Self-aligned, gate-last process for vertical InAs nanowire MOSFETs on Si

Berg, Martin; Persson, Karl-Magnus; Kilpi, Olli-Pekka; Svensson, Johannes; Lind, Erik; Wernersson, Lars-Erik

Published in:
Technical Digest - International Electron Devices Meeting, IEDM

DOI:
10.1109/IEDM.2015.7409806

2016

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Self-Aligned, Gate-Last Process for Vertical InAs Nanowire MOSFETs on Si

Martin Berg, Karl-Magnus Persson, Olli-Pekka Kilpi, Johannes Svensson, Erik Lind, and Lars-Erik Wernersson
Department of Electrical and Information Technology, Lund University, Box 118, Lund, Sweden
E-mail: martin.berg@eit.lth.se Phone: +46462220000

I. ABSTRACT

In this work, we present a novel self-aligned gate-last fabrication process for vertical nanowire metal-oxide-semiconductor field-effect transistors. The fabrication method allows for exposure dose-defined gate lengths and a local diameter reduction of the intrinsic channel segment, while maintaining thicker highly doped access regions. Using this process, InAs nanowire transistors combining good on- and off-performance are fabricated demonstrating $Q = g_{m,\text{max}}/SS = 8.2$, which is higher than any previously reported vertical nanowire MOSFET.

II. INTRODUCTION

III-V compound semiconductors on Si substrates are expected to appear in commercial complementary metal-oxide-semiconductor (CMOS) implementations within a couple of years [1], taking advantage of the excellent transport properties of these semiconductors to reach faster and more energy-efficient circuits. One way to ensure high-quality materials for such highly lattice-mismatched integration, is through the use of a nanowire geometry [2]. Vertical nanowire MOSFETs allow for small footprints, as the channel and metal contact lengths are decoupled. It has been suggested that such integration can outperform lateral devices at highly scaled technology nodes [3], [4]. Furthermore, the geometry simplifies the fabrication of a gate-all-around transistor, which ensures good electrostatic control of the transistor channel. Reducing the nanowire diameter further improves electrostatics, but can also increase the series resistance from the ungated regions as well as increasing the metal-semiconductor contact resistance. One way of reducing these resistances is through high doping in the contact regions, which could be accomplished during nanowire growth. However, high-precision doping control of the nanowire core along the axial direction has proven very challenging [5], resulting in imprecise alignment of the electrodes and separation layers.

To address these issues, we have developed a self-aligned, gate-last process, allowing for local reduction of the nanowire diameter in the channel region using digital etching. InAs nanowires with a doped outer shell around an undoped core are used to implement transistors with a thin intrinsic channel and thicker doped contact regions. Furthermore, the process allows for the fabrication of MOSFETs with varying gate lengths, L_G, on the same sample. Using the described methods, the best combined performance of transconductance and subthreshold slope for any vertical nanowire MOSFET is demonstrated.

III. DEVICE FABRICATION

InAs nanowire MOSFETs are fabricated on lowly p-doped Si (111) substrates with an epitaxially grown InAs buffer layer [6]. The InAs layer serves both as a buffer layer for nanowire growth and as a low-resistive device bottom contact, avoiding transport over the InAs/Si heterojunction potential barrier [7]. The nanowires are grown using metal organic vapor-phase epitaxy (MOVPE) using the vapor-liquid-solid (VLS) method from electron-beam defined Au particles positioned in double-row arrays with 200 nm spacing. The nanowires consist of a 200 nm long undoped core segment with a diameter of 35 nm, followed by a 400 nm highly doped top segment. By increasing the group V to group III molar ratio in the second step, the highly n-doped InAs also overgrows on the undoped section, forming a 10 nm thick shell surrounding the undoped core, as illustrated in Fig. 1a.

To define the top contact, hydrogen silsesquioxane (HSQ) is applied and exposed with an electron beam at an acceleration voltage of 50 kV, where the exposure dose determines...
the thickness of the film after development. The top metal contact is formed by sputtering of 20 nm W and atomic layer deposition (ALD) of 5 nm TiN. The metal layers are dry etched anisotropically, removing the planar layer keeping only the metal on the nanowire sidewalls, as illustrated in Fig. 1b. The HSQ is subsequently wet etched using HF. SiO$_2$ is deposited using ALD followed by etch back of a spin-on resist. This resist serves as etch mask for HF wet etching of SiO$_2$ from the nanowire sidewalls, which results in a 20-nm-thick SiO$_2$ separation layer between gate and source. This spacer, together with the top metal, also serves as an etch mask for digital etching of the nanowires using alternating O$_3$ oxidation for 10 min at 50 °C and HCl : H$_2$O (1:10) etching for 15 s. The segment not protected by etch masks, corresponding to L_{eq}, is ultimately determined by the exposure dose of the top metal definition, and in this case varied between 70 and 200 nm. A channel diameter of 28 nm is fabricated while keeping thicker doped regions underneath the top contact and the bottom spacer. An ALD high-κ oxide, corresponding to an approximate EOT of 1.5 nm, consisting of a bi-layer of Al$_2$O$_3$ and HfO$_2$, is deposited at 300 °C and 120 °C, respectively. This is followed by gate metal sputtering of W and definition of the gate edge using an etched back spin-on resist. An illustration can be seen in Fig. 1c, showing an overlapping gate on the top side and edge-to-edge alignment on the source-side. A 100 nm organic second spacer is fabricated followed by sputtering of the top metal electrode stack with the final device architecture shown in Fig. 1d. Scanning electron micrographs of the devices after the thinning of the channel region and after the complete fabrication are shown in Fig. 2a and Fig. 2b, respectively.

