Starling foraging success in relation to agricultural land-use

Olsson, Ola; Bruun, Måns; Smith, Henrik G.

Published in:
Ecography

DOI:
10.1034/j.1600-0587.2002.250313.x

2002

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Changes in agricultural land-use have been suggested to contribute to the decline of several bird species through negative effects on their food supply during breeding. One important change in land-use has been loss of pastures, especially permanent pastures. In this study we investigated how different forms of agricultural land-use affected foraging success of a declining bird species, the European starling *Sturnus vulgaris*. We let caged starlings forage in different forms of agricultural fields and determined time spent foraging and foraging success. The starlings’ activity level (time spent actively foraging) as well as the number of prey caught per time unit was strongly related to the abundance of prey in soil samples. Also the body mass change during the experiment was positively related to activity level and prey capture rate. We found consistent differences in foraging variables between habitats. In spring sown grain starlings were least active and found fewer prey items at a lower rate than in any other habitat. The other three habitats differed less, but in general mowed hay fields appeared slightly more valuable than the cultivated and natural pastures. We did not find any differences between natural and cultivated pastures in foraging variables. Thus, starling foraging success is higher in grass-covered fields than in cultivated fields, but the management of the grass-covered fields mattered less. The results are consistent with starlings having higher population densities and breeding success in areas with higher availability of pasture. We suggest that the physical structure of the habitat (sward height) and moisture may be additional variables that need to be taken into account to explain starling breeding density and success in the agricultural landscape.

Agricultural intensification has been suggested as a major reason for the decline of several bird species associated with the agricultural landscape in northern Europe (O’Connor and Shrubb 1986, Chamberlain et al. 1999). Agricultural intensification, a process whereby a larger production of crops has been achieved per unit of area, has been achieved through increased use of pesticides and inorganic fertilisers, increased size of fields, removal of natural habitat fragments, changes in land-use and increased regional specialisation (e.g. O’Connor and Shrubb 1986, Campbell et al. 1997, Chamberlain et al. 1999). However, except for a few bird species, the mechanisms by which agricultural intensification affects population density are poorly known (Fuller et al. 1991, Chamberlain et al. 1999).

One major change, suggested to be important for some bird species associated with the agricultural landscape, is loss of pastures, especially natural pastures (Fuller et al. 1991, Chamberlain et al. 1999). Agricultural development has resulted in increased regional specialisation and thus concentration of dairy farming and meat production (O’Connor and Shrubb 1986, Chamberlain et al. 1999). A larger proportion of the fodder for cattle is produced in hayfields in rotation with grains or other crops, i.e. in fields that are regularly ploughed and fertilised (Chamberlain et al. 1999). In addition, many natural pastures are now improved, e.g. by being fertilised (Chamberlain et al. 1999). For birds dependent on soil-living invertebrates during breeding, these changes may have significant effects on...
population trends if they in turn affect the abundance
and/or accessibility of prey (Wilson et al. 1999).

Some studies have shown that the abundance of
soil-living invertebrates may depend on agricultural
land-use (Wilson et al. 1999). However, abundance and
accessibility may not be linearly related across habitat
types, because vegetation structure, soil texture and
moisture all may affect how available prey are. It has
recently been suggested that measuring foraging rates
of caged birds in different habitats may be a reasonable
method to measure prey availability (Whitehead et al.
1996).

The European starling *Sturnus vulgaris* is associated
with man and the agricultural landscape. Starlings
predominantly forage in open grassland where soil-living
invertebrates constitute the most important food (Dun-
recent decades the starling has declined over large parts
of northern Europe (e.g. Møller 1983, Svensson 1990,
the most northerly parts of Europe the starling’s range
has contracted (e.g. Carlsson 1979, Orell and Ojanen
1980, Solonen et al. 1991). Tiainen et al. (1989) sug-
gested that the decline of the starling population was
caused by the reduction of pasture in the modern
agricultural landscape and Solonen et al. (1991) demon-
strated that declines in Finland often were related to
changes in the availability of pasture. In southern Swe-
den, starling reproductive success has been found to be
associated with the availability of pastures near breed-
ing colonies (Smith and Bruun 2002).

