Power flow optimization using positive quadratic programming

Lavaei, Javad; Rantzer, Anders; Low, Steven

2011

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Power flow optimization using positive quadratic programming

Javad Lavei* Anders Rantzer** Stephen Low***

* Department of Control and Dynamical Systems, Caltech
(email: lavaei@cds.caltech.edu).
** Automatic Control LTH, Lund University, Sweden
(email: rantzer@control.lth.se)
*** Steven H. Low is with the Computer Science and Electrical Engineering Departments, Caltech, (email: slow@caltech.edu).

Abstract: The problem to minimize power losses in an electrical network subject to voltage and power constraints is in general hard to solve. However, it has recently been discovered that semidefinite programming relaxations in many cases enable exact computation of the global optimum. Here we point out a fundamental reason for the successful relaxations, namely that the passive network components give rise to matrices with nonnegative offdiagonal entries. Recent progress on quadratic programming with Metzler matrix structure can therefore be applied.

Keywords: Power flow, optimization, relaxation analysis

1. INTRODUCTION

The optimal power flow (OPF) problem aims to find an optimal operating point of a power system, that minimizes an appropriate cost function such as generation cost or transmission loss subject to certain constraints on power and voltage variables (Momoh, 2001). Since the pioneering work (Carpentier, 1962), the OPF problem has been extensively studied in the literature and numerous algorithms have been proposed for solving this highly nonlinear problem (Huneault and Galiana, 1991; Torres and Quintana, 2000; H. Wang and Thomas, 2007). Approaches include linear programming, Newton Raphson, quadratic programming, nonlinear programming, Lagrange relaxation, interior point methods, artificial intelligence, artificial neural network, fuzzy logic, genetic algorithms, evolutionary programming and particle swarm optimization (Momoh, 2001; El-Hawary and Adapa, 1999a,b; Pandya and Joshi, 2008). A good number of these methods are based on the Karush-Kuhn-Tucker (KKT) necessary conditions, which due to the nonconvex problem formulations can only guarantee a locally optimal solution (H. Wei and Yokoyama, 1998). This nonconvexity is partially due to the cross products of voltage variables corresponding to disparate buses. In the past decade, much attention has been paid to devising efficient algorithms with guaranteed performance for the OPF problem. For instance, the recent papers (W. M. Lin and Zhan, 2008) and (Q. Y. Jiang and Cao, 2009) propose nonlinear interior-point algorithms for an equivalent current injection model of the problem. An improved implementation of the automatic differentiation technique for the OPF problem is studied in the recent work (Q. Jiang and Cao, 2010). In an effort to convexify the OPF problem, it is shown in (Jabr, 2006) that the load flow problem of a radial distribution system can be modeled as a convex optimization problem in the form of a conic program. Nonetheless, the results fail to hold for a meshed network, due to the presence of arctangent equality constraints (Jabr, 2008). Nonconvexity appears in more sophisticated power problems such as the stability constrained OPF problem where the stability at the operating point is an extra constraint (D. Gan and Zimmermann, 2000; H. R. Cai and Wong, 2008) or the dynamic OPF problem where the dynamics of the generators are also taken into account (Xie and Song, 2002; Xia and Chan, 2006).

In (Lavaei and Low, 2010), it was proposed to solve the Lagrangian dual of the OPF problem and recover the desired solution from a dual optimum. This approach was applied successfully to several examples and possible explanations were discussed. In this paper, we point out the connection to a class of quadratic programming problems with nonconvex quadratic constraints for which semidefinite relaxations are always exact (Kim and Kojima, 2003). A rigorous mathematical statement is given and its application to DC power networks is explained in the next section. AC networks are not covered by Theorem 1, but the semidefinite relaxations have still turned out to be exact for the IEEE benchmark systems treated in section 5. Concluding remarks are given in section 6.
All nodes are subject to constraints of the form

\[ V_k^\min \leq V_k \leq V_k^\max \]

