Object-Oriented Modeling and Optimal Control: A Case Study in Power Plant Start-Up

Casella, Francesco; Donida, Filippo; Åkesson, Johan

2011

Citation for published version (APA):
Abstract: Modeling and optimization of complex systems traditionally have required significant programming efforts in order to encode the model dynamics, the cost functions and the constraints in a format suitable for state of the art numerical algorithms. The availability of dedicated languages for physical modeling has made the design process simpler, but often tools have been limited to a particular optimization algorithm. In this paper, we present a case study where a combined cycle power plant model has been developed using first principles in the modeling language Modelica. Based on the model, an optimal control problem for the start-up of the power plant has been formulated in the Optimica extension and solved using the open source software JModelica.org. The results demonstrate how high-level modeling languages and tools can be used to bridge the gap between the engineering need for intuitive description formats and the interfaces of efficient numerical algorithms.

Keywords: Nonlinear dynamic optimization, Power plant control, Object-oriented modeling, Modelica, Optimica

1. INTRODUCTION

Optimization of industrial processes has been a strong trend during the last decades, resulting in a large body of research in the field as well as significant industrial adoption. Applications of optimization techniques range from plant-wide set-point optimization to improvement of economic performance, up to on-line Model Predictive Control (MPC) to track set-points and to reject disturbances. In the quest for improved performance to meet increasing competition, increasingly rigorous, and thereby complex, models are employed when formulating and solving optimization problems. This trend has increased the effort required to encode models suitable for optimization. Also, it is typical that existing tools use proprietary description formats which limits portability and reuse of models for different purposes.

The plant model, albeit simple enough to be handled by numerical optimization methods, is entirely derived from first principle laws such as mass, energy and momentum balance equations, or as the equations of state of the working fluid. The model is built according to the object-oriented principle: single components are described in terms of a-causal differential-algebraic equations, then the components are joined by means of additional a-causal connection equations to form the complete system model. The optimization problem addressed in this case study is the minimum time start-up of a combined-cycle power plant, subject to a constraint on the level of stress in the steam turbine shaft, which determines the consumption of residual life-time of the component. The goal is to increase the availability and flexibility of such plants without incurring in the additional costs caused by the life-time...
reduction of one of the most expensive components in the system, i.e., the steam turbine.

The paper is structured as follows: Section 2 gives some background information about object-oriented modelling and dynamic optimization; Section 3 describes the plant model, while in Section 4 the optimal start-up problem is formulated and the numerical results are briefly discussed. Finally, Section 5 summarizes the results and gives perspectives for future work.

2. BACKGROUND

2.1 Physical modeling and Modelica

The Modelica language, The Modelica Association (2010), is dedicated to modeling of complex heterogeneous physical systems. The language is object-oriented and implements concepts such as classes, components (class instances), and inheritance. In addition, Modelica supports declarative equation-based modeling. This formalism enables the user to state declarative differential and algebraic relations, without the need to manually convert the model to an ordinarily differential equation (ODE) by solving for the derivatives, a procedure that is commonly required when using block-based modeling systems such as Simulink. Accordingly, the underlying mathematical formalism of Modelica models is that of differential-algebraic equations (DAEs). In addition to declarative equations, Modelica offers means to model, explicitly, a-causal physical interfaces which can be used to connect components together. Modelica also implements support for hybrid constructs such as conditional and instantaneous equations, boolean and integer equations and sampled systems, which are however outside the scope of the work presented in this paper.

Modelica is an open language, and is continuously updated and maintained. Several tools are supporting the language, including Dymola, Dassault Systemes (2010), Simulation X, ITI GmbH (2010), and MapleSim, Maplesoft (2010). Also, a freely available standard library provides basic models in different fields, including electronics, multi-body systems, and thermodynamics.

2.2 Dynamic optimization

In the 50s and 60s, two different methods for solving optimization problems with constraints in the form of dynamic systems were presented. In 1957, Bellman formulated the celebrated principle of optimality, and showed that dynamic programming was applicable to a broad range of applications, Bellman (1957). Further, Pontryagin and co-workers presented the maximum principle in 1962, Pontryagin et al. (1962).

