Studies on genetic aberrations as possible predictors of the outcome of assisted reproduction

Bungum, Mona

2008

Citation for published version (APA):
Bungum, M. (2008). Studies on genetic aberrations as possible predictors of the outcome of assisted reproduction Department of Clinical Sciences, Lund University

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
STUDIES ON GENETIC ABERRATIONS AS POSSIBLE PREDICTORS OF THE OUTCOME OF ASSISTED REPRODUCTION

Mona Bungum
Department of Clinical Sciences
Molecular Reproductive Medicine Research Unit
Malmö University Hospital

Academic Dissertation

with permission of the Medical Faculty of Lund University to be presented for public defence in Jubileums-aulan, entrance 59, Malmö University Hospital, Friday, September 19, 2008 at 09:00 a.m.

Faculty Opponent: Professor Donald P. Evenson, South Dakota State University, U.S.A
STUDIES ON GENETIC ABERRATIONS AS POSSIBLE PREDICTORS OF THE OUTCOME OF ASSISTED REPRODUCTION

Mona Bungum

Department of Clinical Sciences
Molecular Reproductive Medicine Research Unit
Malmö University Hospital

Malmö

2008
To Leif and all our wonderful children –
Ane, Ola, Lars, Linn, Helle and Silje
TABLE OF CONTENTS

ABBREVIATIONS .. 9
PREFACE .. 11
LIST OF ORIGINAL PAPERS ... 13
BACKGROUND .. 15
 Infertility .. 15
 Causes of male subfertility .. 16
 The Protein C inhibitor gene ... 18
 Sperm DNA and chromatin structure .. 20
 Sperm DNA damage ... 22
 Causes of sperm DNA damage ... 22
 Possible impact of sperm DNA damage on fertility ... 26
 Diagnosis and treatment of male subfertility ... 31
AIMS OF THE THESIS ... 37
MATERIALS AND METHODS .. 39
 Subjects .. 39
 Methods .. 41
 Collection and handling of semen and blood samples .. 41
 Conventional sperm analysis .. 41
 Analysis of sperm DNA fragmentation .. 41
 Analysis of mutations and polymorphisms .. 44
 ART-procedures ... 45
 Statistical analysis .. 46
RESULTS AND DISCUSSION ... 47
 Sperm DNA fragmentation and outcome of ART ... 47
 Predictive value of SCSA in intrauterine insemination ... 47
 Predictive value of SCSA in IVF and ICSI ... 49
 SCSA parameters in relation to fertilisation and embryo development 53
 SCSA parameters and risk of miscarriage ... 56
 Raw versus prepared semen ... 57
 Intra-individual variation of the SCSA parameter DFI ... 58
 Total fertilisation failure ... 60
 Mutations in the PCI gene ... 60
 Sperm DNA fragmentation ... 61
CONCLUDING REMARKS .. 63
FUTURE PERSPECTIVES .. 65
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AO</td>
<td>acridine orange</td>
</tr>
<tr>
<td>ART</td>
<td>assisted reproductive techniques</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BP</td>
<td>biochemical pregnancy</td>
</tr>
<tr>
<td>BT</td>
<td>Bungum’s threshold</td>
</tr>
<tr>
<td>CASA</td>
<td>computer assisted sperm analyser</td>
</tr>
<tr>
<td>CBAVD</td>
<td>congenital bilateral absence of vas deferens</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CP</td>
<td>clinical pregnancy</td>
</tr>
<tr>
<td>CV</td>
<td>coefficient of variation</td>
</tr>
<tr>
<td>D</td>
<td>delivery</td>
</tr>
<tr>
<td>DFI</td>
<td>DNA fragmentation index</td>
</tr>
<tr>
<td>DGC</td>
<td>density gradient centrifugation</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxyribonucleotide triphosphate</td>
</tr>
<tr>
<td>DSB</td>
<td>double strand breaks</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene diamine tetracetate</td>
</tr>
<tr>
<td>ET</td>
<td>Evenson’s threshold</td>
</tr>
<tr>
<td>FSH</td>
<td>follicle stimulating hormone</td>
</tr>
<tr>
<td>hCG</td>
<td>human chorionic gonadotrophin</td>
</tr>
<tr>
<td>HCl</td>
<td>hydrogen chloride</td>
</tr>
<tr>
<td>HDS</td>
<td>high DNA stainability</td>
</tr>
<tr>
<td>ICSI</td>
<td>intra cytoplasmic sperm injection</td>
</tr>
<tr>
<td>IU</td>
<td>international units</td>
</tr>
<tr>
<td>IUI</td>
<td>intrauterine insemination</td>
</tr>
<tr>
<td>IUI-T</td>
<td>IUI-threshold</td>
</tr>
<tr>
<td>IVF</td>
<td>in vitro fertilisation</td>
</tr>
<tr>
<td>Kb</td>
<td>kilobase</td>
</tr>
<tr>
<td>KCI</td>
<td>potassium chloride</td>
</tr>
<tr>
<td>MAR</td>
<td>matrix attach regions</td>
</tr>
<tr>
<td>OAT</td>
<td>oligoastheno-teratozoospermia</td>
</tr>
<tr>
<td>OR</td>
<td>odds ratio</td>
</tr>
<tr>
<td>OS</td>
<td>oxidative stress</td>
</tr>
<tr>
<td>PCI</td>
<td>protein C inhibitor</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PN</td>
<td>pronuclei</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>SCSA</td>
<td>sperm chromatin structure assay</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SNP</td>
<td>single nucleotide polymorphism</td>
</tr>
<tr>
<td>SSB</td>
<td>single strand breaks</td>
</tr>
<tr>
<td>TUNEL</td>
<td>terminal deoxynucleotidyl transferase-mediated nick end labeling</td>
</tr>
<tr>
<td>WHO</td>
<td>world health organisation</td>
</tr>
<tr>
<td>ZP</td>
<td>zona pellucida</td>
</tr>
</tbody>
</table>
PREFACE

This thesis comprises two parts. The first part contains a review of the literature in the field. Subsequently the aims of the thesis are presented. Moreover, part one contains an overview of the materials and methods used for the studies, presentation of the results as well as a discussion of the findings of the five studies the thesis is based on. Finally, a conclusion and some future perspectives are drawn. The second part of the thesis comprises the published Papers (I-IV) and one submitted manuscript (V) on which the present thesis is based.
LIST OF ORIGINAL PAPERS

This thesis is based on the following original publications, which are referred to in the text by their Roman numerals (I-V):

The original publications are reprinted with the permission of the publisher.
BACKGROUND

Infertility
One of the most common disorders in the western world is infertility, defined as inability to conceive after 12 months of regular intercourse in the absence of contraceptives. As many as 10-15% of couples have difficulties of conceiving, and seek medical care during their reproductive lifetime. Recent studies show that the number of infertile couples in the general population is growing (Feng 2003). Most patients are subfertile, rather than sterile (infertile), but the degree of subfertility is difficult to predict (Baker 2001). A fertile partner may compensate for a less fertile spouse and thus in most cases the term subfertility better covers the condition.

For a long time, female factors have been regarded as the primary causes of failure to conceive. However, in 20% of involuntary childless couples, the predominant cause is male related, and in another 27%, anomalies in both partners contribute to childlessness (WHO 2000). Genital infections, endocrine disturbances and immunological factors have been regarded as the most common causes of male subfertility. However, genetic and other molecular causes have been identified as contributing explanatory factors to an increasing degree (Ferlin et al., 2007b). In 60-75% of the male caused cases the aetiology of reduced semen quality remains unexplained and is referred to as idiopathic infertility (WHO 2000), why causal treatment is impossible (Skakkebaek et al., 1994).

Traditionally, great care has been taken to obtain a diagnosis concerning the cause of female subfertility. More rarely a clinical evaluation of the man to find the underlying cause of the abnormal semen analysis is performed (Dohle 2007). Furthermore, the sperm parameters used in diagnosis are claimed to be poorly standardized, subjective (Auger et al., 2000), and not powerful predictors of male fertility (Bonde et al., 1998; Guzick et al., 2001).

Today, many subfertile couples can be helped successfully by the use of assisted reproductive techniques (ART). In particular, the introduction of intracytoplasmatic sperm injection (ICSI) has given almost every involuntary childless couple hopes of parenting. However, recent knowledge regarding male genetic causes to infertility has raised concern about the widespread use of ART and in particular ICSI to overcome male infertility. ICSI bypasses natural biological barriers that prevent against fertilisation with defective sperm. Although the new techniques have brought us further and led to a vast increase in our understanding of early reproductive physiology, the results of ART are still relatively low; baby-take-home rates of 20-30% having been held stable during the last two decades (Andersen et al., 2005). One of the reasons for this is a lack of adequate methods to evaluate the fertility potential of a couple and also a lack of methods to identify the most effective type of ART treatment for a given couple.
Causes of male subfertility

Reduced male fertility can be the result of congenital and acquired urogenital abnormalities, infections of the genital tract, varicocele, endocrine disturbances, genetic or immunological factors (Figure 1). However, in 60-75% of the men, no causal factor behind the impaired semen parameters is found (idiopathic male subfertility) (WHO 2000). These men present with no previous history associated with fertility problems and have normal findings on physical examination and endocrine laboratory testing (WHO 2000). In some of these men, genetic causes can be found, but in most cases more likely genetic predisposition in combination with environmental compounds play a role in their hampered reproductive function (Skakkebaek et al., 2001; Sharpe and Irvine 2004). Figure 1 summarizes the main aetiological causes of male subfertility.

![Figure 1. Aetiology and distribution of male infertility (From WHO, 2000).](image-url)
Risks for couples undergoing IVF and ICSI are related to transmission of constitutional genetic abnormalities, genetic alterations present only in sperm or de-novo generated genetic disorders (Foresta et al., 2002). Genetic abnormalities can be divided into categories as shown in Table 1.

Table 1. Genetic abnormalities that can be transmitted by sperm (modified from (Marchetti and Wyrobek 2005)).

<table>
<thead>
<tr>
<th>Chromosomal aberrations</th>
<th>DNA defects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aneuploidy</td>
<td>DNA lesions</td>
</tr>
<tr>
<td>• Sex chromosomes</td>
<td>• DNA adducts</td>
</tr>
<tr>
<td>• Autosomes</td>
<td>• Protamine adducts</td>
</tr>
<tr>
<td>Structural aberrations</td>
<td>• Single and double DNA breaks</td>
</tr>
<tr>
<td>• Duplications/deletions</td>
<td>Sequence changes</td>
</tr>
<tr>
<td>• Rearrangements</td>
<td>• Gene mutations</td>
</tr>
<tr>
<td>Epigenetic changes</td>
<td>• Polymorphisms</td>
</tr>
<tr>
<td>• Imprinting</td>
<td></td>
</tr>
</tbody>
</table>

The prevalence of chromosomal abnormalities is higher in infertile men, this figure being inversely related to sperm count. Although sex chromosome abnormalities are predominant, also a wide range of abnormalities in the autosomes can be found (Ferlin et al., 2007b). Chromosomal abnormalities can be divided into numerical (aneuploidy) and structural abnormalities (translocations). Klinefelter’s syndrome (47, XXY) is the most common sex chromosome disorder occurring in 0.2 % of newborn boys (reviewed in (Smyth and Bremner 1998)). Most adult men with Klinefelter’s syndrome are fertile, but the disorder is also associated with oligospermia (Mau-Holzmann 2005). Among infertile men, the prevalence of Klinefelter’s syndrome is very high, up to 5% in severe oligozoospermia and 10% in azoospermia (Foresta et al., 2005).

Also men with reciprocal balanced translocations often present with reduced fertility (Ferlin et al., 2007b). Their offspring inherit unbalanced genetic material, receiving either too much or too little on the different chromosomes and the pregnancies often end with miscarriages (Ferlin et al., 2007b).
Deletions of the non-recombining region of the Y-chromosome account for the infertility observed in about 15% of patients with azoospermia and 5–10% with severe oligozoospermia (Krausz and Degl'Innocenti 2006; Ferlin et al., 2007a). Microdeletions have been found in four regions of the Y chromosome, AZFa-b-c-d, deletions in the AZFc region being considered as the most common (Vogt et al., 1996; Kent-First et al., 1999; Muslumanoglu et al., 2005). Y-deletions can be transmitted to male offspring. However, most often this occurs by the use of ICSI, as men with very low sperm counts are less likely to father children spontaneously (Vogt et al., 1996; Pryor et al., 1997; Kent-First et al., 1999; Mau Kai et al., 2008).

The analysis of polymorphisms in genes involved in spermatogenesis represents one of the most growing areas of research in genetics of male infertility. Genetic variants are considered potential risk factors, which may contribute to the severity of spermatogenic failure and male infertility (Reviewed in (Ferlin et al., 2007b)). Examples of such are mutations in the androgen receptor gene (Giwercman et al., 2001), in the cystic fibrosis transmembrane conductance regulator gene (CFTR) (Foresta et al., 2005) and in the KALIG-1 gene (Kallmann’s syndrome) (Franco et al., 1991). However, for several of these variants it was demonstrated that phenotypic effects of gene polymorphisms are modulated by other genetic factors or genetic background and environmental factors, providing an important example of a gene-environment interaction in phenotype development. Therefore, it is likely that polymorphisms only in association with a specific genetic background and/or with environmental factors can lead to spermatogenetic impairment or testicular dysfunction (Reviewed in (Giwercman et al., 2007)).

Single base mutations in relation to human male infertility are only occasionally reported (reviewed in (Hiort and Holterhus 2003)). However, in animal studies mutations in several genes associated with or suggested to play a role in male infertility are identified (reviewed in Ferlin et al. 2007b), but so far often the role is unknown in humans. One of these genes studied in knock-out mice (Uhrin et al., 2000) and suggested to play a role also in human male fertility is the Protein C inhibitor (PCI) gene (Espana et al., 2007).

The Protein C inhibitor gene

The human PCI gene is located in a cluster with other serine protease inhibitors on chromosome 14q32.1 (Billingsley et al., 1993). It is 11.5 kb long and comprises six exons (Meijers and Chung 1991) (Figure 2).

Protein C inhibitor is a serine protease inhibitor that modulates the activity of several blood-clotting factors such as activated protein c, factor Xa, thrombin, plasma kallekrein and prostate specific antigen (Espana et al., 1989; Christensson
and Lilja 1994). PCI primarily inhibits the thrombin/thrombomodulin complex, where thrombin plays an anticoagulant role in blood (Pike et al., 2005).