Consider a DC power transmission network as in Figure 1. For power consuming loads \( P \) and power generating loads \( Q \), the active and reactive power demand at bus \( k \) is given by

\[ P_k = V_k^L \text{Re}(x_{kj}L_{jk}) \quad Q_k = V_k^L \text{Im}(x_{kj}L_{jk}) \]

where \( x_{kj}L_{jk} \) is the known admittance between nodes \( j \) and \( k \), and \( V_k^L \) is the known voltage magnitude at bus \( k \). Every connection has a known admittance, so for each pair of nodes \( (i, j) \), the current flowing from node \( i \) to node \( j \) is given by

\[ I_{ij} = \frac{V_j - V_i}{Y_{ij}} \]

where \( Y_{ij} = L_{ij} + jx_{ij} \) is the impedance between nodes \( i \) and \( j \). This is a quadratic optimization problem with quadratic bounds on the voltage according to

\[ V_k^\min \leq V_k \leq V_k^\max \]

If the constraints are concave in \( (V_1^2, \ldots, V_N^2) \) (Megretski, 2010). This is because every product \( V_j V_k \) is the geometric mean of two such variables, hence concave. The fact that all \( y_{jk} \geq 0 \) is essential.

Another way to get a convex formulation of the OPF problem is by convex relaxation. The following result from (Kim and Kojima, 2003, Theorem 3.1) shows that if a nonconvex quadratic programming problem is defined by Metzler matrices (matrices with nonnegative off-diagonal elements), then it can be solved exactly using a semi-definite programming relaxation.

**Proposition 1. (Positive Quadratic Programming).** Let \( M_0, \ldots, M_K \in \mathbb{R}^{n \times n} \) be Metzler and \( b_1, \ldots, b_K \in \mathbb{R} \). Then

\[
\begin{align*}
\text{max} & \quad x^T M_0 x \\
\text{s.t.} & \quad x \in \mathbb{R}^n \\
& \quad x^T M_k x \geq b_k \\
& \quad k = 1, \ldots, K
\end{align*}
\]

This shows that the left hand side of (2) is at least as big as the right hand side. This shows that the right hand side of (2) is at least as big as the left.

On the other hand, let \( X = (x_{ij}) \) be any positive definite matrix. In particular, the diagonal elements \( x_{11}, \ldots, x_{nn} \) are non-negative and \( x_{ij} \leq \sqrt{x_{ii}x_{jj}} \). Then the matrix \( XX^T \) has the same diagonal elements as \( X \), but has off-diagonal elements \( \sqrt{x_{ii}x_{jj}} \) instead of \( x_{ij} \). The fact that \( XX^T \) has off-diagonal elements at least as big as those of \( X \), together with the assumption that the matrices \( M_k \) are Metzler, gives

\[ x^T M_k x \geq \text{trace}(M_k X) \]

This shows that the left hand side of (2) is at least as big as the right and the proof is complete.

We believe that the convex reformulations of the OPF problem for DC networks presented above are of significant practical importance. In addition to real DC transmission networks, the results are relevant for analysis of power markets where DC networks are used as approximations of AC networks. For example, the Lagrange multiplier corresponding to the constraint \( I_k V_k \leq P_k \) can be interpreted as the optimal price of power at node \( k \).

### 2. OPTIMAL POWER FLOW IN DC NETWORKS

Consider a DC power transmission network as in Figure 1. All nodes are subject to constraints of the form \( I_k V_k \leq P_k \). For generating nodes \( P_k \) represents the generator capacity. For power consuming loads \( I_k \) and \( P_k \) are negative and \( -P_k \) represents the power demand.

Every connection has a known admittance \( y_{jk} = y_{kj} \geq 0 \). In particular, the current flowing from node 1 to node 2 equals \( y_{12}(V_1 - V_2) \). Writing Kirchhoff’s current law for all nodes in Figure 1 gives

\[
\begin{bmatrix}
I_1 \\
I_2 \\
\vdots \\
I_N
\end{bmatrix}
= \begin{bmatrix}
y_{12} + y_{14} & -y_{12} & 0 & -y_{14} \\
-y_{21} & y_{21} + y_{23} + y_{24} & -y_{23} & -y_{24} \\
0 & -y_{32} & y_{32} & 0 \\
-y_{41} & -y_{42} & 0 & y_{41} + y_{42}
\end{bmatrix}
\begin{bmatrix}
V_1 \\
V_2 \\
\vdots \\
V_N
\end{bmatrix}
\]