However, both dynamic programming and the maximum principle have practical drawbacks that make them hard to apply to large-scale systems. For example, in the presence of inequality constraints, the activation sequence must be known a priori. Also, it may be difficult to find initial guesses for adjoint variables.

In the last two decades, a new family of methods has emerged to overcome these difficulties. These methods are referred to as direct methods. Direct methods attempt to solve dynamic optimization problems by transcribing the original infinite-dimensional dynamic problem into a finite-dimensional static optimization problem.

There are two main branches within the family of direct methods, referred to as sequential and simultaneous methods, see Binder et al. (2001) for an overview. The sequential methods rely on state of the art numerical integrators, typically also capable of computing state sensitivities, and standard nonlinear programming (NLP) codes. The controls are then usually approximated by piece-wise polynomials, which render the controls to be parameterized by a finite number of parameters. These parameters are then optimized. See e.g., Vassiliadis (1993) for details on sequential methods.

Simultaneous methods, on the other hand, are based on collocation, and approximate both the state and the control variables by means of piece-wise polynomials, see Biegler et al. (2002) for an overview. This strategy requires a fine-grained discretization of the states, in order to approximate the dynamic constraint with sufficient accuracy. Accordingly, the NLPs resulting from application of simultaneous methods are very large, but also sparse. In order to solve large-scale problems, the structure of the problem needs to be explored. A detailed treatment of direct collocation methods is given in Betts (2001).

A popular extension of the single shooting algorithms is multiple shooting Bock and Plitt (1984). In a multiple shooting algorithm, the optimization interval $[t_0, t_f]$ is divided into a number of segments. New optimization variables corresponding to the initial conditions for the states in each segment, are then introduced. This enables the dynamics, as well as the sensitivity equations, to be integrated independently in each segment. In order to enforce continuity of the state profiles, equality constraints are introduced in the optimization problem to ensure continuous state profiles. Extensions of the multiple shooting algorithm include the DAE case, see Bock et al. (1988), and application to real-time model predictive control, see Diehl et al. (2002).

2.3 Optimica

While the Modelica language is well-suited for modeling of physical systems, it does not natively support formulation of optimization problems. In order to complement Modelica with language constructs dedicated to optimization, the Optimica extension, Åkesson (2008), has been proposed. Optimica adds to Modelica syntactic and semantic means to encode cost functions, constraints and what quantities to optimize, which in turn can be used to formulate optimal control problems, parameter estimation problems and design optimization problems. In order to highlight the main features of Optimica, a small example is considered:

$$\min_{u(t)} t_f$$

subject to the dynamic

$$\dot{x}(t) = v(t), \quad x(0) = 0$$

$$\dot{v}(t) = u(t), \quad v(0) = 0$$

and
The cost function, given by the Modelica constructs. In contrast, the specification of the scribes a double integrator, are encoded using standard equations in the equation
constraint of the optimization interval and the constraints
The variable declarations for \(x \)
end DIMinTime;

The corresponding Optimica specification is given by:

\[
\begin{align*}
\text{optimization } & \text{DIMinTime} (\\
\quad \text{objective}=\text{finalTime}, \\
\quad \text{startTime}=0, \\
\quad \text{Real } x(\text{free=true,initialGuess=1})) \\
\quad \text{Real } v(\text{start=0, fixed=true}); \\
\quad \text{input } \text{Real } u; \\
\quad \text{equation } \\
\quad \quad \text{der}(x)=v; \\
\quad \quad \text{der}(v)=u; \\
\quad \text{constraint } \\
\quad \quad x(\text{finalTime})=1; \\
\quad \quad v(\text{finalTime})=0; \\
\quad \quad v\leq 0.5; \\
\quad \quad u\leq 1; \\
\quad \quad u\geq -1; \\
\quad \quad u\leq 1; \\
\quad \end{align*}
\]
end DIMinTime;

The variable declarations for \(x \), \(v \) and \(u \), as well as the equations in the \textit{equation} section, which together describes a double integrator, are encoded using standard Modelica constructs. In contrast, the specification of the cost function, given by the \textit{objective} attribute, the specification of the optimization interval and the constraints in the \textit{constraint} section are expressed using Optimica specific constructs. Note that the \textit{equation} section need not contain the equations in state-space form, as in this elementary example, but can include generic DAE systems, usually obtained by the connection of first-principles based component models, written in standard Modelica.