Some studies have suggested that PCI also could play a role in male fertility (reviewed in (Espana et al., 2007)). PCI is expressed in different organs and tissues. It has also been shown to be present in the testis and the prostate and on the acrosomal cap of human sperm (Moore et al., 1993). In fact, the highest PCI concentration has been measured in seminal plasma (Laurell et al., 1992) and in seminal vesicle secretions (Espana et al., 1991).

![Chromosome 14q32.1](image)

Figure 2. The PCI gene, located in a cluster with other serine protease inhibitors on chromosome 14q32.1 (Billingsley et al., 1993).

Studies have demonstrated that PCI acts as a rapid inhibitor of acrosin, a serine protease stored in the acrosome of sperm (Hermans et al., 1994; Elisen et al., 1998). Recently, an Austrian group reported that in male mice, the presence of PCI is an absolute requirement for reproduction (Uhrin et al., 2000). Male PCI knockout mice produced normal amounts of sperm, but these were morphologically abnormal and unable to penetrate the oocytes. The sequence and the amino acid sequence deduced from the mouse PCI gene are highly homologous with the human PCI gene (Zechmeister-Machhart et al., 1997; Uhrin et al., 2000).
Despite this fact, the role of PCI gene in human fertility is unknown. At the time when the present study was initiated, only one human study on the role of the PCI gene in fertility was published (Gianotten et al., 2004). Gianotten and co-workers studied a group of infertile men, diagnosed with idiopathic azoospermia or teratozoospermia. Although Gianotten’s group found several new mutations in the PCI gene, they were not able to link them to male infertility. They concluded that mutations in the PCI gene are not a common cause of reduced semen parameters. Nevertheless, PCI could play a role in male infertility. Seen in the light of the findings in PCI knocked-out mice (Uhrin et al., 2000), Gianotten’s study population was not optimal, as it might include a heterogeneous group of men with subnormal sperm parameters and not only those with specific disability of the sperm to penetrate zona pellucida (ZP) of the oocyte, as was the finding in the animal studies. Thus, at the time of initiating the work behind this thesis the association between PCI gene variants and infertility was still not fully elucidated.

Sperm DNA and chromatin structure

Generally overlooked in the diagnosis and treatment of male infertility is the fact that sperm carry DNA (deoxyribonucleic acid) and that the DNA can be of a different quality. The nuclear DNA, commonly called the genome, is located in the head of the sperm. The second DNA type is called the mitochondrial DNA and is responsible for delivering the sperm to the egg by providing energy for cellular acceleration. Both types of DNA work toward the common goal of fertilisation, but each is susceptible to a huge number of factors that could derail the fertilisation process (Lewis and Aitken 2005). This thesis will only discuss nuclear DNA.

Human sperm chromatin differs from chromatin in both human somatic cells and from sperm cells in other mammals, in structure as well as composition. In humans up to 15% of the sperm DNA is packaged by histones in sequence-specific areas (Gatewood et al., 1987). These histone-bound DNA sequences are less tightly compacted and suggested to be involved in fertilisation and early embryonic development (Gatewood et al., 1987; Gardiner-Garden et al., 1998). During the final stage of spermatogenesis (spermiogenesis) where the round spermatids mature into elongated, motile sperm, somatic-type histones are firstly replaced with testis-specific histones, followed by transition proteins and, finally, by the sperm-specific proteins, protamines (Poccia 1986). DNA and protamines are further organized into unique supercoiled doughnuts, called toroids, each containing 50-60 kb of DNA (Ward and Coffey 1991), fixed at the nuclear matrix (Fuentes-Mascorro et al., 2000) (Figure 3). Each chromosome represents a garland of toroids, and all 23 chromosomes in the sperm are clustered by centromeres into a compact chromocenter positioned well inside the nucleus (Ward 1993).
In contrast to most other mammals, in which sperm DNA is associated with only one protamine (P1), human spermatozoa have two types of protamines (P1 and P2) (Oliva 2006; Carrell et al., 2007). P2 has fewer thiol groups for disulphide bonding, which makes human sperm chromatin less stable than the chromatin of other mammals (Jager 1990; Jager et al., 1990). Both an altered P1/P2 ratio and the absence of P2 are associated with male fertility problems in humans (Balhorn et al., 1988; de Yebra et al., 1993; Bench et al., 1998; Carrell and Liu 2001). The condensed and highly organized nature of sperm chromatin protects the paternal genome during the transport through the reproductive tracts (Ward and Zalensky 1996; Solov'eva et al., 2004).

Figure 3. Human sperm chromatin structure, schematic presentation. Approximately 85% of the DNA is protamine-bound and 15% is histone-bound. The DNA near the matrix attach regions (MAR) is associated with histones, not protamines (modified from Ward and Coffey, 1991).
Sperm DNA damage

It is evident that some of the ejaculated spermatozoa possess a variety of abnormalities at the nuclear, cytoskeletal, and organelle levels and that these anomalies can have an impact on fertility (Evenson et al., 1980; Hewitson 1999; Huszar 1999). There is now clear evidence that infertile men possess substantially more sperm DNA damage than fertile men (Evenson et al., 1980; Evenson et al., 1999; Gandini et al., 2000; Host et al., 2000b; Irvine et al., 2000; Larson et al., 2000; Spano et al., 2000; Carrell and Liu 2001; Hammadeh et al., 2001; Zini et al., 2001a; Sakkas et al., 2002; Saleh et al., 2002b; Zini et al., 2002; Erenpreisa et al., 2003; Muratori et al., 2003; Saleh et al., 2003a). This is clinically relevant in cases where infertile men will be treated with ART.

The amount and type of sperm damage is a direct consequence of the special biology of spermatogenesis as well as the first stages of zygote and embryo development. Human sperm chromatin is often poorly compacted (Sakkas et al., 1999a) and is therefore susceptible to natural or induced DNA damage (Irvine et al., 2000). Whilst the mature sperm itself has no DNA repair capacity (Sega et al., 1978) oocytes and early embryos have been shown to repair sperm DNA damage (Matsuda and Tobari 1988), but only up to a certain extent (Ahmadi and Ng 1999b). Furthermore, insufficient or aberrant sperm DNA repair by the oocyte is hypothesized to create mutations in the genome of the zygote, which may lead to implantation failure, early miscarriages or in the worst cases diseases in the offspring (Agarwal and Said 2003; Aitken and Baker 2004; Liu et al., 2004).

In addition to the above mentioned aberrations also larger damage may occur, resulting in chromatin breaks and sperm DNA fragmentation as a consequence of poor chromatin packaging, apoptosis or damage induced by oxidative stress (OS) (reviewed in (Erenpreiss et al., 2006; Aitken and De Iulius 2007)).

Causes of sperm DNA damage

Spermatogenesis is a complex process of male germ cell proliferation and maturation from diploid spermatogonia through meiosis to mature haploid spermatozoa (de Kretser et al., 1998) where damage of sperm DNA or its chromatin structure can occur at any step (reviewed in (Erenpreiss et al., 2006). Various hypotheses have been proposed as to the molecular mechanism of sperm DNA damage. First of all the chromatin can be loosely or abnormally packaged due to underprotamination, which results in endogenous nicks in the DNA (DNA strand breaks or DNA fragmentation) (Manicardi et al., 1995; Sakkas et al., 1999a). This can happen by natural or induced processes. Natural processes involve poor chromatin remodelling as a consequence of inadequate protamination and the chromatin remains histone rich, apoptosis and that DNA breaks induced in
meiosis and in spermatids (Laberge and Boissonneault 2005) are not repaired (reviewed in (Aitken and De Iulius 2007). Induced problems involve for instance cancer treatment, infections, fever, air pollution, cigarette smoking, obesity, advanced age and preparation for ART (reviewed in (Erenpreiss et al., 2006; Aitken and De Iulius 2007)). A brief schematic presentation of the factors contributing to DNA damage is shown in Figure 4.

Figure 4. Proposed causes of sperm DNA fragmentation.

Despite the fact that the origin and the mechanisms responsible for sperm DNA breaks and fragmentation are not fully understood, three potential sources at the molecular level are suggested (Sakkas et al., 1999b; Agarwal and Said 2003); (1) alterations in sperm chromatin packaging; (2) abortive apoptosis; and (3) oxidative stress (OS). Most likely, these factors are interrelating. For instance, a defective checkpoint in regard to crossing-over during spermatogenesis or deficiencies in the protamination process is likely to make sperm more vulnerable to later oxidative stress.
Meiotic crossing-over during spermatogenesis is associated with the programmed introduction of DNA double strand breaks (DSBs), expected to be ligated until the end of meiosis I (Bannister and Schimenti 2004).

In animal (McPherson and Longo 1993; Sakkas et al., 1995) as well as in human studies (Marcon and Boissonneault 2004) stage-specific introduction of transient DNA strand breaks during spermiogenesis have been described. DNA breaks induced by DNA Topoisomerase II, have been found in round as well as elongating spermatids. DNA breaks are necessary for transient relief of torsional stress, favouring casting off of the nucleosome histone cores, and aiding the histone replacement with protamines during the final maturation form round to elongated spermatozoa (McPherson and Longo 1993; Marcon and Boissonneault 2004; Laberge and Boissonneault 2005). However, ligation of DNA breaks is also necessary; not only to preserve the integrity of the primary DNA structure, but also to reassembling the important unit of genome expression - the DNA loop domain. If these physiological, normal temporary breaks are not repaired, DNA fragmentation in ejaculated spermatozoa or genetic mutations may occur (Aitken 1999; Aitken et al., 2004).

The second suggested aetiology of DNA damage is the fact that the breaks/fragmentation can arise through an abortive apoptotic pathway. Apoptosis of testicular germ cells occurs normally throughout life, controlling overproliferation (Billig et al., 1995; Rodriguez et al., 1997). It has been suggested that an early apoptotic pathway, initiated in spermatogonia and spermatocytes, is mediated by the Fas protein, a type I membrane protein belonging to the tumour necrosis factor–nerve growth factor receptor family (Suda et al., 1993). Sertoli cells in the testis express Fas ligand, which by binding to Fas leads to cell death through apoptosis (Suda et al., 1993). Sakkas and co-workers (Sakkas et al., 1999a) demonstrated that men with abnormal sperm parameters have an increased number of spermatozoa bearing Fas compared to men with normal semen parameters. However, However, Sakkas himself and others found no correlations between DNA damage and Fas expression (Muratori et al., 2000; Sakkas et al., 2002).

Finally, the mechanism that probably most evidence exists for is oxidative stress (OS). OS is caused by an imbalance between the antioxidant ability in seminal plasma and the production of reactive oxygen species (ROS). While oxygen is essential to all aerobic life, it becomes toxic when administered in too high concentrations, as it may produce ROS that will have beneficial as well as detrimental effects on the cells, depending on the nature and concentration (reviewed in (Aitken and Baker 2004)). Spermatozoa are extremely vulnerable to OS. The sperm cell membrane, being rich on unsaturated fatty acids, is easily attacked by ROS with further detrimental effects on nuclear membranes as well as
on sperm DNA (Aitken and Krausz 2001). Furthermore, sperm lack antioxidants and DNA repair systems (Aitken et al., 2003), and are therefore completely dependant on the repair capacity of the oocyte and the early embryo. Leukocytes and abnormal spermatozoa in the semen are among the main sources of ROS in semen (Aitken et al., 1992; Alvarez et al., 2002; Saleh et al., 2002a) seen more often in semen from men with leukocytospermia than in healthy donors (Alvarez et al., 2002; Saleh et al., 2002a). DNA damaged sperm caused by increased scrotal temperature due to illness with fever (Evenson et al., 1991; Evenson and Jost 2000; Sergerie et al., 2007) or varicocele (Saleh et al., 2003b) is also reported. Studies on patients with testicular cancer have shown that sperm DNA might be damaged even before irradiation and chemotherapy (Evenson et al., 1984; Fossa et al., 1997; Kobayashi et al., 2001). However, cancer therapy has been shown to further contribute to increased DNA damage (Kobayashi et al., 2001; Stahl et al., 2004; 2006). Moreover, older men are reported to have sperm with more DNA fragmentation than younger men (Spano et al., 1998; Singh et al., 2003; Moskovtsev et al., 2006; Wyrobek et al., 2006; Plastira et al., 2007). An aberrant repair of sperm DNA damage by the oocyte has been proposed as as age-related causative mechanism of DNA damage (Aitken 1999; Aitken and Baker 2004). As the trend today is increased parental age at childbirth, problems with sperm DNA damage are likely to increase.

Other proposed sources of ROS come from outside the sperm’s immediate environment, usually from outside of the host’s body. They include xenobiotic agents such as organophosphorous pesticides (Sanchez-Pena et al., 2004) and other types of air pollution (Rubes et al., 1998; Selevan et al., 2000; Evenson and Wixon 2005; Jafarabadi 2007). These agents possess estrogenic properties that are capable of inducing ROS production in male germ cells (Sanchez-Pena et al., 2004; Baker and Aitken 2005; Spano et al., 2005b; Bennetts et al., 2008). From animal studies deleterious effects of different toxicants are known to have a negative impact on sperm chromatin (Evenson et al., 1986; Evenson et al., 1987; Evenson et al., 1993a; Evenson and Jost 1993; Evenson et al., 1993b; Evenson et al., 1993c; Spano et al., 1996; Traina et al., 2003). Moreover, smokers have an increased level of oxidative damage in their sperm DNA compared to non-smokers (Fraga et al., 1996). Thus, several studies have reported a negative effect of cigarette smoking on sperm DNA (Robbins et al., 1997; Sun et al., 1997; Rubes et al., 1998; Potts et al., 1999; Saleh et al., 2002b; Sepaniak et al., 2006), as smoking has mutagenic properties, a fact associated with an overall reduction in the traditional semen parameters (Kunzle et al., 2003).