Suppose every link has a has a capacity bound \( L_{ij} \) on the transferred power and every node has upper and lower bounds on the voltage according to \( V_k^\min \leq V_k \leq V_k^\max \). Then the problem to minimize the power losses in the network subject to constraints on power demands, voltage and link capacities can be written

\[
\begin{array}{ll}
\text{Minimize} & I_1 V_1 + \cdots + I_N V_N \\
\text{subject to} & I = YV \\
& V_k^\min \leq V_k \leq V_k^\max \\
& y_{jk}(V_k - V_j)^2 \leq L_{jk} \\
& \text{for } j, k = 1, \ldots, N
\end{array}
\]

This is a quadratic optimization problem with quadratic constraints. The constraints are not convex in the variables \( V_1, \ldots, V_N \), so the problem could look intractable at first. However, a closer look reveals that both the objective and the constraints are concave in \( (V_1^2, \ldots, V_N^2) \) (Megretski, 2010). This is because every product \( V_j V_k \) is the geometric mean of two such variables, hence concave. The fact that all \( y_{jk} \geq 0 \) is essential.

### 3. OPTIMAL POWER FLOW IN AC NETWORKS

Consider an AC power network with \( n \) buses, labeled \( 1, \ldots, n \), where all buses are possibly directly connected to loads, but only the first \( m \) buses are directly connected to generators. For \( k = 1, \ldots, n \) and \( l = 1, \ldots, m \), define the following quantities:

- \( P_k^e \) and \( Q_k^e \) (real-valued): Active and reactive loads at buses \( k \), respectively. They are given fixed demands.
- \( P_l^g \) and \( Q_l^g \) (real-valued): Active and reactive powers generated at buses \( l \), respectively. They are optimization variables.
- \( V_k \) (complex-valued): Voltages at buses \( k \). They are optimization variables.
- \( f_l(P_l^g) = c_{l2} P_l^g + c_{l1} P_l^2 + c_{l0} \) (real-valued): Cost functions associated with generators \( l \), where \( c_{l2}, c_{l1}, c_{l0} \) are nonnegative numbers.
The classical optimal power flow (OPF) problem is:

\[
\min_{V,P,Q} \sum_{l=1}^{m} f_l(P_l^g)
\]
subject to

\[
P_l^{\min} \leq P_l^g \leq P_l^{\max}, \quad l = 1, 2, ..., m \tag{4a}
\]

\[
Q_l^{\min} \leq Q_l^g \leq Q_l^{\max}, \quad l = 1, 2, ..., m \tag{4b}
\]

\[
|V_l| = |V_l|^2 \leq V_l^{\max}, \quad k = 1, 2, ..., n \tag{4c}
\]

\[
\text{V}l_i^I = (P_l^g - P_l^d) + (Q_l^g - Q_l^d), \quad l = 1, 2, ..., m \tag{4d}
\]

\[
\text{V}k_j^I = -P_l^d - Q_l^d - V_l^{\max} + |V_l|^2, \quad m + 1, ..., n \tag{4e}
\]

The classical optimal power flow (OPF) problem is:

\[
\max_{x \geq 0, r} h(x, r) \tag{5}
\]
subject to

\[
\sum_{k=1}^{n} (\lambda_k^Y \mathbf{y}_k + \bar{\lambda}_k \mathbf{y}_k + \mu_k \mathbf{M}_k) \geq 0 \tag{6a}
\]

\[
\begin{bmatrix}
1 & r_{1l}
\end{bmatrix} \geq 0, \quad l = 1, 2, ..., m \tag{6b}
\]

This semidefinite program is the dual of an equivalent form of OPF. See (Lavaei and Low, 2011). It is therefore convex and can be solved efficiently. This motivates the following approach to solving OPF.