In this study we use caged wild starlings in exper-
iments, where they are allowed to forage in different
agricultural habitats. We study how the foraging ac-
tivity and success varies between these habitats. We also
evaluate how the measured foraging variables can be
related to measured prey abundance in soil samples. We
can then determine if the suggestion, that the popula-
tion decrease of the starling is related to loss of good
foraging habitat, is a reasonable one.

Methods

We used ten female starlings for a foraging cage exper-
iment in four types of grass-dominated habitat. The
birds were caught in the beginning of May 1998 in the
Revinge study area in southern Sweden. The exper-
iment was carried out during the subsequent six weeks,
corresponding to the starling’s breeding season, on
farmland in and around the Revinge area. Between
experiments the birds were kept in two aviaries (five
birds in each), each with a surface area of 12.8 m² and
a height of 2.2 m, that had some shrubs for perching
and six clean nest boxes for roosting. They were given
continuous access to fresh water.

Natural pasture (NP) was defined as grazed (al-
though not necessarily during the experiment) grassland
that were unploughed, unfertilised, or that at least had
a flora that indicated that such activities had not oc-
curred in the last ca 10 yr (Anon. 1997). Cultivated
pasture (CP) was defined as grazed grassland that had
clear signs of ploughing on the ground structure (e.g.
low walls around the edges) and of fertilising on the
flora (mainly nitrogen tolerant species present). Mowed
hayfield (MH) was agricultural fields that were
presently used for hay harvest (including silage). Fields
used had either been moved for grass harvest within
the previous week, or when this had not occurred we
manually cut the grass to a height similar to that
obtained by agricultural mowing (ca 7–10 cm). These
fields were usually fertilised several times per year and
were normally in a rotation with other crops. Hence,
the grass vegetation was in most cases not more than
two to three years old. Spring-sown grain fields (SG)
were both ploughed and fertilised in the present year.
In the study area sowing took place in the last week of
March and first two or three weeks of April in the year
of study. In most cases they were also treated with
herbicides and pesticides. Hence, they lacked most nat-
ural vegetation.

Nest box colonies, used for other studies (Smith and
Bruun unpubl.), were randomly selected for the experi-
ments. Adjacent to each colony one plot of each of the
four study habitats, natural pasture, cultivated pasture,
mowed hayfield, and spring-sown grain field was cho-
sen. The plots were chosen such that for each habitat
the closest place where it was found, was used for the
experiment. Such plots were never > 500 m away from
colonies, and usually much closer. Within colonies,
plots had similar surrounding vegetation, soil character-
istics and water table.

The experiments took place in cages with 1 m² bot-
tom surface (100 × 100 cm wide, 50 cm high). These
were made of a wood frame with nylon fish net for
walls and roof, and open bottom. Before the actual
experiments started, we habituated the starlings to the
foraging cage, by performing at least three sham exper-
iments per individual.

Each experimental day one group of five birds (from
one of the aviaries) was used in the experiment. That is,
each bird was never used two days in a row. Prior to an
experiment the birds in the group to be used that day
were deprived of food from the afternoon before. Dur-
ing the days when they were not used they were given
mealworms and dog food pellets ad lib. On experiment
days we checked the condition of the birds by weighing
them.

The experimental period was divided into two runs
(14–28 May and 3–12 June, respectively) and the star-
lings were split into two groups of five birds in each.
Only one of the starling groups participated in the
experiment in a given day, and never two days in a row.
Each day a group of starlings was taken to a new colony where the birds visited one habitat each, according to a rotational schedule. Over the whole experiment each individual starling visited each habitat twice—once in the first run and once in the second. The colonies visited by the first group of starlings in the first run was revisited by the second group in the second run, and vice versa, i.e. each starling only visited each colony once, and only in one habitat.