Another potential source of OS in sperm is the procedures performed during ART. In a vast majority of cases, spermatozoa used for ART are prepared by density gradient centrifugation (DGC) or by a swim-up preparation in order to favour the
isolation of motile and morphologically normal spermatozoa (Sakkas et al., 2000; Zini et al., 2000; Tomlinson et al., 2001; Morrell et al., 2004; Allamaneni et al., 2005). The media used for DGC consist of a colloidal silica suspension in a culture medium. The system separates normal sperm from lymphocytes, leukocytes, epithelial cells, abnormal or immature sperm, cell debris, bacteria and seminal fluid. Although the potentially compromised spermatozoa can be further damaged during centrifugations (Aitken and Clarkson 1988), these sperm preparation methods are still a standard in sperm preparation for ART. Furthermore, exposure to other potential hazards in the laboratory environment such as suboptimal culture media (Sikka 2004) or culture conditions (Dalzell et al., 2003), cryopreservation (Chatterjee and Gagnon 2001) and light (Agarwal et al., 2006) have been shown to increase the production of ROS, likely, with a negative impact on the sperm DNA as a consequence.

Possible impact of sperm DNA damage on fertility

During recent years several tests have been developed to assess sperm chromatin integrity. When this thesis was planned, the sperm chromatin structure assay (SCSA) (Evenson et al., 1980; Evenson and Jost 2000; Spano et al., 2000), designed to measure sperm DNA integrity as a complementary diagnostic laboratory analysis had been introduced. So far, SCSA had mainly been used in epidemiological studies of male fertility (Larsen et al., 1998; Evenson et al., 1999; Kolstad et al., 1999; Spano et al., 2000; Bonde et al., 2002; Bonde et al., 2003; Rignell-Hydbom et al., 2005; Rubes et al., 2005) and in toxicological studies of rodents (Evenson et al., 1989; Evenson et al., 1993a; Evenson and Jost 1993; Evenson et al., 1993b; Spano et al., 1996; Traina et al., 2003).

The SCSA is a flowcytometric test that measures the susceptibility of sperm DNA to acid-induced DNA denaturation in situ, followed by staining with acridine orange (Evenson et al., 1980; Spano et al., 2000; Evenson et al., 2002). DNA denaturation is determined by measuring the shift from green fluorescence (double-stranded, native DNA) to red fluorescence (single-stranded, denatured DNA) in a flow-cytometer, followed by further analysis by a dedicated SCSA-software. The extent of DNA denaturation is expressed in terms of the DNA fragmentation index (DFI) (Evenson et al., 2002). Another SCSA parameter is the fraction of high DNA stainable (HDS) cells thought to represent immature spermatozoa with an incomplete protamination (Evenson et al., 2002).

In addition to the SCSA, the Comet assay (single cell gel electrophoresis) (Morris et al., 2002) and the TUNEL (terminal deoxynucleotidyl transferase-mediated dUDP nick end labelling) assay (Gorczyca et al., 1993) are frequently used. Comet, TUNEL and SCSA all label single or double stranded DNA breaks. Good
correlations between the tests have been reported (Gorczyca et al., 1993; Aravindan et al., 1997; Erenpreiss et al., 2004).

At the beginning of my studies, there were already several reports regarding higher fraction of sperm with DNA defects in infertile men than in fertile controls (Evenson et al., 1980; Evenson et al., 1999; Gandini et al., 2000; Host et al., 2000b; Irvine et al., 2000; Larson et al., 2000; Spano et al., 2000; Carrell and Liu 2001; Hammadeh et al., 2001; Zini et al., 2001a; Sakkas et al., 2002; Saleh et al., 2002b; Zini et al., 2002; Erenpreisa et al., 2003; Muratori et al., 2003; Saleh et al., 2003a). In the Georgetown study, including 200 couples trying to conceive naturally, Evenson and co-workers found that the odds ratio was 6.5 times higher for a successful pregnancy if the DFI was <30% (Evenson et al., 1999). In another time to pregnancy (TTP) study, the so-called Danish First-Pregnancy Planner study, Spano et al. (Spano et al., 2000) reported a decreased fecundity rate with increasing number of DNA breaks in the ejaculate. Evenson et al. and Spano et al. suggested a cut-off value for DFI in regard to subfertility to be set at 30-40% (Table 2).

Furthermore, sperm DNA defects were also suspected to have a possible negative impact on the outcome of ART (Lopes et al., 1998b; Larson et al., 2000) and it was questioned whether ART was able to compensate for poor DNA quality (Twigg et al., 1998; Evenson et al., 1999; Larson et al., 2000; Larson-Cook et al., 2003). In a small study consisting of 19 couples, the chance of obtaining a pregnancy by IUI was extremely low when the proportion of sperm cells with DNA damage exceeded 30 % by means of SCSA (Saleh et al., 2003a). Also using the TUNEL assay, it was demonstrated that in semen samples with >12 % sperm DNA fragmentation, no pregnancy occurred (Duran et al., 2002) (Table 2).

Table 2. Influence of sperm DNA damage on pregnancy rates for spontaneous pregnancy and IUI treatment.

<table>
<thead>
<tr>
<th>Author/Year of publication</th>
<th>Patients</th>
<th>In vivo method</th>
<th>Pregnancy rates</th>
<th>Test used</th>
<th>DFI-threshold suggested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evenson, 1999</td>
<td>165+115</td>
<td>spontaneous pregnancy</td>
<td>SCSA</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>Spano, 2000</td>
<td>215</td>
<td>spontaneous pregnancy</td>
<td>SCSA</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>Duran, 2002</td>
<td>154</td>
<td>IUI</td>
<td>TUNEL</td>
<td>12%</td>
<td></td>
</tr>
<tr>
<td>Saleh, 2003</td>
<td>19</td>
<td>IUI</td>
<td>SCSA</td>
<td>30%</td>
<td></td>
</tr>
</tbody>
</table>
Also for the outcome of in vitro fertility, some smaller studies had indicated that DFI may be used as a prognostic factor (Larson et al., 2000, Saleh et al., 2003a, Larson-Cook et al., 2003, Tomlinson et al., 2001, Henkel et al., 2003). A pilot study including 24 men (Larson et al., 2000) demonstrated that when DFI exceeded 27%, no pregnancy was obtained. Later, the same authors (Larson-Cook et al., 2003) confirmed the findings in 89 couples undergoing IVF and ICSI. On the other hand, HDS did not predict ART pregnancy. Saleh and co-workers (Saleh et al., 2003a) studied 10 couples undergoing IVF and four couples undergoing ICSI and found that DFI, but not HDS was negatively correlated to pregnancy. No pregnancy occurred when DFI was above 28%. The largest ART study published at that time was a study of Henkel et al. (Henkel et al., 2003) including in total 208 IVF and 54 ICSI cycles. Henkel et al. found no correlation between sperm DNA fragmentation as measured by the TUNEL assay and pregnancy. On the other hand, Tomlinson et al. (Tomlinson et al., 2001) found significantly higher amount of DNA damage in the group of patients who became pregnant during IVF treatment compared to those who failed to be pregnant. Based on their own results, where no pregnancy occurred when DFI was above 27%, Evensons group suggested a DFI threshold value of 27% in regard to ART subfertility (Larson et al., 2000; Larson-Cook et al., 2003). However, the suggestion was based on relatively small materials, reported by one author. Only larger data sets could provide clearer indications for whether threshold levels for DFI and HDS could be defined.

A correlation between sperm DNA damage and fertilisation rates and embryo development has been suggested. While some authors reported associations between increased DNA fragmentation and fertilisation rates after IVF and ICSI (Sun et al., 1997; Morris et al., 2002; Carrell et al., 2003; Saleh et al., 2003a), others did not see any impact of DNA fragmentation on fertilisation rates (Larson et al., 2000; Morris et al., 2002; Henkel et al., 2003; Larson-Cook et al., 2003). Tesarik et al. (Tesarik et al., 2002) hypothesized that the paternal genome could play a role in early embryonic development, as early as in the first cell cycle, when sperm DNA was fragmented. However, recently this group found sperm DNA fragmentation only to be related to late paternal effect (Tesarik et al., 2004). This could perhaps explain the diverging reports regarding correlations between sperm DNA fragmentation and embryo development after IVF and ICSI. While some authors reported decreased cleavage and embryo development with increasing DNA fragmentation (Morris et al., 2002; Tomsu et al., 2002), others did not find any associations (Lopes et al., 1998a; Larson et al., 2000; Tomlinson et al., 2001; Benchab et al., 2003; Larson-Cook et al., 2003). However, these studies were all based on relatively few individuals (Table 3).

Historically, recurrent pregnancy loss has been attributed to either genetic, structural, infective, endocrine or unexplained causes (reviewed in (Rai and Regan...
An increased rate of sperm chromosome abnormalities has been reported in patients with recurrent miscarriage (Giorlandino et al., 1998), but only 7% of fetal trisomies have been shown to arise from paternal meiotic errors (Robinson et al., 1999). When my work started, sperm DNA fragmentation was also thought to play a role in unexplained recurrent pregnancy loss (Evenson et al., 1999; Carrell et al., 2003). In a non-ART material, using the SCSA, Evenson et al. (1999) demonstrated that the miscarriage rate was higher in fertile couples in which the spermatozoa of the partner had poor chromatin quality compared to those with low rates of DNA fragmentation. Thirty-nine percentage of the miscarriages was predicted from the SCSA data. Also Carrell et al. (2003) reported that recurrent pregnancy loss was associated with higher levels of DNA damage. They evaluated the degree of sperm DNA fragmentation using the TUNEL assay on sperm from 24 couples with unexplained recurrent pregnancy loss compared to sperm from two control groups: donors of known fertility and unscreened men from the general population. The proportion of sperm with DNA fragmentation was increased in the group with recurrent pregnancy loss compared to both control groups. However, also these studies included a limited number of cases and thus, the issue is needed to be addressed in larger additional studies.

Although in a vast majority of cases, sperm used for ART are prepared by density gradient centrifugation (DGC) in order to favour the isolation of motile and morphologically normal spermatozoa, almost all ART-sperm DNA integrity studies so far (Larson et al., 2000; Larson-Cook et al., 2003; Saleh et al., 2003a), had been performed on native semen. Several studies had shown that, even though various levels of efficiency were reported, both sperm separation methods were quite effective in sorting out spermatozoa with damaged DNA and poorly condensed chromatin as evaluated by the SCSA (Larson et al., 1999; Spano et al., 1999; Larson et al., 2000; Zini et al., 2000), the TUNEL assay (Morrell et al., 2004) and the Comet assay (Donnelly et al., 2000). At the time when this work was initiated, it was unclear whether SCSA parameters of semen samples prepared by density gradient centrifugation were of predictive value for the outcome of IVF or not. Several previous authors had recommended the necessity of studies aiming at clarifying whether processed semen could have a predictive value in ART (Tomlinson et al., 2001; Spano et al., 2005a).

Table 3 shows the information regarding influence of sperm DNA damage on fertilisation rates, embryo quality and pregnancy rates during IVF and ICSI available at the time where the current work was initiated.
Table 3. Influence of sperm DNA damage on fertilisation rates, embryo quality and pregnancy rates during IVF and ICSI.

<table>
<thead>
<tr>
<th>Author/ Year of publication</th>
<th>IVF, n</th>
<th>ICSI, n</th>
<th>Fertilisation rates</th>
<th>Embryo quality</th>
<th>Pregnancy rates</th>
<th>Test used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lopes, 1998</td>
<td>0</td>
<td>150</td>
<td>No</td>
<td>NA</td>
<td>NA</td>
<td>TUNEL</td>
</tr>
<tr>
<td>Host, 2000</td>
<td>50</td>
<td>61</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>TUNEL</td>
</tr>
<tr>
<td>Tomlinson, 2001</td>
<td>140</td>
<td>0</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>TUNEL</td>
</tr>
<tr>
<td>Tomsu, 2002</td>
<td>40</td>
<td>0</td>
<td>No</td>
<td>NA</td>
<td>NA</td>
<td>Comet</td>
</tr>
<tr>
<td>Morris, 2002</td>
<td>20</td>
<td>40</td>
<td>No</td>
<td>NA</td>
<td>NA</td>
<td>Comet</td>
</tr>
<tr>
<td>Benchaib, 2003</td>
<td>50</td>
<td>54</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>TUNEL</td>
</tr>
<tr>
<td>Larson-Cook, 2003</td>
<td>55</td>
<td>34</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>SCSA</td>
</tr>
<tr>
<td>Larson, 2000</td>
<td>24 IVF/ ICSI</td>
<td>NA</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>SCSA</td>
</tr>
<tr>
<td>Saleh, 2003</td>
<td>10</td>
<td>4</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>SCSA</td>
</tr>
<tr>
<td>Henkel, 2003</td>
<td>208</td>
<td>54</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>TUNEL</td>
</tr>
</tbody>
</table>

Some studies had reported that DFI was a semen parameter with a lower variability than the traditional semen parameters (Neuwinger et al., 1990; Cooper et al., 1992; Keel 2006), exhibiting a coefficient of variation (CV) for intra-individual variation of around 10-20% (Evenson et al., 1991; Zini et al., 2001b; De Jonge et al., 2004). In contrast, for the traditional sperm parameters, a CV for intra-individual variation as high as 54 % had been reported (Keel 2006). The studies reporting such a low CV for DFI, however, consisted of very few men. In the study of Zini et al. (2001b), the men provided two semen samples, 2 to 6 weeks apart and in the study by Evenson et al. (1991), 45 men delivered monthly semen samples during a period of 8 months. De Jonge et al. (2004) studied variation of DNA fragmentation.
in relation to days of sexual abstinence in 11 men and found only a short (24-hour) abstinence period to have a negative influence on sperm chromatin quality.

All in all, findings from these smaller studies indicated that sperm chromatin integrity could possibly have the potential of being a measurable predictor of fertility in natural fertility as well as in ART. However, the possible clinical applications for sperm chromatin integrity testing in a clinical set up, had not yet been defined.

Diagnosis and treatment of male subfertility
In most clinics, the diagnosis male subfertility is based solely on the presence of abnormal semen. WHO has set criteria for normality in regard to the conventional sperm parameters: semen volume, sperm concentration, motility and morphology (WHO 1999) as shown in Table 4. In addition, other parameters like viscosity, pH and biochemistry of the seminal plasma are often examined.