IV. RESULTS AND DISCUSSION

The transfer characteristics for a vertical InAs nanowire MOSFET with a channel diameter of 28 nm and a gate length of 190 nm can be seen in Fig. 3. A peak transconductance, $g_{m,max}$, of 0.85 mSμm$^{-1}$, normalized to the circumference, and a minimum subthreshold swing, SS, of 154 mV dec$^{-1}$ is measured at $V_{DS} = 0.5$ V. Furthermore, enhancement mode operation is observed with a $V_T = 0.3$ V. The device characteristics are modeled using a virtual source model [8], and show good fit to measured transfer and output data, illustrated in Fig. 3a and Fig. 4a, using an injection velocity, v_{ij}, of 1.9×10^{7} cm s$^{-1}$ and an electron mobility, μ_e, of 1400 cm2 V$^{-1}$ s$^{-1}$. Fig. 4b shows the voltage gain, g_m/g_d, as a function of g_m and V_{DS} for the same device. The good electrostatic control provides high gain at low

IV. RESULTS AND DISCUSSION

The transfer characteristics for a vertical InAs nanowire MOSFET with a channel diameter of 28 nm and a gate length of 190 nm can be seen in Fig. 3. A peak transconductance, $g_{m,max}$, of 0.85 mSμm$^{-1}$, normalized to the circumference, and a minimum subthreshold swing, SS, of 154 mV dec$^{-1}$ is measured at $V_{DS} = 0.5$ V. Furthermore, enhancement mode operation is observed with a $V_T = 0.3$ V. The device characteristics are modeled using a virtual source model [8], and show good fit to measured transfer and output data, illustrated in Fig. 3a and Fig. 4a, using an injection velocity, v_{ij}, of 1.9×10^{7} cm s$^{-1}$ and an electron mobility, μ_e, of 1400 cm2 V$^{-1}$ s$^{-1}$. Fig. 4b shows the voltage gain, g_m/g_d, as a function of g_m and V_{DS} for the same device. The good electrostatic control provides high gain at low

IV. RESULTS AND DISCUSSION

The transfer characteristics for a vertical InAs nanowire MOSFET with a channel diameter of 28 nm and a gate length of 190 nm can be seen in Fig. 3. A peak transconductance, $g_{m,max}$, of 0.85 mSμm$^{-1}$, normalized to the circumference, and a minimum subthreshold swing, SS, of 154 mV dec$^{-1}$ is measured at $V_{DS} = 0.5$ V. Furthermore, enhancement mode operation is observed with a $V_T = 0.3$ V. The device characteristics are modeled using a virtual source model [8], and show good fit to measured transfer and output data, illustrated in Fig. 3a and Fig. 4a, using an injection velocity, v_{ij}, of 1.9×10^{7} cm s$^{-1}$ and an electron mobility, μ_e, of 1400 cm2 V$^{-1}$ s$^{-1}$. Fig. 4b shows the voltage gain, g_m/g_d, as a function of g_m and V_{DS} for the same device. The good electrostatic control provides high gain at low

IV. RESULTS AND DISCUSSION

The transfer characteristics for a vertical InAs nanowire MOSFET with a channel diameter of 28 nm and a gate length of 190 nm can be seen in Fig. 3. A peak transconductance, $g_{m,max}$, of 0.85 mSμm$^{-1}$, normalized to the circumference, and a minimum subthreshold swing, SS, of 154 mV dec$^{-1}$ is measured at $V_{DS} = 0.5$ V. Furthermore, enhancement mode operation is observed with a $V_T = 0.3$ V. The device characteristics are modeled using a virtual source model [8], and show good fit to measured transfer and output data, illustrated in Fig. 3a and Fig. 4a, using an injection velocity, v_{ij}, of 1.9×10^{7} cm s$^{-1}$ and an electron mobility, μ_e, of 1400 cm2 V$^{-1}$ s$^{-1}$. Fig. 4b shows the voltage gain, g_m/g_d, as a function of g_m and V_{DS} for the same device. The good electrostatic control provides high gain at low