Algorithm for Solving OPF:

1. Compute a solution \((x^{opt}, r^{opt})\) of Dual OPF (5)–(6).
2. If the optimal value of Dual OPF is \(+\infty\), then OPF is infeasible.
3. Compute any nonzero vector \([U_1^T, U_2^T]^T\) in the null space of the \(2n \times 2n\) positive semidefinite matrix

\[
A^{opt} := \sum_{k=1}^{n} (\lambda_k^{opt} \mathbf{y}_k + \bar{\lambda}_k^{opt} \mathbf{y}_k + \mu_k^{opt} \mathbf{M}_k) \tag{7}
\]

4. Compute an optimal solution \(V^{opt}\) of OPF as

\[
V^{opt} = (\zeta_1 + \zeta_2) (U_1 + U_2) \tag{8}
\]
by solving for \(\zeta_1\) and \(\zeta_2\) from optimality conditions.
(5) Verify that $V^{\text{opt}}$ satisfies all the constraints of OPF (3)–(4) and that the resulting objective value of OPF equals the optimal value of Dual OPF (zero duality gap).

We make several remarks. First, provided OPF is feasible, the null space of $A^\text{opt}$ has an even dimension of at least 2. Hence Step 3 of the Algorithm will always yield a nonzero vector $[U_1^T \quad U_2^T]^T$. Second, having found $U_1$ and $U_2$, the scalars $\zeta_1$ and $\zeta_2$ can be identified from the first order optimality (KKT) condition for Dual OPF or the feasibility condition for OPF. For instance, the voltage angle at the swing bus being zero introduces an equation in terms of $\zeta_1$ and $\zeta_2$. If, in addition, $(\mu^\text{max}_k)^{\text{opt}}$ (respectively, $(\mu^\text{min}_k)^{\text{opt}}$) turns out to be nonzero for some $k \in \{1, 2, \ldots, n\}$, then the relation $|V^{\text{opt}}_k| = V^{\text{min}}_k$ (respectively, $|V^{\text{opt}}_k| = V^{\text{max}}_k$) must hold by complementary slackness, which provides another equation relating $\zeta_1$ to $\zeta_2$. Third, the weak duality theorem implies that the optimal value of OPF is greater than or equal to that of its dual. Hence, Step 2 detects when OPF is infeasible. Even when OPF is feasible, there is generally a nonzero duality gap and an optimal solution to OPF may not be recoverable from an optimal dual solution. However, if $V^{\text{opt}}$ computed in Step 4 is indeed feasible as verified in Step 5, then duality gap is zero and $V^{\text{opt}}$ is indeed optimal for OPF. This is the case with all the IEEE benchmark examples described in Section 5, and hence all of them can be solved efficiently by the above Algorithm.

Indeed, the following sufficient condition guarantees that the Algorithm finds an optimal solution of OPF:

**C1**: There exists a dual optimal solution $(\lambda^{\text{opt}}, \gamma^{\text{opt}})$ such that the $2n \times 2n$ positive semidefinite matrix $A^\text{opt}$ in (7) has a zero eigenvalue of multiplicity 2.

In this case, the null space of $A^\text{opt}$ has dimension 2.

If condition C1 holds, then

1. There is no duality gap between OPF and Dual OPF.
2. Given any vector $[U_1^T \quad U_2^T]^T$ in the null space of $A^\text{opt}$, the voltages $V^{\text{opt}}$ calculated in (8) is indeed optimal for OPF.

See (Lavaei and Low, 2011) for details.

5. POWER SYSTEM EXAMPLES

This section illustrates our results through two examples. Example 1 uses the IEEE benchmark systems archived at (University of Washington) to show the practicality of our result. Since the systems analyzed in Example 1 are so large that the specific values of the optimal solution cannot be provided in the paper, some smaller examples are analyzed in Example 2 with more details.

There are two main findings from this exercise. First, the duality gap is zero for all the systems we have tried, even when the sufficient condition C1 is not satisfied. We verify this by following the Algorithm in Section 4 to solve Dual OPF and compute the voltages. In all cases, the voltages obtained are feasible for Optimization 1 and achieve a primal objective value that is equal to the optimal objective value of Optimization 2. By weak duality theorem, the duality gap is zero and the voltages are optimal for OPF. Second, condition C1 is essentially satisfied; when it is violated, the violation is due to the simplifying modeling assumption that transformers have zero resistance. If a small resistance (10^{-5} per unit) is added to each of these transformers, condition C1 is satisfied for all IEEE benchmark systems.

