_c'(D)$ is equivalent to $G_c(D)$? Indeed it can, which will be illustrated by a simple example. If $G_o'(D)$ and $G_i'(D)$ are equivalent generator matrices, then for some invertible $b_0 \times b_0$ matrix $S(D)$

$$G_c'(D) = G_o'(D)T(D)G_i'(D) = S(D)G_o'(D).$$

III. SYSTEMATIC CASCADED ENCODERS FROM SYSTEMATIC CONSTITUENT ENCODERS

From basic encoding matrices we can easily obtain equivalent rational systematic encoding matrices,

$$G_s(D) = G_o'(D)G_i'(D),$$

where $G_s'(D)$, and $G_s(D)$ are systematic equivalents to $G_o'(D)$ and $G_i'(D)$, respectively. In general, the systematic encoding matrix $G_s(D)$ is not equivalent to $G_c'(D)$ and $G_c(D)$.

If $G_o'(D)$ and $G_i'(D)$ are minimal, then a minimal realization of $G_s(D)$ has at most the same number of delay elements as the cascaded encoder $G_c'(D)$ has when realized as a cascade of the two minimal encoders $G_o'(D)$ and $G_i'(D)$.

REFERENCES
