Dynamic assembly of molecularly imprinted polymer nanoparticles

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

Manipulation of specific binding and recycling of materials are two important aspects for practical applications of molecularly imprinted polymers. In this work, we developed a new approach to control the dynamic assembly of molecularly imprinted nanoparticles by surface functionalization. Molecularly imprinted polymer nanoparticles with a well-controlled core-shell structure were synthesized using precipitation polymerization. The specific binding sites were created in the core during the first step imprinting reaction. In the second polymerization step, epoxide groups were introduced into the particle shell to act as an intermediate linker to immobilize phenylboronic acids, as well as to introduce cis-diol structures on surface. The imprinted polymer nanoparticles modified with boronic acid and cis-diol structures maintained high molecular binding specificity, and the nanoparticles could be induced to form dynamic particle aggregation that responded to pH variation and chemical stimuli. The possibility of modulating molecular binding and nanoparticle assembly in a mutually independent fashion can be exploited in a number of applications where repeated use of precious nanoparticles is needed.

Detaljer

Författare
Enheter & grupper
Externa organisationer
  • Lund University
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Polymerkemi
  • Biokemi och molekylärbiologi

Nyckelord

Originalspråkengelska
Sidor (från-till)463-471
Antal sidor9
TidskriftJournal of Colloid and Interface Science
Volym509
StatusPublished - 2018 jan 1
Peer review utfördJa