In the example above, the actual system dynamics is encoded inside the \textit{optimization} class, which is valid in Optimica. For the sake of clarity it is, however, customary to store the system model in a separate model class and to create a component in this class in the \textit{optimization} class.

2.4 JModelica.org

The optimization results presented in this paper have been obtained using JModelica.org, Modelon AB (2009). The project is described as \footnote{www.jmodelica.org}:

JModelica.org is an extensible Modelica-based open source platform for optimization, simulation and analysis of complex dynamic systems. The main objective of the project is to create an industrially viable open source platform for optimization of Modelica models, while offering a flexible platform serving as a virtual lab for algorithm development and research.

The JModelica.org platform is composed of several different software components, including a compiler front-end, code generation modules for C and XML, a run-time system in C providing evaluation-oriented model interfaces, and a Python interface for user interaction. A schematic picture of the platform architecture is shown in Figure 1.

The JModelica.org compilers translate Modelica and Optimica (see Section 2.3) source code into C and XML code. The C code contains the model equations, cost function and constraints in a format suitable for efficient evaluation. The C code generated by the compilers is compiled and linked with a run-time system that contains API functions for evaluation of the DAE residual function, the cost function and the constrain. In addition, the automatic differentiation package CppAD, Bell (2008), is used to provide Jacobian and sparsity information. The API functions provided by the run-time system corresponds to the requirements usually imposed by numerical simulation and optimization algorithms.

The scripting language Python, Python Software Foundation (2009), is used to provide a user interaction environment in JModelica.org. This choice is motivated by the availability of Python packages for numerical and scientific computations, as well as for visualization. The JModelica.org compilers are interfaced with Python, as are the API run-time functions for model equation evaluation.

For a full description of the JModelica.org platform, see Akesson et al. (2010).

3. COMBINED-CYCLE PLANT MODELING

The case study considered in this paper is the minimum time start-up of a combined-cycle power plant. The main limiting factor in this transient is the thermo-mechanical stress on the outer surface of the steam turbine rotor. This stress is proportional to the difference between the surface temperature, which closely follows the superheated steam temperature due to the relatively high heat transfer coefficient, and the average temperature across the whole body of the rotor, which lags behind due to the rotor’s thermal inertia. The most stressed part is the slice of the shaft corresponding to the first row of blades at the turbine inlet; this is modeled by only considering the axial heat...
flow while neglecting the longitudinal heat flow, which is much less relevant.

The Modelica object diagram of a representative, yet simple, model of the process under consideration is shown in Fig. 2. For reasons of simplicity, a one-pressure-level generator is considered. The plant data have been derived from those of a three-levels of pressure steam generator used in a previous study by Casella and Pretolani (2006), where the start-up sequence of a combined-cycle plant was studied with a detailed process model, optimized by trial-and-error.

Starting from the lower left, the gas turbine model generates a prescribed flow of exhaust gas at a prescribed temperature. Both quantities are a function of the electrical load input signal and follow the typical behavior of large units with IGV-controlled exhaust temperature: from 100% down to about 50% load, the exhaust temperature is kept constant by reducing the exhaust gas flow via the IGVs; for lower load levels, the IGVs cannot be closed further, so the exhaust gas flow is approximately constant, and the exhaust temperature decreases. The typical curves are well-approximated by piecewise linear functions, which are smoothed out at the corner points in order to avoid numerical problems with the optimization algorithm, that requires smooth equations. Since the fundamental dynamics of the gas turbine is much faster than that of the steam cycle, an algebraic model is employed for simplicity.