The results of this section are attained using the following software tools:

- The MATLAB-based toolbox “YALMIP” (together with the solver “SEDUMI”) is used to solve the dual of the OPF problem (Optimization 2), which is in the form of a linear-matrix-inequality optimization problem (Löfberg, 2004).
- The software toolbox “MATPOWER” is used to solve the OPF problem in Example 1 for the sake of comparison. The data for the IEEE benchmark systems analyzed in this example is extracted from the library of this toolbox (R. D. Zimmerman and Thomas, 2009).
- The software toolbox “PSAT” is used to draw and analyze the power networks given in Example 2 (Milano, 2005).

5.1 Example 1: IEEE benchmark systems

We have solved all IEEE systems with 14, 30, 57, 118 and 300 buses using the method developed in this paper, where the goal is to minimize either the total generation cost or the power loss. However, due to space restrictions, the details will be provided here only for two cases: (i) the loss minimization for the IEEE 30-bus system, and (ii) the total generation cost minimization for the IEEE 118-bus system.

### IEEE 30-bus system
First, consider the OPF problem for the IEEE 30-bus system, where the objective is to minimize the total power generated by the generators. When the original Optimization 2 is solved, the four smallest eigenvalues of the matrix

$$A^\text{opt} = \begin{bmatrix} H_1(A^\text{opt}, A^\text{opt}, \Gamma^\text{opt}) & H_2(A^\text{opt}, A^\text{opt}, \Gamma^\text{opt}) \\ -H_2(A^\text{opt}, A^\text{opt}, \Gamma^\text{opt}) & H_1(A^\text{opt}, A^\text{opt}, \Gamma^\text{opt}) \end{bmatrix}$$

would be obtained as $0, 0, 0, 0$. Since the number of zero eigenvalues is 4, condition C1 is violated. To understand the underlying reason, one should note that the network is composed of three regions connected to each other via some transformers. This implies that if each line of the circuit is replaced by its resistive part, the resulting resistive graph will not be connected (since the lines with transformers are assumed to have no resistive parts). Thus, the graph induced by Re$\{Y\}$ is not strongly connected.

This is an issue with all the IEEE benchmark systems.

**Note:** The MATLAB toolbox “PSAT” is used to draw and analyze the power networks given in Example 2 (Milano, 2005).

### IEEE 118-bus system
When the IEEE systems are solved using the method of this paper, the four smallest eigenvalues of the matrix $A^\text{opt}$ turn out to be $0, 0, 0, 0$. Since the number of zero eigenvalues is 4, condition C1 is satisfied. To understand the underlying reason, one should note that the network is composed of three regions connected to each other via some transformers. This implies that if each line of the circuit is replaced by its resistive part, the resulting resistive graph will not be connected (since the lines with transformers are assumed to have no resistive parts). Thus, the graph induced by Re$\{Y\}$ is not strongly connected.

This is an issue with all the IEEE benchmark systems.
Hence
\[ \lambda_k \]'s are all positive and around 1.
\[ \mu_k \]'s are all positive and around 0.
\[ \nu_k \]'s are all very close to 0.

Moreover, the maximum absolute values of the entries of \( H_2(\Lambda^{\text{opt}}, \Lambda^{\text{opt}}, \Gamma^{\text{opt}}) \) is 0.0867, whereas the average absolute values of the nonzero entries of \( H_1(\Lambda^{\text{opt}}, \Lambda^{\text{opt}}, \Gamma^{\text{opt}}) \) is 4.1201.