After being weighed a bird was released in one out of two adjacent cages for ca 12 min. During this time it was filmed using a video camera at a distance of ca 2 m. The person carrying out the experiment moved out of sight of the bird during the experiment. After the 12 min the bird was moved to the other cage for a new trial, equal to the first in all respects. After the second trial the bird was weighed again.

In the cages, the birds usually settled and started to feed within 2 min. The subsequent 10 min of activities were recorded and analysed using Noldus Observer Video Pro 4. Using this technique it was possible to separate between time spent actively foraging (searching or probing for prey), time spent handling prey (indicating prey capture) and time spent scanning for predators. The behavioural observations were grouped into ten 1-min intervals for each cage. Within these intervals we hence estimated: the proportion of time foraging actively, the number of prey caught, and the intake rate (number of prey per time unit actively foraging). As the grain (SG) grew during the six weeks of the experiment, video analysis of the behaviour in this habitat was impossible in several experiments. This prevented some of the data analyses (see Results).

We sampled the soil in the cages by taking eight cylindrical (diameter = 72 mm, depth 50 mm) cores, including the top vegetation. The depth of the cores is greater than the probing depth of the starlings. However, preliminary evaluation of the method revealed that using a smaller depth there was a risk of losing e.g. earthworms that were located horizontally even if their one end was located close to the surface. Thus, the value of our soil samples is based on the assumption that the number of prey found in them correlate well with the numbers available to the starlings. The invertebrates in these soil cores were counted by sifting (sieve mesh size 0.64 × 0.64 mm) the soil samples under running water. For the analyses we used the total numbers of invertebrates per individual bird and day. Preliminary analyses showed that using the biomass instead of numbers of invertebrates produced similar results. However, the statistical distribution of biomass was extremely skewed and could not be normalized using transformations. Hence, we chose to base all results on the analysis of number of invertebrates.

We analysed the data by repeated measures ANOVA, and when that method was not applicable by univariate linear models analysis (ANOVA, ANCOVA, regression). In the repeated measures analyses we used the Huyn-Feldt corrected degrees of freedom for significance testing, due to the fact that deviations from sphericity sometimes occurred. In these analyses, all interactions terms that are not reported are not significant at the p = 0.1 level.

Three planned contrasts were performed on these repeated measures ANOVAs: contrasting the two types of pasture (NP vs CP), contrasting the pastures against the mowed hayfields (\{(NP, CP}\) vs MH), and contrasting the three grass bearing habitats against the grain fields (\{(NP, CP, MH}\) vs SG). These contrasts are orthogonal and their significance levels need not be adjusted.

When performing the linear model analyses on individuals’ behaviour we first made separate analyses for each individual and then tested the individuals’ model coefficients against zero using paired t-test, hence avoiding pseudo-replication. In all these cases we verified the assumptions of linear model analysis using Levene’s test.

Results

Within-individual differences in foraging behaviour

In order to study how the foraging success and activity varied between habitats and in time we performed a series of repeated measures ANOVAs of the different foraging variables using the observations of the individuals as the subjects and repeated measurements over experimental run (two levels), habitats (four levels), cage (two levels), and time from start of experiment in the cage (ten levels, i.e. discrete 1-min intervals) as the within-subjects factors.

Time in active foraging

We found that the proportion of time during a 1-min interval that a bird was actively foraging varied significantly by the time from the initiation of the experiment ($F_{1,9} = 7.91$, $p < 0.0005$; Fig. 1d), varied between habitats ($F_{3,0.270} = 5.59$, $p = 0.004$; Fig. 1a), and was lower in the second run of experiments ($F_{1,9.0} = 13.36$, $p = 0.005$; Fig. 1b). Furthermore, the experimental run seemed to have slightly different effect on the different habitats (interaction term $F_{2.32.23.9} = 3.25$, $p = 0.045$). However, the time spent actively foraging was the same in the first and second experimental cage ($F_{1.0} = 0.146$, $p = 0.7$; Fig. 1c).