Table 4. Reference values of semen parameters (from the WHO manual, 1999)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Reference values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semen volume</td>
<td>≥ 2 ml</td>
</tr>
<tr>
<td>Sperm concentration</td>
<td>≥ 20x 10⁶/mL</td>
</tr>
<tr>
<td>Total sperm count</td>
<td>≥ 40x 10⁶/ejaculate</td>
</tr>
<tr>
<td>Motility</td>
<td>≥ 25% rapid progresive or</td>
</tr>
<tr>
<td></td>
<td>≥ 50% total progresive motility</td>
</tr>
<tr>
<td>Morphology</td>
<td>Variable thresholds</td>
</tr>
</tbody>
</table>

The poor power of semen analysis has been pointed out by several authors (Bonde et al., 1998; Giwereman et al., 1999; Auger et al., 2001; Guzick et al., 2001; Nallella et al., 2006; Swan 2006). One of the reasons for the lack of power of the analysis is the inherent heterogeneity of human semen. Concentration, motility and morphology vary significantly between individuals, seasons, countries and regions and even between consecutive samples from one individual (Chia et al., 1998; WHO 1999; Auger et al., 2000; Jorgensen et al., 2001; Chen et al., 2003; Jorgensen et al., 2006). As semen analysis is mainly performed by manually light microscopy of 1-200 spermatozoa the analysis implies a high level of subjectivity. The value of the conventional semen parameter measurements is, therefore, also
limited due to intra- and interlaboratory variation (Neuwinger et al., 1990; Cooper et al., 1992). Moreover, an extensive overlap in sperm concentration, motility and morphology between fertile and infertile men are reported (Bonde et al., 1998; Guzick et al., 2001) (Table 5).

Table 5. Fertile, indeterminate, and subfertile ranges for sperm measurements (from Guzick et al. 2001)

<table>
<thead>
<tr>
<th></th>
<th>Fertile range</th>
<th>Indeterminate range</th>
<th>Subfertile range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration, x10⁶/ml</td>
<td>>63</td>
<td>13.5-48</td>
<td><13.5</td>
</tr>
<tr>
<td>Sperm motility, %</td>
<td>>63</td>
<td>32-63</td>
<td><32</td>
</tr>
<tr>
<td>Sperm morphology, %</td>
<td>>12</td>
<td>9-12</td>
<td><9</td>
</tr>
</tbody>
</table>

Furthermore, several other laboratory tests of sperm function have been developed; antisperm antibody test, vital staining, biochemical analysis of semen, hypoosmotic swelling test, sperm penetration assay, hemizona assay, creatin-kinase, reactive oxygen species (ROS) tests and computer-assisted sperm analysis (CASA), to mention the most commonly used (Reviewed in (Aitken 2006)). However, the predictive and clinical value of these tests has also been questioned (Muller 2000), and in the WHO manual, none of them are directly recommended; just included as possible supplementary tests to the conventional sperm analysis (WHO 1999).

Although the origin and the mechanisms responsible for sperm DNA damage are not yet fully clarified, it has been proposed that sperm DNA integrity could be a possible fertility predictor to be used as an alternative or as a supplement to the traditional sperm parameters (Evenson et al., 2000; Larson et al., 2000). As already reviewed, in 2002, when the current work was initiated, there was some evidence that sperm DNA integrity could be an indicator of male fertility potential (Evenson et al., 1999; Evenson and Jost 2000; Evenson et al., 2002; Saleh et al., 2002b; Saleh et al., 2003b) and thereby possibly be an alternative or a supplement to the traditional analysis. However, regarding assisted reproduction, data was very limited and therefore, at that time, very few ART-programmes had implemented sperm chromatin integrity testing. A majority of the infertile couples were and are still referred directly to ART, without any other causal investigation than a standard semen analysis (Lewis 2007).
ART is defined as all reproductive technologies that involve handling of gametes outside the body, either sperm alone as in intrauterine insemination (IUI), or both eggs and sperm as in in vitro fertilisation (IVF) and intracytoplasmic sperm injection (ICSI) (Edwards and Brody 1995). The very first documented use of ART was in 1783, when Spallanzani delivered pups from an artificially inseminated bitch. Close to 200 years later, in 1978, a British group reported the birth of Louise Brown, the world's first IVF-baby (Steptoe and Edwards 1978). Now, ART is applied worldwide and it is estimated that more than three million babies have been born as a result of ART (Zegers-Hochschild et al., 2006).

While the least invasive form of ART, i.e. IUI, where prepared semen is inseminated in the women’s uterus, is used in ovulatory dysfunction, unexplained subfertility and milder forms of male subfertility, IVF is primarily used in female subfertility or as a second choice in unexplained causes (Edwards and Brody 1995). Originally, ICSI was developed to be used in severe male infertility cases, however, it is now in many clinics, the main method used for all indications (Jain and Gupta 2007; Andersen et al., 2008). In IVF, oocytes are fertilised by sperm in vitro. Two to five days later the fertilised and cleaved oocyte (embryo) is transferred to the patient's uterus. For ICSI the same treatment principles are followed, however, here one single spermatozoon is injected directly into the cytoplasm of the oocyte.

In the beginning of the era of ART, it was believed that the traditional sperm parameters could predict the capability to fertilise. However, as many couple experienced fertilisation failure in IVF (Lipitz et al., 1993; Aboulghar et al., 1996) or failed to obtain pregnancy, it became clear that the present markers of male fertility are not satisfactory. This is also reflected in ART results that has been more or less stable for the last couple of decades (Andersen et al., 2005). The only parameter that has shown to be predictive of fertility is female age (Hull et al., 1996). Also the fact that so many of the infertile couples remain undiagnosed (Evers 2002) and therefore are treated more or less blindly using one of the ART methods, has contributed to the urgent call for better fertility markers (Lewis 2007).

Until the 1990s, the majority of cases of severe male factor subfertility were virtually untreatable, and fertilisation failure was seen in a considerable number of IVF treatments. It was reported that up to 23% of the treatment cycles ended with no fertilisation after IVF, without any explanation for this (Lipitz et al., 1993; Aboulghar et al., 1996). Thus, the introduction of ICSI revolutionized the treatment of male factor infertility (Palermo et al., 1992). However, since its introduction, ICSI has been a subject of an ongoing debate regarding its indications and safety (Govaerts et al., 1996; Griffin et al., 2003; Kurinczuk 2003; Verpoest and Tournaye 2006; Varghese et al., 2007). Among the positive factors of ICSI are the
apparently low fertilisation failure rates compared with traditional IVF and the fact that the method has given men who previously were not able to be biological fathers a chance to conceive. More negative concerns have been raised related to technical, biological and genetic problems with ICSI. A number of reports have linked ICSI to an increased incidence of chromosomal anomalies, congenital abnormalities, imprinting diseases and perinatal hazards in offspring conceived with this technique (Fraga et al., 1996; Ji et al., 1997; Aitken and Krausz 2001; Cox et al., 2002; Hansen et al., 2002; Schieve et al., 2002; DeBaun et al., 2003; Orstavik et al., 2003; Hansen et al., 2005; Schieve et al., 2005). One concern raised from studies on smokers whose ejaculates are under oxidative stress (OS) and characterized by high DNA fragmentation (Aitken and Krausz 2001), was an increased risk of childhood cancer in the offspring of smoking fathers (Fraga et al., 1996; Ji et al., 1997).

The aetiology of the increased risk of chromosomal anomalies in ICSI offspring, especially sex-chromosome anomalies, is thought to be partly multifactorial, partly andrological, related to paternal karyotypic abnormalities and/or abnormal sperm (Verpoest and Tournaye 2006). So far, follow-up studies in children born after ICSI compared with children born after conventional IVF have not been conclusive regarding the risks of congenital malformations and health problems in general (Kurinczuk and Bower 1997; Wennerholm et al., 2000a; Wennerholm et al., 2000b; Hansen et al., 2002; Bonduelle et al., 2003; Bonduelle et al., 2004).

In addition to the criticism raised regarding hazards with ICSI, ART faces a problem of relatively low efficiency, as baby-take-home rates of 20-30% are usually reported (Andersen et al., 2005). One of the reasons for this is a lack of adequate methods to evaluate the fertility potential of a couple and also lack of methods to find the most effective type of ART treatment for each couple. As no clear consensus or policies regarding indications for ICSI exist, the use of ICSI has increased substantially. Many laboratories now perform ICSI as their primary, if not only ART technique (Jain and Gupta 2007; Andersen et al., 2008). Also couples without sperm defects request ICSI, and many are given clinical advice to proceed with ICSI, in situations where a few years ago traditional IVF would have been chosen and where it is reasonable to suppose that fertilisation rates would be as good as by ICSI (Bhattacharya et al., 2001; Hamilton and Bhattacharya 2001).

For couples seeking ART, a more precise diagnosis could be helpful in order to identify the most optimal and less invasive ART treatment in a given case. ART is associated with high costs and a significant physiological burden (Schmidt 2006). So far, it has been the choice of each clinic to set criteria for IUI, IVF and ICSI. In order to meet patients’ needs and to optimize fertilisation rates a dramatic increase in the use of ICSI has been seen, with all the possible negative effects discussed above (Jain and Gupta 2007; Andersen et al., 2008).
A more precise diagnosing of subfertile men would also enable physicians to diagnose and counsel the infertile couple more optimal and could may also result in an extended use of cause-related therapy, which is very little used in today’s clinical practice (Skakkebaek et al., 1994). Examples of causes of subfertility in the male that can be treated pharmaceutically or by surgery include gonadotrophin treatment of hypogonadotropic hypogonadism (Howles et al., 2007) and in cases of retrograde ejaculation, treatment with alpha-stimulating therapy (Kamischke and Nieschlag 2002) Vaso-vasostomy (Hendry 1994) and vaso-epididymostomy (Schoysman 1990) are applied in case of obstruction at vas deferens or epididymis level, respectively. Also different antioxidant treatments to reduce sperm DNA damage induced by reactive oxygen species (ROS) have been suggested (Greco et al., 2005; Silver et al., 2005; Menezo et al., 2007). However, larger studies are needed to further refine the use and to confirm the results. Varicocele repair may also reduce sperm DNA damage, particularly, in those men with high levels of baseline sperm DNA damage (Zini et al., 2005a; Werthman et al., 2007). However, no clear consensus whether varicocele repair improves male factor fertility, and subsequently pregnancy rates exist (Marmar and Kim 1994; Lemack et al., 1998; Nieschlag et al., 1998; Marmar et al., 2007).

Despite promising data provided by previous studies, the data concerning the role of sperm DNA integrity in ART needed to be further elucidated. The list of important questions remaining to be answered included: 1) Could ART bypass the biological mechanisms preventing sperms with DNA damage from fertilising an egg? 2) Would it be possible to define clinically applicable threshold values for sperm chromatin damage in raw and prepared semen in relation to the pregnancy outcome of ART? 3) Were fertilisation rates and embryo development in IVF and ICSI correlated to the level of sperm DNA fragmentation? 4) Was there any association between sperm DNA damage and pregnancy loss? 5) What was the level of intra-individual variation in regard to sperm chromatin integrity? Moreover, the underlying causes of fertilisation failure in IVF were unclear.
AIMS OF THE THESIS

The overall objective of this thesis was to identify genetic predictors of the outcome of assisted reproduction. Thereby, a more individualised and efficient infertility treatment could be offered to the couple.

The more specific aims were to evaluate:

- whether threshold values for DFI and HDS as measured by SCSA in relation to the pregnancy outcome of IUI, IVF and ICSI, could be obtained;
- whether there was a correlation between DFI or HDS values as measured by SCSA and fertilisation rates and cleavage stage embryo development in IVF and ICSI;
- whether there was an association between the SCSA parameters DFI and HDS and risk of pregnancy loss;
- how effective density gradient centrifugation could sort out DNA damaged spermatozoa and whether SCSA analysis of semen samples prepared by density gradient centrifugation could add more information in regard to the outcome of ART;
- whether DFI as measured by SCSA in an ART population is a more stable parameter in regard to intra-individual variation compared to the traditional sperm parameters;
- whether total fertilisation failure after in vitro fertilisation treatment could be explained by polymorphisms in the PCI gene or by increased sperm DNA fragmentation.
MATERIALS AND METHODS

Subjects
This thesis is based on a cohort of consecutive infertile couples who underwent ART at Viborg Hospital, Skive, Denmark during the period April 2002-December 2005. All men were given written as well as oral information and were asked to participate in a study of male reproductive function. All who accepted to be included in the study signed an informed consent. In total 998 ART cycles, from 637 couples were included in the cohort. All couples were treated with one of the three types of ART; IUI, IVF or ICSI. While most men were included in only one treatment cycle, other participated with up to 5 cycles.

All included men had a sperm concentration of at least 1 X 10^6 mill/ml. For the female partners, the inclusion criteria were: age <40 years; body mass index <30 and baseline follicle stimulating hormone (FSH) <12 IU/l.

In order to study whether there was true DFI or HDS threshold values for the pregnancy outcome of IUI, IVF and ICSI and if there was a correlation between DFI or HDS values and fertilisation rates and embryo development in IVF and ICSI, a pilot study based on 306 consecutive couples undergoing ART was conducted in the period of April 2002-March 2003 (Paper I). For each couple, only one treatment cycle during the study period was included in the analysis. Paper I was followed by further recruitment of patients and an extended study was performed (Paper II). During the period of April 2002–December 2003, in total 998 IUI, IVF and ICSI treatment cycles from 637 couples were included. Although sperm used for ART always undergo a preparation procedure, Paper I and II as well as most of the other SCSA-ART studies available have been based on studies of raw (unprepared) semen. In a total of 510 of the 998 samples density gradient centrifuged sperm were left after the ART procedure and could be analyzed with SCSA, on which the following study was based on (Paper III). Two hundred and eighty-two of the 998 patients were included in the study more than once, which gave basis for Paper IV, in which we studied the intra-individual variation of the SCSA parameters. Between 2 and 5 SCSA measurements were performed for each man corresponding to the ART treatments given to the couple.

In a subgroup of the entire study population (998 cycles); a group of 46 men involved in IVF cycles with fertilisation failure and 51 other men from IVF cycles with normal fertilisation rates (>50%), used as controls were included in a study on genetic polymorphisms as a cause of fertilisation failure (Paper V).

In figure 5, the study material is presented in a schematic form.
Figure 5. Schematic presentation of the five studies included in the thesis.
Methods

Collection and handling of semen and blood samples
Semen samples were collected by masturbation on the day of ovum-pick up or IUI. A sexual abstinence time of 2-5 days was recommended. One hundred microliters (µl) of the ejaculate was frozen at -80 °C, for subsequent analysis. At the same time, a blood sample for DNA analysis was collected in an EDTA-coated tube and frozen at -20 °C, for subsequent analysis.