The turbine exhaust gases enter the hot side of a counter-current heat exchanger, and are then discharged to the atmosphere. Each segment of the hot side is modeled by a dynamic energy balance equation, accounting for the energy stored in the gas and for the heat transfer to the cold side. Changes in mass storage and pressure losses are neglected, since their effects are irrelevant for this application. The convective heat transfer to the cold side is then modeled by components that are connected to the heat ports of both sides. The economizer and the superheater are also modeled by dynamic energy balance equations, while the changes in mass storage and the pressure losses are also neglected. The evaporator model instead requires dynamic mass and energy balance equations, and is written assuming thermodynamic equilibrium between the liquid and the vapour phase. For all the three water/steam components, the temperature of the surrounding steel walls is assumed to be the same as the fluid’s, and the corresponding heat storage is modeled accordingly in the energy balance equation. This assumption is reasonable, since the heat transfer coefficients are large enough to allow neglecting the temperature differences between the fluid and the wall, at least in a first approximation model.

The feedwater system is approximated by a prescribed flow rate source with fixed temperature, driven by the drum level controller. A PI level controller is included in the model, to stabilize the level dynamics and keep the void fraction around 0.5. There is no need of optimal level control for this kind of application, so the model to be optimized can include the closed-loop level dynamics, comprehensive of the PI feedback loop.

Finally, the superheated steam enters the steam turbine, which is modeled as an expansion to the condenser pressure, assuming a constant isentropic efficiency. The turbine model also exposes a thermal port, corresponding to the surface where the inlet steam comes into contact with the turbine rotor, exchanging heat by convective heat transfer. This port is in turn connected to a thermal model of the shaft, given by Fourier’s heat equation, discretized by the finite-difference method. This thermal model allows to compute the surface and average temperatures of the rotor shaft, and thereby the surface stress level, which is proportional to the difference between these two temperatures.

In order to keep the model as simple as possible, to ease the convergence of the optimization algorithms, the following additional assumptions have been made. First of all, the gas, the subcooled liquid and the superheated steam are modeled as incompressible fluids with constant c_p, while the properties of saturated liquid and vapour in the evaporator are approximated by low-order polynomials. Secondly, lumped-parameter models are assumed for the heat exchanger segments, with just one temperature state for each side. The finite-difference turbine rotor model has 8 nodes and six states, in order to accurately describe the temperature profile that determines the surface stress level. The resulting nonlinear model has 15 state variables and 141 algebraic variables. The most severe non-linearity is given by the change of derivative of the gas turbine curves at 50 % load. Other milder nonlinearities are caused by the fluid equations of state and by the flow-specific enthalpy products in the energy balance equations.

4. OPTIMAL START-UP PROBLEM SET-UP AND NUMERICAL RESULTS

As already stated in the Introduction, the goal of the optimization problem is to reach the full load level as fast as possible, while limiting the peak stress value on the rotor surface; this peak value determines the life-time consumption during the entire start-up phase, under the hypothesis that the stress curve follows a simple cycle, i.e., it is monotonically non-decreasing up to the peak value, and then monotonically non-increasing after the peak has been reached. Since the steam cycle is assumed to operate in a pure sliding pressure mode, the full load state is reached when the load level of the turbine $u(t)$ (which is the control variable) has reached 100% and the normalized value of the evaporator pressure p_{ev} has reached the target reference value p_{ev}^*. A Lagrange-type cost function,
Fig. 3. Optimal start-up trajectories. The upper curve shows the pressure in the evaporator, the middle curve shows the thermal stress in the steam turbine shaft and the lower curve shows the control input represented by the load.

Fig. 4. Optimal start-up trajectories. The upper curve shows the live steam temperature, the middle and low curves show the turbine rotor surface and mean temperatures.

penalizing the sum of the squared deviations from the target values, drives the system towards the desired set-point \((p_{\text{evap}}, u) = (p_{\text{ref}}^{\text{evap}}, 1)\) as quickly as possible. It turns out that the relative weight of the two deviations is not that important, as long as normalized values having the same order of magnitude are employed.