In order to look closer at these relations we computed the within-subjects contrasts of the above analysis. Making three planned contrasts among the habitats we found that the activity levels were the same in the two types of pasture (NP and CP, $F_{1.9} = 0.48$, $p = 0.5$), almost significantly higher in the MH than in the pastures ($F_{1.9} = 4.93$, $p = 0.054$), and clearly lower in
SG than in the other habitats (F1,9 = 8.58, p = 0.017; Fig. 1a). The decrease in activity level in the second experimental run was more pronounced in MH than in the two pasture habitats (F1,9 = 6.47, p = 0.031) whereas it was the same across the other two contrasts studied (NP vs CP: F1,9 = 1.79, p = 0.2; {NP, CP, MH} vs SG: F1,9 = 2.28, p = 0.2).

Finally, the level of activity was highest during the fourth minute of the experiment (Fig. 1d), and then decreased again. The second order contrast for the time intervals, that corresponds to a humped relationship, was clearly significant (F1,9 = 15.3, p = 0.004) and stronger than the linear contrast (F1,9 = 5.80, p = 0.039).

Number of prey caught per minute
The number of prey caught per 1-min interval differed clearly between habitats (F2.63,23.64 = 10.98, p < 0.0005; Fig. 2a) and also significantly varied with the time since the start of the experiment in the cage (F7.94,71.41 = 3.06, p = 0.005; Fig. 2d). However, number of prey caught per minute varied with time slightly differently in different habitats (F23.0,197.7 = 1.604, p = 0.048).

Number of prey taken per minute was the same in the two experimental runs (F1.0,9.0 = 1.72, p = 0.2; Fig. 2b), and in the first and second experimental cage (F1.0,9.0 = 2.43, p = 0.15; Fig. 2c). That is, in a given habitat and a given time after the bird was released in the cage, the number of prey taken per minute was the same in both cages.

We computed the within-subjects contrasts of the model to study the relationships more thoroughly. As for the level of activity, we found that out of three planned contrasts the number of prey caught per minute was not different between NP and CP (F1,9 = 0.31, p = 0.6) but it was higher in MH than in the pasture habitats (F1,9 = 5.90, p = 0.038) and much lower in SG than in the other three habitats (F1,9 = 42.11, p < 0.0005; Fig. 2a). The effect of time was clearly not linear (linear contrast F1,9 = 0.006, p = 0.9), but rather quadratic (quadratic contrast F1,9 = 12.43, p = 0.006; Fig. 2d), that is humped. The only significant contrast for the habitat time interaction was that in SG the number of prey taken per minute appeared to be virtually unaffected by time since start of experiment (quadratic contrast for SG vs {NP, CP, MH}: F1,9 = 11.32, p = 0.008). The two other quadratic contrasts were insignificant (p > 0.1).

Prey capture rate
The number of prey items caught per unit active foraging time per 1-min interval, i.e. the instantaneous prey capture rate, differed between habitats (F3.0,27.0 = 9.37, p < 0.0005; Fig. 3a). This rate was independent of time since start of experiment (Fig. 3d), experimental run (Fig. 3b), or cage (Fig. 3c) (F6.62,59.6 = 1.05, p = 0.4; F1.0,9.0 = 0.015, p = 0.9; F1.0,9.0 = 0.49, p = 0.5 respectively).

We found the three planned within-subjects contrasts computed for the among-habitat comparisons similar to the patterns seen for activity and prey caught per minute.
Fig. 2. Number of prey caught per 1-min interval during the experiments. Values are means (per bird and minute) ± 1 SE of the 10 birds in the experiment. The four panels show values for the four studied habitats (NP, natural pasture; CP, cultivated pasture; MH, mowed hayfield; SG, spring-sown grain field), the two experimental runs (1, second half of May; 2, first half of June), the two experimental cages (1, first 10 min; 2, latter 10 min of the experiment), and the 10 1-min intervals of the experiment in each cage.