As all genetic analyses were performed in Malmo University Hospital in Sweden, the frozen semen- and blood samples were transported by car from Skive, Denmark to Malmo on dry-ice. During the transport the samples were out of freezers for approximately 5 h.

Conventional sperm analysis
All semen samples were examined in the laboratory within thirty minutes after collection. Five µl of well liquefied semen was placed on a Makler–chamber. All measurements were as performed on a Nikon phase contrast microscope on a heating stage (37°C) at a total magnification of x 40. Sperm concentration was assessed by using undiluted semen. The number of spermatozoa counted in any strip of 10 squares of the grid of the Makler-chamber indicated their concentration in million/ml. A mean of 10 x 2 squares was calculated. Motility was scored according to the WHO guidelines (WHO, 1999). Sperms were categorized in types A, B, C and D. Type A corresponded to rapid progressive motility, B to slow progressive motility, C to non-progressive motility and D represented immotile sperm. Sperm morphology was not assessed.

Analysis of sperm DNA fragmentation
Currently, there are three major tests of sperm DNA fragmentation, including the Comet assay (single cell gel electrophoresis) (Morris et al., 2002), the TUNEL (terminal deoxynucleotidyl transferase-mediated dUDP nick end labelling) assay (Gorczyca et al., 1993) and the sperm chromatin structure assay (SCSA) (Evenson et al., 1980, Evenson et al., 2002). Comet, TUNEL and SCSA all label single or double stranded DNA breaks. Whilst Comet is a fluorescence microscopic test, TUNEL can be applied in both bright field/fluorescence microscopy and by flow cytometry. In Comet assay sperm cells are mixed with melted agarose and then placed on a glass slide. The cells are lysed and then subjected to horizontal electrophoresis. DNA is visualized with the help of a DNA specific fluorescent dye and DNA damage is quantified by measuring the displacement between the genetic material of the nucleus comet head and the resulting tail. In the TUNEL assay, terminal deoxynucleotidyl transferase (TdT) incorporates labelled (by and large. Fluorescent) nucleotides to 3’-OH at single and double-strand DNA breaks to
create a signal, which increases with the number of DNA breaks. The fluorescence intensity of each scored sperm is determined as a “positive” or “negative” for sperm on a microscope slide. In a flow cytometer the fraction of positive sperm is represented by the cells above a threshold channel value on a relative fluorescent intensity scale.

In the current studies SCSA was chosen for the studies of sperm DNA fragmentation. The SCSA is a flow cytometric based method, with the clear benefit of analyzing 5-10,000 cells compared to 2-300 cells usually analyzed in bright field and fluorescence microscopy. In the early 1980s, Evenson and co-workers (Evenson et al., 1980) described the sperm chromatin structure assay (SCSA) and the method was later refined (Evenson et al., 2002). The SCSA utilizes the metachromatic properties of the fluorescent stain acridine orange (AO), and the extent of DNA denaturation after an acidic treatment is determined by measuring the shift from green fluorescence (double-stranded, native DNA) to red fluorescence (single-stranded, denatured DNA). Following the flow cytometric analysis data are further analyzed using dedicated software (List View, Phoenix Flow Systems, San Diego, CA or SCASoft; SCSA Diagnostics, Brookings, SD, USA). Computer gates are used to determine the proportion of spermatozoa with increased levels of red fluorescence (denatured single-stranded DNA) and green fluorescence (native double-stranded DNA). The extent of DNA denaturation is expressed in terms of the DNA fragmentation index (DFI), which is the ratio of red to total (red plus green) fluorescence intensity, i.e. the level of denatured DNA over the total DNA (Evenson et al., 2002). The DFI value is calculated for each sperm cell in a sample, and the resulting DFI frequency profile is obtained (Figure 6, right, upper panel). Most sperm form a unimodal distribution representing the normal population of sperm with no detectable DNA damage. Sperm with higher red fluorescence, falling in the histogram area beyond the curve of normal sperm, represent the population of abnormal sperm with detectable DFI. The fraction of high DNA stainable (HDS) cells (immature spermatozoa) is calculated by setting an appropriate gate on the bivariate cytogram (Figure 6, right, lower panel) and considering as immature spermatozoa those events which exhibit a green fluorescence intensity higher than the upper border of the main cluster of the sperm population with a non detectable DFI. HDS are thought to represent immature spermatozoa with an incomplete protamination (Evenson et al., 2002).

For the flow cytometer set-up and calibration, a reference sample was used from a normal donor ejaculate sample retrieved from the laboratory repository. The intra-laboratory coefficient of variation was found to be 4.5% for DFI and 10% for HDS, respectively. For the flow cytometer set-up and calibration, reference samples were used from a normal donor ejaculate sample retrieved from the laboratory
repository. A total of 5000 (Papers I, II, IV and V) –10 000 events (Paper III) were accumulated for each measurement at a flow rate 200–300 cells/s.

SCSA measurements were performed on raw semen (Papers I, II, IV and V) and on density gradient centrifuged semen (Paper III).

The SCSA is a standardized test (Evenson et al., 2002). Apart from being subject to a very limited intra-laboratory variation (Giwercman et al., 1999), however, the SCSA analysis has shown to be very robust to variation between laboratories. In an external quality control based on >180 samples, a high (r = 0.8) correlation was found between the values obtained by our laboratory and those from a control laboratory. Furthermore, not only was there a high level of correlation between the results reported by two independent laboratories that strictly followed the SCSA protocol, but the absolute DFI values obtained at two different places, using different equipment, did not on average differ by >1% (Giwercman et al., 2003).

Testing with SCSA has several advantages: it evaluates a high number of sperm in a short period of time; 5-10 000 cells compared to most light microscopic tests where 1-300 cells normally are analyzed. When first have done the flow-cytometer

Figure 6. Left: Principles of flow cytometry and SCSA. Right: Histo- and cytogram for DNA fragmentation index (DFI) and High DNA stainability (HDS).
set up for the day, it is a fast method of screening multiple samples. This test uses frozen or fresh samples, so the analysis can be planned in due time.

A disadvantage with SCSA is that relatively expensive equipment; a flow cytometer is required. Also the fact that sperm samples with very low concentration cannot be analysed is negative. Very few flow cytometric protocols are as demanding as the SCSA and Boe-Hansen et al. (Boe-Hansen et al., 2005) demonstrated that small deviations from the protocol could impact the result of the test. Good quality routines are of great importance. Moreover, the test irreversibly damages sperm, they cannot be used for fertilisation.

Analysis of mutations and polymorphisms
A single nucleotide polymorphism (SNP) is the most common form of polymorphism in the human genome, representing about 90% of all known genetic variation. SNPs arise due to errors in the DNA replication and repair, and consist of a change in a single nucleotide (A, T, C or G). For a variant to be considered as a SNP, it must occur in at least 1% of the population. SNPs can occur in coding as well as non-coding or in intergenic regions of genes and can lead to changes in the protein that is produced. SNPs located in coding sequences do not necessarily lead to change of an amino acid sequence of the protein, but may still have consequences for gene splicing, transcription factor binding or the sequence of non-coding ribonucleic acid (RNA). Only 3-5% of the DNA codes for proteins. Studies have estimated that a common SNP occurs approximately every 600 basepair (bp) (Kruglyak and Nickerson 2001), mostly found in non-coding regions.

A number of methods to screen for polymorphisms or point mutations in a specific gene exist. Amplification by polymerase chain reaction (PCR) (Mullis and Faloona 1987) detect major structural defects, such as large deletions, by failure of amplification of the correct fragment. Techniques as denaturing gradient gel electrophoresis (DGGE) (Myers et al., 1985) or single-strand conformation polymorphism (SSCP) analysis (Orita et al., 1989) have been developed to screen for small insertions or single base deletions within a gene. In order to precisely characterize mutants, however, sequence analysis is required (Wong et al., 1987; Ward and Coffey 1991).

In the present study, amplification was performed by PCR followed by direct sequencing (Paper V). Having isolated a target gene, PCR is used to extend the number of copies of a gene which is necessary to have enough starting template for sequencing and further analyses of gene-specific mutations. PCR is based on three distinct steps: DNA denaturation, primer annealing and primer extension, all governed by changes in temperature (McPherson 2000). By repeating these steps in a cyclic manner, the result is more than one million copies of the target gene.
ART-procedures

While the least invasive form of ART, IUI, in which prepared semen is inseminated to the women’s uterus, is used in ovulatory dysfunction, unexplained subfertility and milder forms of male subfertility, IVF is primarily used in female subfertility or as a second choice in unexplained causes (Edwards and Brody 1995). Originally, ICSI was developed to be used in severe male infertility cases, however is now increasingly used for all types of infertility/subfertility (Jain and Gupta 2007; Andersen *et al.*, 2008). In IVF, oocytes are fertilised by sperm *in vitro*. The process involves hormonal stimulation and ovum pick-up. Two to five days later the fertilised and cleaved embryo is transferred to the patient’s uterus. For ICSI the same treatment principles are followed, however, here one single spermatozoon is injected directly into the cytoplasm of the oocyte.

In a vast majority of cases, spermatozoa used for ART are, prepared by density gradient centrifugation (DGC) in order to favour the isolation of motile and morphologically normal spermatozoa. The media used for DGC consists of a colloidal silica suspension in a culture medium. After layering of semen on the top of the two layer gradient (45 and 90%), the sample is centrifuged at 300 g for 15 min. Thereafter the pellet is washed and diluted in culture media used for fertilisation. The system separates normal sperm from lymphocytes, epithelial cells, abnormal or immature sperm, cell debris, bacteria and seminal fluid.

All ART procedures followed standard ART regimes as described in Papers I-III.

In our studies, IVF/ICSI patients received embryo transfer of one or two embryos on day 2 (60% of the cycles), on day 3 (38.5% of the cycles) or on day 5, at the blastocyst stage (1.5% of the cycles). A biochemical pregnancy (BP) was defined by a plasma β-hCG concentration >10 IU/l. A clinical pregnancy (CP) was defined as an intrauterine gestational sac with a heart beat 3 weeks after a positive β-hCG-test. The implantation rate was calculated as the ratio of gestational sacs determined by ultrasound after 7 weeks in relation to the total number of embryos transferred.
Statistical analysis

Statistical analysis was performed by the use of SPSS for Windows, versions 11.0, 11.5 and 14.0 (SPSS Inc., Chicago, USA) (Studies I-IV). For Fisher’s exact test, the site www.graphpad.com was used (Studies I, III and V).

Two-tailed tests were performed in all studies. A two-tailed test is appropriate when the researcher has no a priori expectation regarding the values he observes. With any significant deviation from the reference value, the null hypothesis is rejected. The term ‘statistically significant’ was used to denote a two-sided p-value <5%.

Coefficient of variation (CV) was calculated using the formula (SD/mean) × 100% (Study IV).

Risk assessments in Studies I and II were performed by the use of binary logistic regression analysis, expressed as odds ratio (OR) with 95% confidence interval (CI).

Linear regression analysis was in Study III used to compare SCSA parameters for those who achieved pregnancy and those who did not. In Study IV, linear regression analysis was used to compare CV between groups.

Fisher’s exact test was used in Studies I, II, III and V. Fisher’s exact test is used to examine the significance of the association between two variables in a 2x2 contingency table, and can even be applied when the cell sample size is <5 (Study V).

Mann Whitney test was applied to test inter-group differences (Study I). The Mann-Whitney test is a non-parametric test that is used for comparison of means and distributions of two independent groups when data do not meet the normal distribution requirements for a t-test. It is an alternative to the t-test, almost as powerful as the t-test in detecting a true difference when the residuals follow a normal distribution.

In Study II, male and female age, male and female BMI, smoking habits, sperm concentration, motility and treatment number were considered as potential confounders, all tried in the model according to the change-in-estimate method suggested by Greenland (Greenland 1989), using a 10% change for inclusion and a 5% change for exclusion. The same factors, dichotomized at their respective medians, were also tested as effect modifiers, using the Breslow–Day test for homogeneity.

Spearman’s rho was in Study I and IV used to calculate binary correlations between parameters.
RESULTS AND DISCUSSION

Sperm DNA fragmentation and outcome of ART
The main focus of the studies leading to Papers I-III has been to identify whether
the sperm chromatin structure assay (SCSA) parameters DFI and HDS could
predict the outcome of assisted reproduction. Data regarding pregnancy, delivery
and miscarriage for IUI, IVF and ICSI as well as fertilisation and embryo
development for IVF and ICSI will be presented and discussed in the following.

Predictive value of SCSA in intrauterine insemination
The most important and novel finding of the present studies is that DFI can be used
as an independent predictor of fertility in couples undergoing IUI (Papers I and II).

The first indications of the high predictive value of SCSA regarding the outcome of
IUI treatments were found by combining the two SCSA parameters, DFI and HDS
(Paper I). The chance of pregnancy and delivery for IUI was significantly higher in
the group having a DFI below 27% and a HDS below 10% compared to patients
with a DFI>27% or a HDS>10%. In the group with a DFI≤27% or a HDS≤10%,
the odds ratios (ORs) (95% Confidence Interval (CI)) were 20 (2.3-117), 16 (1.9-
137) and 14 (1.6-110) for biochemical pregnancy (BP), clinical pregnancy (CP)
and delivery (D), respectively. In figure 7, the DFI 27% threshold is called
“Evensons threshold (ET)” since this threshold level was suggested by his research
group (Larson et al., 2000; Larson-Cook et al., 2003).

After extending the study population (Study II), and in opposite to study I, by using
those patients with DFI<30% as a reference group, the ORs for BP, CP and D were
significantly lower for couples with DFI>30%, referred to as the Bungum’s
threshold (BT) (Figure 7). The ORs (95%CI) were 0.10 (0.02±0.42), 0.10
(0.02±0.042) and 0.07 (0.01-0.048) for BP, CP and D, respectively. In contrast to
study I, HDS was not of predictive value for the outcome of IUI, neither alone nor
in combination with DFI (Paper II).