IEEE 118-bus system Consider now the problem of minimizing the total generation cost for the IEEE 118-bus system. After adding some small resistance to certain entries of \( \mathbf{R} \) to make the induced graph strongly connected, the four smallest eigenvalues of the matrix

\[
\begin{bmatrix}
H_1(\Lambda^{\text{opt}}, \Lambda^{\text{opt}}, \Gamma^{\text{opt}}) & H_2(\Lambda^{\text{opt}}, \Lambda^{\text{opt}}, \Gamma^{\text{opt}}) \\
-H_2(\Lambda^{\text{opt}}, \Lambda^{\text{opt}}, \Gamma^{\text{opt}}) & H_1(\Lambda^{\text{opt}}, \Lambda^{\text{opt}}, \Gamma^{\text{opt}})
\end{bmatrix}
\]

are 0, 0, 1.3552, 1.3552. Hence, condition C1 is satisfied and OPF can be solved by solving Dual OPF. The optimal variables normalized by \( c_{11} = 40 \) satisfy, for \( k = 1, \ldots, n, \)
\[ \frac{\lambda_k}{c_{11}} \in [0.8858, 1.0356], \quad \frac{\bar{\mu}_k}{c_{11}} \in [-0.0063, 0.0118], \]
\[ \frac{\mu_k}{c_{11}} \in [0.1894]. \]

As before, \( \frac{\lambda_k}{c_{11}}, \frac{\bar{\mu}_k}{c_{11}}, \frac{\mu_k}{c_{11}} \) are around (1, 0, 0). In addition, \( \lambda_k \)'s are all positive and most of \( \bar{\mu}_k \) are positive (more than 100 of them). As the last property, the maximum of the absolute values of the entries of \( H_2(\Lambda^{\text{opt}}, \Lambda^{\text{opt}}, \Gamma^{\text{opt}}) \) is 13.8613, whereas the average of the absolute values of the nonzero entries of \( H_1(\Lambda^{\text{opt}}, \Lambda^{\text{opt}}, \Gamma^{\text{opt}}) \) is 237.3938. Thus, \( H_2 \) is negligible compared to \( H_1 \) as before.

The computation on the IEEE benchmark examples were all finished in a few seconds and the number of iterations for each example was between 5 and 20. Note that although Optimization 2 is convex and there is no convergence problem regardless of what initial point is used, the number of iterations needed to converge mainly depends on the choice of starting point. It is worth mentioning that when different algorithms implemented in Matpower were applied to these systems, some of the constraints are violated at the optimal point probably due to the large-scale and non-convex nature of the OPF problem. However, no constraint violation have occurred by solving the dual of the OPF problem due to its convexity.