Fig. 3. Prey capture rate, i.e. number of prey caught per second active foraging time. Values are means (per bird and minute) ± 1 SE of the 10 birds in the experiment. The four panels show values for the four studied habitats (NP, natural pasture; CP, cultivated pasture; MH, mowed hayfield; SG, spring-sown grain field), the two experimental runs (1, second half of May; 2, first half of June), the two experimental cages (1, first 10 min; 2, latter 10 min of the experiment), and the 10 1-min intervals of the experiment in each cage.
to the previously analysed foraging variables. That is, the prey capture rate was not different between the two pasture habitats (NP vs CP: $F_{1,9} = 0.95$, $p = 0.4$), but slightly higher in MH than in the pastures (MH vs [NP, CP]: $F_{1,9} = 5.20$, $p = 0.049$), and much lower in the SG than in the other habitats (SG vs [NP, CP, MH]: $F_{1,9} = 28.16$, $p < 0.0005$; Fig. 3a).

Changes in activity within experiments

The activity level in a given minute increased with the number of prey caught during the previous minute (Fig. 4). The activity (proportion of time spent actively foraging) in a given 1-min interval as a function of the number of prey items caught during the previous minute of the experiment. Mean and 1 SE. The number of intervals that these descriptive statistics are based on is 1271, 138, 23, 7, 0 and 1 for 0 to 5 prey items caught, respectively.

By subtracting the individuals’ initial body mass, prior to an experiment, from their final body mass, after the experiment we estimated the average change of weight that the birds experienced. We excluded weight records from days when the vegetation was wet, as any water in the plumage otherwise could have influenced the result. On average the individual starlings lost 0.91 g (SD = 0.48, $n = 10$ individuals) of their body mass per hour of experiment time.

Within individuals, we found that the mass-change was positively influenced by the proportion of time spent foraging actively ($t = 2.27$, $p = 0.049$), number of prey caught during the experiment ($t = 2.82$, $p = 0.020$; Fig. 5), and the prey capture rate ($t = 2.88$, $p = 0.018$, $n = 10$ in all cases). That is, they lost less weight, or even gained weight, when active, finding many prey or foraging at a high rate.

Between-habitat prey abundance

We found that there was a significant difference in prey abundance between habitats ($F_{3,67} = 9.78$, $p < 0.0005$).
when the effect of colony where the experiment was performed ($F_{8,67} = 2.43$, $p = 0.023$) was accounted for. Three planned contrasts showed that the only habitat deviating from the others was SG (SG vs {NP, CP, MH}): $F_{1,67} = 27.95$, $p < 0.0005$; NP vs CP: $F_{1,67} = 0.71$, $p = 0.4$; MH vs {NP, CP}: $F_{1,67} = 0.66$, $p = 0.4$).

Both the proportion of time spent in active foraging, and the number of prey caught per experiment (Fig. 6) increased with the prey abundance in the soil samples ($t = 3.08$, $p = 0.013$ and paired-$t = 3.09$, $p = 0.013$ respectively, $n = 10$). The prey capture rate, however, was not significantly influenced by prey abundance ($t = 1.41$, $p = 0.2$).

Discussion

Throughout, we found a consistent difference in the behavioural variables between the habitats. In the spring-sown grain (SG) the starlings were least active and found fewer prey items at a lower rate, than in any other habitat. The other three habitats differed less, but in general recently mowed hayfields (MH) appeared slightly more valuable than the cultivated pasture (CP) or natural pasture (NP). We did not find any differences between the pasture habitats.

The starlings’ activity level (measured as the proportion of time spent actively foraging) as well as the number of prey caught per minute of experiment was strongly related to the abundance of prey in the soil samples. Also, the rate of body mass change during the experiment was positively related to activity level and prey capture rate.