With 387 IUI cycles, our study is so far, the largest SCSA study. Whilst the
proportion of children born per cycle was 19.0 % when the DFI value was below
30%, those with a DFI value above 30% only had a take-home-baby rate of 1.5 %.
Although a very clear cut-off level was seen for DFI (Figure 7), it is important to
point out that a DFI above 30% does not preclude a normal pregnancy; however,
the likelihood of obtaining a pregnancy by IUI is, almost non-existing. The highest
DFI levels that gave rise to pregnancies by IUI were 34% and 42.1%, the former
resulted in a live birth, whereas the latter resulted in a spontaneous abortion (Paper
II).
Figure 7. Odds ratios (OR) for biochemical pregnancy in relation to DNA fragmentation index (DFI) following Intrauterine insemination (IUI), visualising the three cut-off thresholds suggested; IUI-threshold (IUI-T), Evenson’s threshold (ET) and Bungum’s threshold (BT).

The first study to indicate an association between DNA damage and reduced pregnancy chances was the study by Duran et al. (Duran et al., 2002). In a retrospective study including 119 couples (154 IUI cycles) the authors concluded that pregnancy could not be achieved when DNA fragmentation, as measured by the TUNEL assay, was above 12 %. Similar findings have been reported by others. Saleh et al. (2003a) performed a small study where 12 of 19 couples had a DFI value as measured by SCSA above 28 % and all these couples were unable to achieve a pregnancy. More recently, Boe-Hansen et al. (2006) used the SCSA in a study on 48 couples undergoing IUI treatment. Only two of these couples had a DFI value above 30%, and did not achieve any pregnancy.

In summary, results from Studies I and II have clearly shown that DFI can be used as an independent predictor of fertility in couples undergoing IUI.
The clinical recommendation drawn from these data is that SCSA should be implemented in the infertility work-up and used as a tool to decide which type of ART-treatment that should be performed. In our region, the SCSA is now one of the criteria for the reimbursed ART treatment, used as a supplement to the traditional sperm analysis. Although a clear cut-off value corresponding to DFI = 30%, could be set, we found that the chance of obtaining a pregnancy by IUI decreased successively from about DFI=20%. Taking into consideration the rapid decline in the probability of pregnancy by IUI with an increase in DFI above 20%, we have chosen to set a 25% IUI-threshold (IUI-T) in our clinic. In other words, if a man presents with a DFI below IUI-T and all other criteria for IUI are fulfilled (≥ 5 mill. progressive motile sperm following gradient centrifugation, female age <36 years and normal fallopian tubes), IUI is chosen as the first line treatment. In cases of DFI between 25 and 30%, the couple is referred to IVF treatment and finally, if DFI is above 30%, ICSI is recommended (Figure 7).

Predictive value of SCSA in IVF and ICSI

Another aim of the studies was to elucidate whether SCSA could be used in prediction of IVF and ICSI results. Some of the first SCSA-ART studies (Larson *et al.*, 2000; Larson-Cook *et al.*, 2003) suggested that no pregnancy could be obtained for DFI above 27%, regardless of the type of ART applied. In our initial study (Paper I) we therefore used this level in our calculations. In contrast to Larson’s findings (Larson *et al.*, 2000; Larson-Cook *et al.*, 2003), we demonstrated that a DFI level above 27% is compatible with pregnancy and delivery after both IVF and ICSI (Paper I and II). Hence, ART is able to compensate for the impairment of sperm chromatin integrity, in particular if ICSI is chosen as fertilisation method.

In Study I, the likelihood of obtaining a CP was found to be the same in the group of patients with DFI above 27%, as in those with DFI below 27% (CP= 38% in both groups) (Paper I). The implantation rates were also comparable, 31% versus 34%, respectively.

Comparing the two in vitro fertilisation methods; IVF and ICSI, no statistical difference between the pregnancy outcomes was observed in the group with DFI below 27%. However, in the group with DFI above 27%, the results of ICSI were significantly better than those of IVF with respect to BP (71% versus 22%; p = 0.007) as well as CP (53% versus 22%; p = 0.09). For D rates, the proportions were 47% in the ICSI and 22% in the standard IVF group (p = 0.16) with an OR=7.8 (95% CI 1.7±36) for BP, OR=3.9 (95% CI 0.9±17.0) for CP and OR=3.1 (95% CI 0.72±13) for D. After inclusion of sperm concentration, proportion of progressively motile sperm, female age and treatment number in the model, the ORs for positive reproductive outcome when ICSI was compared with IVF increased to
26 (95% CI 1.9±350), 7.7 (95% CI 0.84±70) and 7.0 (95% CI 0.75±65), with BP, CP and D dependent variables, respectively (Paper I).

In Study II, further data analyses included the use of different thresholds (5%, 10%, 15%, etc.) to establish the possible presence of a threshold effect (Paper II). These results indicated that 30% was the most suitable threshold point to use for the main analyses (study II). No statistically significant difference was seen between the outcomes of ICSI versus IVF in the group with DFI≤30%. In the DFI>30% group, however, the results of ICSI were significantly better than those of IVF. The ORs for BP, CP and D were 3.0 (95% CI: 1.4–6.2), 2.3 (5% CI: 1.1–4.6) and 2.2 (95% CI: 1.0–4.5), respectively. For ICSI, there was even a tendency towards higher rates of BP, CP and D with a DFI>30% versus a DFI≤30%, however this was not a statistical difference. Moreover, the implantation rate in the ICSI group with DFI>30% seemed to be higher than in any other subgroup (Paper II).

As already shown for IUI, HDS did not predict the outcome of IVF or ICSI, neither alone nor in combination with DFI (Papers I and II).

Our results have been confirmed by several others (Gandini et al., 2004; Virro et al., 2004; Check et al., 2005; Boe-Hansen et al., 2006). However, a common problem for all more recent studies was the rather limited number (36-42 IVF/ICSI) of patients. Moreover, no potential confounders (e.g. female age) were introduced in the analysis of data. In our study, although with a marginally effect on the outcome parameters, male and female age, male and female BMI, smoking habits, sperm concentration and motility and treatment number were considered as confounders (Paper II). One single study consisting on 100 IVF/ICSI treatments, has reported that DFI and HDS threshold values were not valid (Payne et al., 2005). More recently, some meta-analyses on sperm DNA damage as measured by the SCSA and ART outcomes were published (Evenson and Wixon 2006; Li et al., 2006; Collins et al., 2008). The first study showed that in IVF and ICSI, clinical pregnancy was closely related to DFI as measured by SCSA. In contrast, Li et al. found that neither DFI nor HDS had an effect on the chance of CP after IVF or ICSI treatment. Both reports included IVF and ICSI data from our Paper I. In the third and most recent metaanalysis (Collins et al., 2008), where also our data from study II were included, a small but statistically significant association between sperm DNA integrity test results and pregnancy in IVF and ICSI cycles were found. The different conclusions drawn by the two studies are most likely due to use of different inclusion criteria.

Previously the efficacy of IVF and ICSI was found to be equal in cases of non-male factor infertility (Bhattacharya et al., 2001). As shown for IUI (Paper I and II), normal sperm chromatin integrity becomes particularly important when the contact between the two gametes occurs in a natural way. Others have suggested
that, selective pressures operate to avoid the development of an embryo derived from sperm with a high load of genetic in a natural environment (Morris et al., 2002). This could be different in ICSI, where a sperm is forced into the oocyte and the possibility of selecting a genetically defective sperm is much higher. ICSI enables fertilisation to take place in spite of severely compromised semen characteristics and DNA damage (Ahmadi and Ng 1999a). This is illustrated by the fact that even ICSI performed with testicular round spermatids, whose chromatin structure by definition is quite different from that acquired by sperm after spermiogenesis and epididymal maturation, can give rise to successful pregnancies (Mansour et al., 2003).

No directly documented biological explanation for why ICSI is superior to IVF when DFI exceeds 30% is presented, neither by us (Papers I and II) nor by others. In Paper II we suggested two possible explanations for this. Our first point was that women in the ICSI group, on average were slightly younger than women in the IVF group. In the ICSI group, infertility was mainly caused by male factor, and thus the younger women may produce oocytes with a better DNA repair capacity. Secondly, we suggested that the difference in favour of ICSI might also be due to the two completely different culture environments used for IVF and ICSI. While IVF oocytes were exposed to spermatozoa for 90 min, in ICSI the spermatozoon was injected directly into the oocyte and therefore probably less exposed to ROS.

Recently, a number of works that may indirectly support our suggestions regarding ROS created in IVF culture but not in ICSI as a possible explanation for the difference in success rates between ICSI and IVF have been published. A group of Australian researchers demonstrated that high levels of estrogenic compounds caused oxidative stress, which led to DNA damage in human spermatozoa (Bennetts et al., 2008). In the IVF environment not only the oocyte and the sperm are present, but also the cumulus complex consisting of a high number of corona- and granulosa cells is a natural part of the culture. In contrast, in the ICSI environment, all corona- and granulosa cells are chemically and mechanically removed. It may be speculated that spermatozoa with high DFI are more vulnerable to the adverse effects of ROS or that cumulus and corona cells surrounding the egg release estradiol (Kattera and Chen 2003), which in turn has been shown to have a direct toxic effect on the embryo (Valbuena et al., 2001).

The difference seen within the ICSI group, in favour of the group with DFI >30% is even more difficult to explain. A possible superiority of ICSI oocytes might be most pronounced at the highest DFI levels at which natural conception is not possible despite excellent fertility status of the female.
In summary, we have demonstrated that when DFI was above 30%, higher pregnancy and birth rates were found after ICSI compared to IVF. In contrast, no differences between the two methods were seen when DFI was below or equal to 30%. Similarly to the findings in the IUI group, HDS were not shown to be of predictive value for the outcome of the treatment, neither alone nor in combination with DFI (Papers I and II). However, it should be kept in mind that although study I and II might indicate that ICSI is superior to IVF in case of high DFI, final conclusions need to be based on studies where couples with high DFI and otherwise fulfilling the criteria for IVF are randomised to IVF and ICSI.

In the Fertility Clinic, Viborg Hospital, Denmark, where the patient material for the present studies was collected, the results of the SCSA-measurements used for the studies in this thesis were not applied clinically. Some of the patients had a history of one or more IUI cycles prior to study inclusion. If the patient not obtained pregnancy in the actual study cycle, some also proceeded with further IUI, IVF or ICSI treatment or they dropped out. Thus, we found it interesting to examine the patient records to see the outcome for those patients having a DFI above 30% and not becoming pregnant in the actual study-cycle. As some of the patients were included in their first treatment cycle and others in one of the subsequent cycles, we found it interesting to look both forward and backwards in time in order to get full information about the outcome. We therefore registered cycle outcome data for the total number of ART cycles these patients underwent.

In 51 patients, a total of 208 IUI cycles were performed (Bungum, unpublished data). Four singleton pregnancies resulting in 2 deliveries were obtained (<1%), why further treatment in these women was terminated (Table 6). Thirty eight patients dropped out and regarding these women no information about other fertility treatments or spontaneous pregnancies was further available. Eleven patients proceeded with either IVF or ICSI in the clinic (in total 21 treatment cycles). Among these 11 women, 10 pregnancies resulting in 9 deliveries were obtained during their in total 21 treatment cycles. By a separate analysis of the IVF and ICSI groups, there was a tendency of a better pregnancy rate in the ICSI group compared to the IVF group.
Table 6. Reproductive outcomes for patients with DFI above 30%. While some dropped out after 1-5 IUI-cycles, others proceeded with more advanced ART: IVF or ICSI.

<table>
<thead>
<tr>
<th></th>
<th>Number of patients</th>
<th>Total number of cycles</th>
<th>Mean female age</th>
<th>Mean DFI, %</th>
<th>Number of clinical pregnancies</th>
<th>Number of deliveries</th>
</tr>
</thead>
<tbody>
<tr>
<td>IUI</td>
<td>51</td>
<td>208</td>
<td>32.3</td>
<td>42.6</td>
<td>4 (1.9%)</td>
<td>2 (0.85%)</td>
</tr>
<tr>
<td>Proceeded to IVF</td>
<td>4</td>
<td>8</td>
<td>32.3</td>
<td>44.0</td>
<td>3 (37.5%)</td>
<td>2 (25%)</td>
</tr>
<tr>
<td>Proceeded to ICSI</td>
<td>7</td>
<td>13</td>
<td>31.1</td>
<td>47.2</td>
<td>7 (53.8%)</td>
<td>7 (53.8%)</td>
</tr>
</tbody>
</table>

The number of patients included in the follow-up, which is a retrospective clinical report rather than a study, is limited. However, the outcome data are convincing and completely in line with our published data (Papers I and II).

SCSA parameters in relation to fertilisation and embryo development

Comparing fertilisation and embryo quality (cleavage developmental stage and fragmentation rate) between those having a DFI > 30% and those having a DFI ≤ 30%, no statistically significant differences were seen, neither for IVF nor for ICSI patients (Paper II).

Our findings are in accordance with most other previous and recent papers using the SCSA analysis (Larson et al., 2000; Larson-Cook et al., 2003; Gandini et al., 2004; Virro et al., 2004; Li et al., 2006) as well as other sperm DNA integrity testing methods (Sakkas et al., 1996; Hammadah et al., 2001; Tomlinson et al., 2001; Morris et al., 2002; Tomsu et al., 2002; Henkel et al., 2004; Lewis et al., 2004; Huang et al., 2005; Nasr-Esfahani et al., 2005). In contrast a few investigators have shown a negative correlation between sperm DNA fragmentation and IVF and ICSI fertilisation rates (Sun et al., 1997; Lopes et al., 1998a; Saleh et al., 2003a; Payne et al., 2005). Host et al. (Host et al., 2000a) determined the incidence of spermatozoa with DNA strand breaks with the Tunel assay in different groups of infertile couples, finding negative correlations between the proportion of spermatozoa with DNA strand breaks and the fertilisation rates in all groups except for those undergoing ICSI. In the study by Virro et al. (2004), HDS was found to be related to IVF but not to ICSI fertilisation rates. This made
the authors suggest that men with HDS>15% should be treated with ICSI. Their finding has, however, not been confirmed by others.

Several factors might contribute to the discrepancy between the studies regarding the association between sperm DNA parameters and fertilisation rates. There is no clear consensus on policies regarding indications for IUI, IVF and ICSI, and therefore the selection of patients may differ from study to study. Furthermore, different techniques for the assessment of sperm DNA integrity were applied and although there is a correlation between the results obtained by these assays, the correlations were only moderate (Gorczyca et al., 1993; Aravindan et al., 1997; Erenpreiss et al., 2004), indicating that they are assessing different biological phenomenons. Even the definition of fertilisation may differ from laboratory to laboratory.