The main limiting factor in the start-up problem is the constraint acting on the thermal stress in the steam turbine, \(\sigma(t)\). In addition, inequality constraints are imposed on the rate of change of the gas turbine load: on one hand, the load is forbidden to decrease, in order to avoid as much as possible the multiple cycling of the stress level during the transient; on the other hand, it cannot exceed the maximum rate prescribed by the manufacturer.

The start-up optimization problem is then formally stated as:

\[
\begin{align*}
\min_{u(t)} & \int_{t_0}^{t_f} (p_{\text{evap}}(t) - p_{\text{ref}}^{\text{evap}})^2 + (u(t) - 1)^2 \, dt \\
\text{subject to the constraints} & \\
\sigma(t) & \leq \sigma_{\text{max}} \\
\dot{u}(t) & \leq du_{\text{min}} \\
\dot{u}(t) & \geq 0
\end{align*}
\] (4)

and to the DAEs representing the plant dynamics. The initial state for the DAE represents the state of the plant immediately after the connection of the electric generator to the grid. It is assumed that the initial rotor temperature is uniform and equal to the steam temperature, which roughly corresponds to a warm start-up case. A more realistic initial distribution would require modelling the boiler and turbine start-up phases, which is beyond the scope of this paper.

The optimization problem was solved using the direct collocation method in JModelica.org. The algorithm was set up to use 40 collocation points and cubic interpolation polynomials to approximate the state profiles. Also, the control variable was approximated by a piecewise linear function with as many segments as finite elements.

The nonlinear optimization algorithm requires an initial trajectory of all the problem variables as a first guess for the nonlinear solvers. In this case, a reference simulation was used, where the gas turbine load was increased from the initial value of 15\% to the final value of 100\% in 10000 seconds.

The result of the optimization is shown in Figure 3. During the first 200 seconds, the gas turbine load is increased at the maximum allowed rate and the stress builds up rapidly, until it reaches the target limit. Subsequently, the load is slowly increased, in order to maintain the stress level approximately constant at the prescribed limit. When the 50\% load level is reached, further increases of the load do not cause additional increase of the gas exhaust temperature, and therefore cause only small increases of the steam temperature, due to the steam generator dynamics. It is then possible to resume increasing the load at the maximum allowed rate, while the stress level starts to decrease. The full load is reached at about 4200 s.

Figure 4 show the corresponding temperature transients in the turbine shaft: the upper curve shows the live steam temperature, while the middle and low curves show the turbine rotor surface and mean temperature. The surface temperature follows the steam temperature due to convective heat transfer phenomena, while the mean temperature lags behind because of the large thermal inertia of the bulk of the rotor (recall that the thermal stress is actually proportional to the difference between the two).

This result is qualitatively comparable to the results obtained by Casella and Pretolani (2006) with a detailed
plant model, even though the mismatch in the initial conditions of the rotor temperature distribution and the absence of the intermediate and low pressure circuits do not allow to exactly superimpose the results.

5. SUMMARY AND CONCLUSIONS

In this paper, we have shown how the high level modeling languages Modelica and Optimica have been used to solve a start-up optimization problem for a combined-cycle power plant. The open source platform JModelica.org has been used to obtain computational results by means of a direct collocation algorithm.

The use of high-level design tools has enabled short design iteration cycles, where tuning of the model and the optimization problem, rather than the details of their implementation, has been put into focus. Since the power plant model relies on library components, it is well suited for reuse and modular extension with more rigorous models regarding, e.g., the thermodynamic media properties.

Future enhancements to this work include using more accurate 1D models of the heat exchangers and of the fluid properties, including the boiler start-up and turbine start-up phases in the optimization, and using the optimization algorithm for NMPC control, possibly by closing the loop on a more accurate plant model to evaluate the behaviour of the control system in a realistic set-up.

REFERENCES