IV. RESULTS AND DISCUSSION

The transfer characteristics for a vertical InAs nanowire MOSFET with a channel diameter of 28 nm and a gate length of 190 nm can be seen in Fig. 3. A peak transconductance, $g_{m,max}$, of 0.85 mSμm$^{-1}$, normalized to the circumference, and a minimum subthreshold swing, SS, of 154 mV dec$^{-1}$ is measured at $V_{DS} = 0.5$ V. Furthermore, enhancement mode operation is observed with a $V_T = 0.3$ V. The device characteristics are modeled using a virtual source model [8], and show good fit to measured transfer and output data, illustrated in Fig. 3a and Fig. 4a, using an injection velocity, v_{ij}, of 1.9×10^{7} cm s$^{-1}$ and an electron mobility, μ_e, of 1400 cm2 V$^{-1}$ s$^{-1}$. Fig. 4b shows the voltage gain, g_m/g_d, as a function of g_m and V_{DS} for the same device. The good electrostatic control provides high gain at low

IV. RESULTS AND DISCUSSION

The transfer characteristics for a vertical InAs nanowire MOSFET with a channel diameter of 28 nm and a gate length of 190 nm can be seen in Fig. 3. A peak transconductance, $g_{m,max}$, of 0.85 mSμm$^{-1}$, normalized to the circumference, and a minimum subthreshold swing, SS, of 154 mV dec$^{-1}$ is measured at $V_{DS} = 0.5$ V. Furthermore, enhancement mode operation is observed with a $V_T = 0.3$ V. The device characteristics are modeled using a virtual source model [8], and show good fit to measured transfer and output data, illustrated in Fig. 3a and Fig. 4a, using an injection velocity, v_{ij}, of 1.9×10^{7} cm s$^{-1}$ and an electron mobility, μ_e, of 1400 cm2 V$^{-1}$ s$^{-1}$. Fig. 4b shows the voltage gain, g_m/g_d, as a function of g_m and V_{DS} for the same device. The good electrostatic control provides high gain at low
V. Conclusion

In this work, we have demonstrated the highest performance in terms of \(g_{m,max} \) and \(SS \) for any vertical nanowire MOSFET, with \(g_{m,max} \) reaching 1.29 mS/\(\mu \)m and \(SS \) of 90 mV dec\(^{-1}\). This performance is achieved through the use of a novel self-aligned, gate-last fabrication process on a Si-substrate. The method allows for gate length scaling as well as separate optimization of the channel region and the contact regions.

Fig. 7. a) Peak transconductance at \(V_{DS} = 0.5 \) V versus gate length for devices with the same diameter fabricated in parallel. A trace representing the mean transconductance at each gate length is included. A slight increase in \(g_m \) as \(L_G \) is reduced is observed down to 120 nm. b) On-resistance as a function of gate length. A linear extrapolation to zero \(L_G \) indicates an average access resistance of about 750 \(\Omega \mu \)m. c) Threshold voltage versus gate length showing a small negative shift with shorter channels and a variation, on the order of 150 mV, between devices.

Devices with different \(L_G \) in the range between 70 and 200 nm are fabricated by varying the first HSQ layer thickness. The impact of a varying \(L_G \) is shown for \(g_{m,max} \), \(R_{on} \), and the threshold voltage, \(V_T \), in Fig. 7a-c, respectively. A small increase in \(g_m \) as \(L_G \) is reduced can be observed, combined with a lowering of \(V_T \). From the RON dependency, an average access resistance for these devices of about 750 \(\Omega \mu \)m is extracted, further indicating that the device DC performance is limited by access resistance. By comparing measurements when keeping the bottom of the nanowires grounded to top-ground measurements, it is found that the majority of the resistance is situated on the top side, probably due to high contact resistance at the W-InAs interface.

Fig. 6. a) Transconductance as a function of subthreshold swing for the fabricated devices in this work compared to other reported vertical III-V nanowire MOSFETs. Our samples compare favorably to both in terms of transconductance and subthreshold swing, b) \(Q = g_{m,max}/SS \) as a function of \(SS \) for the same devices as a). A clear trend with increasing values for lower subthreshold swings, indicating that even higher performance can be expected with an improved gate stack. c) \(g_{m,max} \), extracted at \(V_{DS} = 0.5 \) V, as a function of \(R_{on} \) for multiple devices fabricated in parallel. A large increase in \(g_{m,max} \) is observed for lower \(R_{on} \), demonstrating that the performance is limited by extrinsic series resistances. In the three graphs, data from identically fabricated devices positioned in an hexagonal geometry is included.

\[
\frac{g_{m,max}}{SS} \text{ vs } L_G \quad \text{Fig. 6a}
\]

\[
R_{on} \text{ vs } L_G \quad \text{Fig. 6b}
\]

\[
V_T \text{ vs } L_G \quad \text{Fig. 6c}
\]
VI. ACKNOWLEDGEMENTS

This work was supported in part by the Swedish Research Council, in part by the Knut and Alice Wallenberg Foundation, and in part by the Swedish Foundation for Strategic Research, and the European Union H2020 Program INSIGHT (Grant Agreement No. 688784).

REFERENCES