Ahmadi and Ng who in a mouse model demonstrated the DNA-damaged spermatozoas ability to fertilise the oocyte (Ahmadi and Ng 1999a), also reported sperm DNA damage to be related to poor embryo development (Ahmadi and Ng 1999b), although the oocyte, to a certain degree, was able to repair the sperm DNA damage. The human ART-data regarding embryo development in relation to DNA damage is, however, somewhat conflicting. In accordance with our findings, several other authors have reported similar cleavage stage embryo developmental rates between high and low DFI groups (Larson et al., 2000; Larson-Cook et al., 2003; Gandini et al., 2004; Boe-Hansen et al., 2005; Payne et al., 2005). This, however, is contrasted by the findings of others (Sun et al., 1997; Morris et al., 2002; Saleh et al., 2003a), who showed that DFI levels were negatively correlated with embryo quality after IVF and ICSI. Seli et al. (2004) and Virro et al. (2004) reported that men with high levels of DNA fragmentation were at increased risk of low blastocyst formation rate compared to those with a low DFI. Studying embryo development in a bovine model, Fatehi et al. (2006) suggested that damaged gamete DNA does not affect embryo development until after the first cleavage, when embryonic gene expression begins, due to the fact that before the first 2–3 cleavages, the mRNA still present from the cytoplasm of the gametes is being translated instead of waiting for the embryonic DNA to be transcribed (Braude et al., 1988). However, when embryonic gene expression is first initiated during the second or third cleavage, one can observe the formation of an abnormal mitotic spindle. DNA fragmentation also occurs at that point, and Fatehi et al. claimed that it can generate severe developmental problems as the embryo attempts to form a blastocyst (Fatehi et al., 2006). The results showed that sperm DNA damage did not impair the first 2–3 cleavages, but blocked blastocyst formation by inducing apoptosis.

On the basis of the impaired blastocyst development claimed to be caused by sperm DNA damage, it has been suggested to routinely culture to the blastocyst
stage (Spano et al., 2005a). So far, due to the lack of adequate blastocyst culture media that could support in vitro embryo development, day 2 and 3 embryo transfers have been the dominant procedure. Prolonging the culture may allow normal embryos to develop to the blastocyst stage and permit the selection of embryos that have the potential of continued development under embryonic genome control rather than embryos that carry aberrant (paternal) DNA. Although this could seem logic, from a biological point of view, the arguments for such a practice could be discussed. In a previous work (Bungum et al., 2003), in which day 5 and day 3 (cleavage stage) embryo transfer were compared in a randomized manner, no differences between day 3 and day 5 transfers were observed as regards embryo development, implantation and pregnancy rate. However, when dividing patients into groups according to fertilisation method: IVF or ICSI, in the group of patients in whom ICSI was performed, a significantly lower blastocyst formation rate and implantation rate compared to the IVF group was seen, 51% versus 60% and 28% versus 47%, respectively. On the other hand, no statistical difference was seen in pregnancy rates. Unfortunately, no SCSA data were available from these patients. However, from the studies presented in this thesis it is evident that significantly higher DFI levels are found in ICSI patients compared to the IVF group and it can be speculated whether this is related to the lower blastocyst formation rate in the former group of patients.
SCSA parameters and risk of miscarriage

The present study showed no statistically significant association between high DFI or HDS and early pregnancy loss (Paper II). Despite this, it cannot be excluded that DFI levels >60% are associated with a higher risk of early pregnancy loss (Figure 8). Even a material including about 1000 ART treatments, in which Paper II was based on, is small when it comes to reaching firm conclusions in this question. Only 6 of the patients who gave rise to a pregnancy by IUI, IVF and ICSI had a DFI above 60%.

Figure 8. Odds ratios (ORs) for pregnancy loss in relation to threshold levels for the DNA fragmentation index (DFI), all three treatment categories, IUI, IVF and ICSI combined. The threshold for a possible increased miscarriage risk (DFI>60%) is shown.

A number of recent, smaller studies (including 60-322 patients) have reported an association between increased (albeit non-significant) risk of pregnancy loss after IVF and/or ICSI and a high DFI (Virro et al., 2004; Check et al., 2005; Zini et al., 2005b; Borini et al., 2006; Lin et al., 2007; Frydman et al., 2008). Lin et al. (2007) also found that in couples treated with IVF, in whom the male partner had a HDS above 15%, significantly higher IVF miscarriage rates were seen compared to couples where the HDS was below 15%. The authors, therefore, recommended ICSI in men with HDS>15%.
An association between sperm DNA damage and pregnancy loss has also been observed in non-ART studies. In the Georgetown study, Evenson et al. (1999) observed an increased risk of pregnancy loss in couples with sperm DNA damage. Also Carrell et al. (2003) reported that recurrent pregnancy loss is associated with higher levels of sperm DNA damage.

Based on the conflicting results seen in existing human studies, one could suspect that a subgroup exists within the high DFI-population (related to the type and aetiology of DNA damage) with an increased risk of miscarriage. New larger scale studies allowing further stratification into groups due to the type and aetiology of DNA damage should be performed.

Raw versus prepared semen

In Studies I, II, IV and V, all SCSA analyses were performed on raw semen as in most other SCSA-ART studies published to date. In Study III, SCSA data from both raw and density gradient centrifuged (DGC) semen of 510 of the 998 ART cycles representing the study II population were analyzed.

Contrasting what was concluded for raw semen, no predictive value of the SCSA parameters DFI and HDS, in DGC prepared semen in relation to pregnancy outcome was seen (Paper III). These findings support the two first SCSA–ART studies using prepared semen for SCSA. A limited number of patients, 24 and 34, respectively, were included in these studies (Larson et al., 2000; Gandini et al., 2004), why the present study may be considered the first SCSA study on this issue to be conclusive (Paper III). On the other hand, using the TUNEL assay, Borini et al. (Borini et al., 2006) in ICSI patients found DFI>10% in DGC prepared semen to be discriminative for pregnancy. Also another study used washed semen samples and found no IUI pregnancy if DFI exceeded the level of 12% as measured by the TUNEL assay (Duran et al., 2002).

Seen from a biological point of view, our finding is difficult to explain. Larson et al. (2000) suggested that elevated DFI in neat semen may reflect chromatin or other abnormalities within the entire sperm population interfering with the fertilising ability of the sperm, but not completely eliminated by DGC or swim-up. Although SCSA is a generalized test of sperm chromatin stability, it is unclear which type of sperm DNA breaks (single/double strand breaks) the method actually detects. It cannot be excluded that some unknown type of damage may be present in sperm without DNA denaturating during the SCSA procedure. These chromatin structure defects may thus remain in the DGC material without being reflected by DFI. Why such abnormalities, if related to sperm DNA breaks, cannot be measured by SCSA, remains to be elucidated. This could also explain the difference between
the SCSA and the TUNEL studies; the two methods may not completely reflect the same types of DNA damage (Makhlouf and Niederberger 2006).

In the present study (Paper III), despite the negative results in regard to predicting the outcome of ART, only in 1% of the samples, DFI was increased after preparation. With the exception of three samples, all samples having a DFI above 30% in neat semen, DFI decreased to below 30% after DGC. A mean (95% CI) decrease in DFI following DGC for all treatment groups of 15.1% (14.0–16.2%) was seen. The corresponding figures for HDS were 4.4% (4.0–4.9%). Scatter-plot diagrams demonstrated that for DGC samples, no DFI cut-off values could be set.

Several other authors have also demonstrated that the sperm preparation procedure can decrease the fraction of defective sperm initially present in the neat semen (Golan et al., 1996; Larson et al., 1999; Spano et al., 1999; Donnelly et al., 2000; Tomlinson et al., 2001; Younglai et al., 2001; Gandini et al., 2004; McVicar et al., 2004; Morrell et al., 2004). On the other hand, there are also reports of unchanged or worse damage (Zini et al., 1999; Zini et al., 2000; Tomsu et al., 2002). Also a majority of reports using other techniques for sperm chromatin integrity assessment failed to find any association between DFI in sperm population selected by DGC or swim-up and treatment outcome (Morris et al., 2002; Benchaib et al., 2003; Seli et al., 2004; Huang et al., 2005; Hammadeh et al., 2006; Muriel et al., 2006; Benchaib et al., 2007). None of these studies were, however, based on such a large ART-population as our study.

The clinical recommendation resulting from Paper III is, that SCSA analysis should be performed on raw semen aliquots as also stated in the SCSA guidelines (Evenson et al., 2002).

Intra-individual variation of the SCSA parameter DFI

In study IV, we found the mean coefficient of variation (CV) of DFI for 2-5 repeated SCSA measurements to be 29%, in other words in line with the intra-individual variation reported for other standard sperm parameters (Neuwinger et al., 1990; Cooper et al., 1992). Thirtyseven percent of patients having a DFI>30% in the first test had a DFI<30% in the second test. Twenty seven percent of those with DFI-values in the range of 20-30% in the first test had DFI above 30% in the second test (Paper IV).

Our findings are in contrast to previous reports regarding this issue (Evenson et al., 1991; Evenson et al., 2000; Zini et al., 2001b; De Jonge et al., 2004), finding the overall CV for DFI for repeated SCSA measurements to be 10-20%. However, most of these studies were based on rather limited numbers of both fertile and infertile men. In the study by Zini et al. (2001b), the men delivered two semen
samples, 2 to 6 weeks apart and in the study by Evenson et al. (2000), 45 men delivered semen samples monthly for 8 months. De Jonge et al. (2004) studied the variation of DNA fragmentation in relation to days of sexual abstinence in 11 men and found only a short (24-hour) abstinence period to have a negative influence on sperm chromatin quality. A more recent study, (Smit et al., 2007) included two consecutive semen samples from 100 infertile men. This study confirmed that sperm DNA integrity has a lower biological variability than the classical semen parameters, which also was seen in previous reports. Smit et al. (2007) suggested that the sperm chromatin structure may be more influenced in patients with normal spermatogenesis, whereas in men with disturbed spermatogenesis, the chromatin structure may be so impaired already that the effect of unidentified factors leading to variability of sperm DNA fragmentation in time may not be as profound. In our study, CVs for DFI were similar in groups with normal and abnormal sperm concentration and motility; 28 and 31%, respectively.

A large number of studies have documented that factors like age, abstinence time, illness, fever, cancer treatment, smoking, medication and exposure to environmental hazards can alter sperm DNA integrity (Evenson et al., 1991; Fossa et al., 1997; Robbins et al., 1997; Sun et al., 1997; Rubes et al., 1998; Potts et al., 1999; Evenson et al., 2000; Kobayashi et al., 2001; Richthoff et al., 2002; Saleh et al., 2002a; Sanchez-Pena et al., 2004; Stahl et al., 2004; Rignell-Hydbom et al., 2005; Rubes et al., 2005; Sepaniak et al., 2006; Stahl et al., 2006; Sergerie et al., 2007). While Saleh et al. found a 10-point decrease in ROS analysis scores, Sepaniak et al. found significantly higher DFI in smokers compared to non-smokers (32 versus 25.9%). In the study of Richthoff et al. DFI correlated positively with abstinence time (r=0.17). Fever was shown to increase DFI by 24% and 36%, 2 and 5 weeks after the fever, respectively. However, DFI returned to normal 10-12 weeks after the fever episode (Sergerie et al., 2007).

In a recent study by Smit et al. (Smit et al., 2007), patients who reported changes in medication or any significant illness or infection between different semen samples were excluded and all participants were instructed equally for abstinence time. Although we in our study also had information regarding most of the possible influencing factors, we did not use any of them as exclusion criteria. By not excluding any patients, we found that this would give the most correct picture of the true situation in a fertility clinic.

In order to identify men at risk of passing the 30% threshold, data were further divided into the following categories; i) DFI≤10%, ii) DFI=11%-20%, iii) DFI=21-30% and iv) DFI>30%. The results showed that those having a DFI≤10% had only a 6% risk of having a DFI≥30% in the following test. In the other groups; ii, iii and iv, the risk was 14%, 27% and 63%, respectively. Based on these data, one could recommend repeated SCSA testing in only those men who were not ICSI
candidates and having a DFI>20% since in this subgroup a switch of DFI to a
higher level may have implications for the selection of the ART treatment.

New unpublished data indicates that the natural variability may not have a
significant impact for how often SCSA needs to be performed. In the IUI follow-up
study presented previously (pages 50/51), DFI was above 30% when the patient
was included in the study, but we did not know if and how much DFI varied in
periods during and between treatments. In another follow-up study (Giwerzman et
al., unpublished data) including 142 unexplained sub-fertile men (no known female
factor in infertility work up) and 135 proven fertile men as controls, the results
showed that DFI was an independent predictor of infertility with OR of 2.5 (95% CI
1.0; 6.1) for DFI between 10% and 20% and 8.4 (95% CI: 3.0; 23) for DFI ≥ 20%.

Although DFI, as other sperm parameters, was found to be a subject of intra-
individual variation (Paper IV), the results from these two unpublished works
indicate that a single SCSA analysis is a strong predictor of infertility and that the
intra-individual variation may not necessarily have a significant clinical impact.
While waiting for new, larger studies, one should recommend the SCSA analysis to
be performed shortly before the actual ART treatment.

Total fertilisation failure

Mutations in the PCI gene

One of the genes suggested to play a role in human male fertility is the Protein C
inhibitor (PCI) gene (Espana et al., 2007).

In men with total fertilisation failure in IVF trials, a novel mutation in the PCI gene
was significantly more common compared to controls with normal IVF fertilisation
rates (11 % vs. 0.0 %, p=0.02) (Paper V). This was a heterozygous A/G transition
in position 1389 (rs206990), located in a non-coding part of the PCI gene and does
therefore not result in any amino acid change. Two other mutations, not previously
reported in the SNP database (www.ncbi.nih.gov) were also detected; a
heterozygous G/C transition at position 1732 and a heterozygous A/G transition at
position 1793. However, these were as frequent in patients as in the controls.

In total 15 different variants located in the PCI gene were identified. Except for the
two novel nucleotide variants detected in a non-coding part of the PCI gene, all
represented single nucleotide polymorphisms (SNPs) previously reported in the
SNP database (www.ncbi.nih.gov). Two of the variants reported in the SNP
database (rs2069975 and rs6117), were, however, not found in the present groups
(Paper V).
A tendency for a more frequent distribution in the patient group compared to the controls was seen for a heterozygous T/C transition in exon 6 at position 1851 (rs9113) (p=0.07). Also other SNPs were detected in exon 6 and exon 3; however, these were as frequent in patients as in controls. For the remaining exons (1, 2, 4 and 5), no other deviations from the normal sequence were detected.