Foraging patterns and agricultural practices

On a coarse scale our results corroborate the idea that the decline of the starling populations is due to loss of good foraging habitats (Taitinen et al. 1989, Solonen et al. 1991). That is, the trend over the last decades is that pastures and meadows are either abandoned, and al. 1991). That is, the trend over the last decades is that good foraging habitats (Tiainen et al. 1989, Solonen et all of these measures seem to provide the same, and relevant information. The method easiest to use, although perhaps also most crude, is obviously the change in body mass.

Foraging as a behavioural indicator

The different foraging variables correlated well with the abundance of potential prey in soil samples, and with the change in body mass during the experiment. Thus, all of these measures seem to provide the same, and relevant information. The method easiest to use, although perhaps also most crude, is obviously the change in body mass.

Studying the foraging behaviour, rather than directly sampling food abundance, may be a more efficient means of estimating habitat value (Hutto 1990, Whitehead et al. 1995, Poulin and Lefebvre 1997, Olsson et al. 1999). Ideally, a behavioural indicator may reveal the fitness value of a given habitat, or activity (Brown 1988, Olsson and Holmgren 1999). This requires that the animal’s behaviour is a trade-off between the costs and benefits of foraging, not constrained by the experimental procedure. In the present study, this is only partly true. The starlings probably had the same feeding possibilities in the cages, as they would have had in the same spots without a cage. They were also free to forage or sit idle in the cages. However crucially, they were not given alternative useful activities, such as moving to a better foraging site (e.g. MacArthur and
after having found more than two preys in the previous increase with recent experience. The decline in activity prediction would be that the level of activity should estimate of patch quality, caused the relation then a with time. If motivation, e.g. driven by the individual depletion would lead to a decrease in prey capture rate causes: satiation, depletion or motivation. The activity level (Fig. 4) could potentially have three with the analyses of within-indi-

Acknowledgements

This study was supported by a grant from MISTRA. HGS was supported by a grant from SIFR and OO by a grant from the Helmut Hertz foundation when writing this paper.

References

O’Connor, R. J. and Shrub, M. 1986. Farming and birds. – Cambridge Univ. Press.

Olsson, O. and Holmgren, N. M. A. 1999. Gaining ecological information about Bayesian foragers through their behaviour. I. Models with predictions. – Oikos 87: 251–263.

Olsson, O. et al. 1999. Gaining ecological information about Bayesian foragers through their behaviour. II. A field test with woodpeckers. – Oikos 87: 264–276.

Smith, H. G. and Bruun, M. 2002. The effects of pasture on starling (Sturnus vulgaris) breeding success and population density in a heterogeneous landscape in southern Sweden. – Agriculture Ecosystems and Environment, in press.

Foraging and information use

The humped relation between time of experiment and activity level (Fig. 4) could potentially have three causes: satiation, depletion or motivation. The first two are already ruled out from the analyses of within-individual differences in foraging behaviour, as satiation would lead to a lower activity in the second cage, and depletion would lead to a decrease in prey capture rate with time. If motivation, e.g. driven by the individual’s estimate of patch quality, caused the relation then a prediction would be that the level of activity should increase with recent experience. The decline in activity after having found more than two preys in the previous minute, may indicate that the starlings may have constraints in processing prey, a constraint that may not occur for starlings providing food to nestlings.

Conclusion

The present study demonstrates that agricultural land-use may have dramatic effects on the food available to foraging starlings. Thus, changes in agricultural land-use may have contributed to the recent decline of the starling. The study failed to find differences related to management of grass-covered fields. It may, however, be premature to conclude that this indicates that management of meadows and pastures has no consequences for foraging starlings. Different grassland management regimes, e.g. grazing with different stocks or density at different times, affect the height and density of swards, thus affecting foraging efficiency (Williamson and Gray 1975). Furthermore, an important variable not considered in the present study is moisture, which may affect a starling’s ability to probe for prey. Only additional studies can resolve these issues.