5.2 Example 2: small systems

The IEEE test systems in the previous example operate in a normal condition when the optimal bus voltages are close to each other both in magnitude and phase. This example illustrates that condition C1 is satisfied even in the absence of such a normal operation. Consider three distributed power systems, referred to as Systems 1, 2 and 3. Systems 2 and 3 are radial, while System 1 has a loop. The detailed specifications of these systems are provided in Table 1 in per unit for the voltage rating 400kV and the power rating 100MVA, in which \( \bar{z}_{ij} \) and \( \bar{y}_{ij} \) denote the series impedance and the shunt capacitance of the \( \Pi \) model of the transmission line connecting buses \( i, j \in \{1, 2, 3, 4\} \).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>System 1</th>
<th>System 2</th>
<th>System 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>( z_{12} )</td>
<td>0.05 + 0.20i</td>
<td>0.1 + 0.5i</td>
<td>0.10 + 0.1i</td>
</tr>
<tr>
<td>( z_{13} )</td>
<td>0.04 + 0.40i</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>( z_{23} )</td>
<td>0.02 + 0.10i</td>
<td>0.02 + 0.20i</td>
<td>0.01 + 0.1i</td>
</tr>
<tr>
<td>( z_{14} )</td>
<td>None</td>
<td>None</td>
<td>0.01 + 0.2i</td>
</tr>
<tr>
<td>( \bar{g}_{12} )</td>
<td>0.02i</td>
<td>0.02i</td>
<td>0.06i</td>
</tr>
<tr>
<td>( \bar{g}_{13} )</td>
<td>0.05i</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>( \bar{g}_{23} )</td>
<td>0.02i</td>
<td>0.02i</td>
<td>0.02i</td>
</tr>
<tr>
<td>( \bar{g}_{14} )</td>
<td>None</td>
<td>None</td>
<td>0.02i</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constraints</th>
<th>System 1</th>
<th>System 2</th>
<th>System 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>( P_{i}^{\text{loss}} + Q_{i}^{\text{loss}} )</td>
<td>0.95 + 0.4i</td>
<td>0.7 + 0.02i</td>
<td>0.9 + 0.02i</td>
</tr>
<tr>
<td>( P_{i}^{\text{loss}} + Q_{i}^{\text{loss}} )</td>
<td>0.9 + 0.6i</td>
<td>0.65 + 0.02i</td>
<td>0.6 + 0.02i</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recovered Parameters</th>
<th>System 1</th>
<th>System 2</th>
<th>System 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>( V_{1} )</td>
<td>1.05 + 0i</td>
<td>1.40 + 0i</td>
<td>1.0 + 0i</td>
</tr>
<tr>
<td>( V_{2} )</td>
<td>0.71 + 0i</td>
<td>1.10 + 0i</td>
<td>0.78 + 0i</td>
</tr>
<tr>
<td>( V_{3} )</td>
<td>0.68 + 0i</td>
<td>1.08 + 0i</td>
<td>0.76 + 0i</td>
</tr>
<tr>
<td>( V_{4} )</td>
<td>None</td>
<td>None</td>
<td>0.95 + 0i</td>
</tr>
<tr>
<td>( P_{\text{loss}} )</td>
<td>0.2193</td>
<td>0.1588</td>
<td>0.3877</td>
</tr>
<tr>
<td>( Q_{\text{loss}} )</td>
<td>1.2944</td>
<td>0.7744</td>
<td>0.5943</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lagrange Multipliers</th>
<th>System 1</th>
<th>System 2</th>
<th>System 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \lambda_{2} )</td>
<td>1.3809</td>
<td>1.4028</td>
<td>1.7176</td>
</tr>
<tr>
<td>( \lambda_{3} )</td>
<td>1.4155</td>
<td>1.4917</td>
<td>1.7990</td>
</tr>
<tr>
<td>( \lambda_{4} )</td>
<td>None</td>
<td>None</td>
<td>1.0207</td>
</tr>
<tr>
<td>( \lambda_{5} )</td>
<td>0.4691</td>
<td>0.2508</td>
<td>0.1764</td>
</tr>
<tr>
<td>( \lambda_{6} )</td>
<td>0.4955</td>
<td>0.2633</td>
<td>0.1858</td>
</tr>
<tr>
<td>( \mu_{1} )</td>
<td>None</td>
<td>None</td>
<td>0.0061</td>
</tr>
<tr>
<td>( \mu_{2} )</td>
<td>0.0005</td>
<td>0.0001</td>
<td>0.0005</td>
</tr>
</tbody>
</table>

The goal is to minimize the active power injected at slack bus 1 while satisfying the constraints given in Table 2. Optimization 2 is solved for each of these systems, and it is observed that condition C1 always holds. The optimal solution of OPF recovered from the solution of Optimization 2 are provided in Table 3 (\( P_{\text{loss}} \) and \( Q_{\text{loss}} \) in the table represent the total active and reactive power losses, respectively). It is interesting to note that although different buses have very disparate voltage magnitudes and phases, the duality gap is still zero. The optimal solution of Optimization 2 is summarized in Table 4 to demonstrate that the Lagrange multipliers corresponding to active and reactive power constraints are positive.

As another scenario, let the desired voltage magnitude at the slack bus of System 1 be changed from 1.05 to 1. It can be verified that the optimal value of Optimization 2 becomes +\( \infty \), which simply implies that the corresponding OPF problem is infeasible.

We repeated several hundred times this example by randomly choosing the parameters of the systems over a wide range of values. In all these trials, the Algorithm prescribed in Section 3 always found a globally optimal solution of the OPF problem or detected its infeasibility.
6. CONCLUSIONS

We have studied the classical optimal power flow (OPF) problem that is notorious for its difficult nonlinear constraints. For DC networks we have proven that the problem has a convex semi-definite programming relaxation which is always equivalent to the original problem. For AC networks, a similar semi-definite relaxation yields the exact solution for the IEEE benchmark systems with 14, 30, 57, 118 and 300 buses, after a small resistance ($10^{-5}$ per unit) is added to every transformer.

REFERENCES