Even if the polymorphism in the PCI gene might be associated with fertilisation failure, it is important to point out that our findings can only partly explain this condition. The nature of fertilisation is highly complex and it is plausible to believe that the reasons for total fertilisation failure could be many e.g. technical, female as well as others of male origin.

A total of 15 different variants were compared and for one of them we found a statistically significant difference between cases and controls. Therefore, the problem of “mass significance” and hence a chance finding can not be excluded. The study should thus be seen as a pilot study. Future large-scale studies are needed to further elucidate the role of PCI in fertilisation failure. Consequently, at present, the clinical application of these findings is limited. It is likely that single gene mutations of the PCI gene account for a small proportion of male infertility and, therefore, the practicality of testing will be constrained by expenses and the availability of the testing techniques. However, if further large-scale studies can confirm and take these findings further, it may be possible and cost-effective to test idiopathic infertile couples for this gene defect prior to IVF. Moreover, in the future likely the use of cheap gene array testing techniques will evolve, which will enable us to screen all or most of the known single gene defects in one test.

Sperm DNA fragmentation

Study V also showed that total fertilisation failure after IVF could not be explained by elevated sperm DNA fragmentation.

Mean DFI and HDS values in couples in the fertilisation failure group were 19.8% (range 4.5-52%) and 9.6% (range 3-28.5%), respectively, and did not differ from those found in controls being 19.8% (range 6.6-67%) and 10.3% (range 4.1-18.9), respectively. The result was not unexpected, as we reported similar fertilisation rates in the high and low DFI groups in Study II, and the subjects in this case-control set up (Study V) represented a subset of patients included in Study II. These findings are in agreement with several other SCSA studies (Larson et al., 2000; Larson-Cook et al., 2003; Gandini et al., 2004; Virro et al., 2004; Li et al., 2006).

In conclusion there is no a clear cut evidence of association between DFI or HDS and the ability to fertilise.
CONCLUDING REMARKS

With the present studies a significant progress in the clinical application of SCSA was made. Measures of genetic aberrations in terms of sperm DNA fragmentation can be used as markers of fertility, in order to decide which level of ART is needed; the simple IUI or more advanced methods, such as IVF or ICSI.

The main conclusions from the current studies are:

- DFI can be used as an independent predictor of success in couples undergoing IUI;
- A threshold value for DFI in regard to in vivo fertility can be set at 30%. When DFI exceeds 30%, ICSI should be the method of choice, also in cases where the traditional sperm parameters are normal;
- Fertilisation and cleavage stage embryo development (day 2 and day 3) is not influenced by DNA damage as measured by SCSA;
- HDS is not predictive for the outcome of ART;
- Although no statistically significant association between high DFI and early pregnancy loss was seen, one can not exclude the fact that DFI levels >60% are associated with higher risk of early pregnancy loss;
- Despite the fact that density gradient centrifugation effectively decreases DFI and HDS in semen, SCSA performed in semen prepared by density gradient centrifugation cannot predict the outcome of ART. SCSA analysis should therefore be performed in raw semen;
- The intra-individual variability of DFI is considerable. Men in couples undergoing ART, who are not candidates for ICSI, should be recommended SCSA prior and close to each ART treatment if DFI is above 20%;
- In a subgroup of cases total fertilisation failure after IVF might be explained by polymorphisms in the Protein C Inhibitor gene.
FUTURE PERSPECTIVES

The further challenges within the field are easy to identify. The first and maybe most important is to increase the focus on the role of paternal DNA damage in relation to ART. Until now, the fact that the sperm carries DNA and that the DNA can be of different quality interfering with men’s fertility potential has been commonly overlooked in the diagnosis and treatment of male infertility. Using SCSA as a tool in our own clinical setting, a University clinic planning to run about 1500 ART cycles per year, together with the continuous spreading of our own as well as research data of others may contribute to a generally increased knowledge among those working with ART.

Based on the results presented in this thesis, it would be relevant to further penetrate the differences in success between ICSI and IVF in men with DFI above 30%. A study in which couples fulfill the traditional criteria for IVF and the men have a DFI above 30% should be randomised to either IVF or ICSI. This would clarify whether the latter method is superior in cases with high DFI.

In order to follow the “ROS-theory”, suggested to play a role in the difference between IVF and ICSI, set up of ROS analysis in our clinic and using it in combination with SCSA to further study possible associations and mechanisms is of high priority. A positive correlation between DFI levels and the concentration of ROS in the seminal plasma has been demonstrated, however only in a limited patient material (Saleh et al., 2003a). Analysis for measurements of ROS may be applicable to many other future research projects. One can be to use the analysis to identify men with ROS-induced DNA damage. This could contribute to the development of new treatment regimes for the use of antioxidants to minimize oxidative stress and sperm DNA damage as suggested previously (Greco et al., 2005; Silver et al., 2005; Menezo et al., 2007). However new, larger scale studies are needed in order to identify potential groups that will benefit from such treatment. Moreover, dose finding studies in this kind of medication is needed.

The intra-individual variation of sperm DNA integrity in an ART setting should be further studied. Larger populations should be included where also the time factor and conditions known to interrupt with sperm DNA are taken into consideration. In a larger material and with possibility of additional analysis it may be possible to identify potential subgroups that are at particular increased risk of a significant intra-individual variation.

Some novel sperm selection systems to be used to select better spermatozoa for ICSI are suggested; a high-magnification optical system (Bartoov et al., 2001), a electrophoretic system (Ainsworth et al., 2007), a sperm hyaluronic acid (HA) binding assay (Huszar et al., 2003) and a magnetic cell sorting system using
Annexin V microbeads (Said et al., 2006). So far, the high-magnification optical system has demonstrated, in the most promising manner, the ability to isolate mature, viable sperm with unreacted acrosomal status, without damaging the specimen. However, the clinical applicability of these tests remains to be demonstrated in large scale studies.

Lastly, the findings presented in this thesis regarding the explanation of fertilisation failure in IVF should be followed by new, larger studies. In these studies quantification of PCI in the seminal plasma should be added to the analysis.
POPULAR SCIENTIFIC SUMMARY

In western countries, infertility is one of the most common disorders affecting approximately 15% of all couples. Traditionally, the diagnosis of male infertility has relied upon microscopic assessment of semen. The criteria for normality in regard to sperm concentration, motility and morphology are, however, claimed to be poorly standardized, subjective and not good indicators of fertility. In two thirds of the male infertility cases, no explanation of the reduced semen parameters can be found and the condition is, therefore, referred to as idiopathic infertility. With the advent of assisted reproduction (ART) and in particular intracytoplasmic sperm injection (ICSI) the importance of the sperm analysis tended to be minimal, based on the observation that ICSI bypasses natural fertilisation processes and that the method is independent of semen quality. However, over time, ICSI has become a subject to an ongoing debate regarding its indications and safety, especially in terms of transmission of genetic diseases to the offspring. Despite this and the fact that good criteria for the use of ICSI are lacking, its use is strongly increasing. In many clinics ICSI is actually the only fertilisation method used. In order to identify new parameters with a better potential to predict the chance of success or failure of natural conception as well as of ART, several parameters have been suggested, however, so far without any breakthrough.

Recent evidence suggests that a variety of genetic causes are likely to be associated with male infertility and can probably also explain many of the idiopathic cases of infertility. Sperm DNA damage, in terms of DNA fragmentation and/or changes in fertility related genes are suggested contributing to the problem and could therefore have the potential to be used as markers of fertility/infertility. The level of DNA damage as measured by one of the available analysing methods, the Sperm Chromatin Structure Assay (SCSA) is expressed as DNA fragmentation index (DFI) and high DNA stainability (HDS), the latter a measure of immature spermatozoa.

Infertile men are shown to have higher number of sperm with DNA damage compared to fertile men and two studies have shown that couples where the men have a high DFI (>30-40%) need longer time to obtain a pregnancy compared to couples where the men have a low DFI. Other studies have suggested a negative relation between sperm DNA damage and ART outcome. Additionally, a threshold levels for DFI in regard to fertility, measured in neat semen were suggested to be set at DFI 27% and it was questioned whether ART was able to compensate for poor sperm DNA quality. Moreover, it has been claimed that DFI is a more stable parameter than conventional semen parameters in the sense that the individual variation within a man should be less for DFI than for sperm concentration, motility and morphology - parameters normally used to diagnose male infertility.
The overall aim of the present studies was to identify genetic markers of fertility, in order to improve the diagnosis of male-dependent infertility. More precisely we aimed to evaluate whether any threshold values of DFI and HDS could be set in relation to pregnancy outcome of ART in neat- and density gradient centrifuged semen, and how DFI and HDS correlated to fertilisation rates and embryo development in in vitro fertilisation (IVF) and ICSI (Papers I-III). We also aimed to evaluate intra-individual variation of DFI in an ART population (Paper IV). Lastly, we aimed to study whether total fertilisation failure after IVF could be explained by DNA sequence changes in the PCI gene and also whether there was any association between fertilisation failure and SCSA parameters. A material of about 1000 ART treatment cycles are included in the studies.

In regard to fertilisation failure, the results of Paper V showed that a specific mutation in the PCI gene was significantly more common among male patients involved in IVF fertilisation failure compared to the control group who had normal fertilisation rates after IVF. Two other novel mutations were also detected. The results indicate that in a subgroup of IVF-patients total fertilisation failure may be caused by polymorphisms in the PCI gene (Paper V).

In contrast to previous reports the results from the present studies demonstrated that ART is able to compensate for poor sperm DNA quality, in particular if ICSI is chosen as fertilisation method. DFI can be used as a predictor of fertility and as a tool in choosing the most effective form of ART. We found that DFI can be used as an independent predictor of fertility in couples undergoing IUI. When DFI passed 30% the chance of obtaining a pregnancy by IUI was close to zero. On the other hand a DFI above 30% did not restrict pregnancy by ART. If the most invasive fertilisation method, ICSI, was chosen, the couple had the same chance to obtain a pregnancy as couples where the male partner had a low DFI. If DFI was above 30% ICSI was more effective than IVF. No impact of DFI or HDS was seen on fertilisation or embryo development. Although one could not exclude an increased risk that DFI levels >60% are associated with a higher risk of early pregnancy loss, no association between high DFI or HDS and early pregnancy loss was found for DFI levels below 60% (Paper II). Another important finding is that DFI should be measured in neat semen, not in processed. DFI in prepared semen did not predict pregnancy outcome of ART as raw semen did (Paper III). Moreover, DFI is not as stable as previous studies have claimed (Paper IV). Thus, DFI should be measured shortly before the actual ART treatment.

With these studies significant progress in identifying markers of male fertility in ART was made. Measures of genetic aberrations in terms of sperm DNA fragmentation can be used as markers of fertility, in order to decide which level of ART- treatment is necessary; the simple IUI or more advanced treatments, such as IVF or ICSI.
NORSK POPULÆRVITENSKAPELIG SAMMENDRAG

I hele den vestlige verden er ufrivillig barnløshet et hyppig forekommende problem. Omkring 15% av alle par opplever problemer med å oppnå ønsket graviditet, de er såkalt infertile eller subfertile. I løpet av de siste tre årtier har behandlingsmulighetene for ufrivillig barnløse par blitt vesentlig forbedret. Ved hjelp av såkalt assistert befruktning (ART) har man i dag flere ulike behandlingsmuligheter, alt fra enkel inseminasjonsbehandling (IUI) til in vitro fertilisering (IVF) (prøverørsbehandling) eller avansert mikroinjeksjonsbehandling (ICSI).

Til tross for en enorm økning i kunnskapene på fertilitetsområdet, er utredningen av årsakene til barnløsheten stadig mangelfull, og kriteriene for hvem som skal ha hvilken behandling er uklare. Etter utredning står så mange som 25% av parene uten en diagnose, de er såkalt uforklarlig infertile. Så mange som to tredjedeler av mennene har ingen forklaering på hvorfor deres sædkvalitet er nedsatt. En manglende diagnose kan, på den ene side gi seg utslag i en begrenset effektivitet av behandlingene, og på den andre side et mulig overforbruk av assistert befruktning, spesielt ICSI. Siden den første rapport om ICSI, som behandling for nedsatt sædkvalitet ble publisert i 1992, har bruken av metoden økt markant, også ved normal sædkvalitet. Likevel har man ikke et klart bilde av om eventuelle mannlige kromosom- eller genfeil nedarves gjennom generationer eller om metoden i seg selv, på lengre sikt kan uønskede konsekvenser. Enklere årsaksrelatert behandling gjøres i dag bare i mindre grad, men om flere par ble diagnosert, ville man trolig kunne behandle mange flere med enklere medisinsk behandling.

For mannens del, består utredningen av årsakene til barnløsheten tradisjonelt av en mikroskopisk bedømmelse av sædkvaliteten. Verdens Helseorganisasjon (WHO) har satt opp kriterier for hva som er normalt og unormalt i forhold til antall sædceller, bevegelighet og morfologi (utseende). Kriteriene har imidlertid vist seg å være usikre i forhold til å bedømme mannens evne til å oppnå graviditet med partneren. Mange menn med sædkvalitet under WHOs grense gir opphav til
Graviditet, mens det på samme tid er vist at også menn med normal sædkvalitet har problemer med å gjøre sin partner gravid. Behovet for parametre som evner å gi et bedre mål på mannens fertilitetsevne er stort.

Det er mange årsaker til mannlig ufrivillig barnløshet; hormonelle, funksjonelle såvel som genetiske. Hos minst 15% av menn med nedsatt sædkvalitet mener man at det er genetiske årsaker som ligger bak barnløsheten. Kromosomfeil av ulik art er en hyppig årsak til mannlig infertilitet. En type kromosomfeil kan være at en viss andel av sædcellene har brudd i kromosomenes DNA-streng (sædcellens arvemateriale). De defekte kromosomene synes ikke ved vanlig mikroskopisk undersøkelse, men kan oppdages ved hjelp av såkalt flowcytometri analyse (i avhandlingen Sperm chromatin structure assay (SCSA)). Resultatet av SCSA analysen angis som DNA fragmenterings-index (DFI), et mål på hvor stor andel av sædcellene som har kromosombrudd, angitt i prosent og HDS (High DNA stainability), et uttrykk for andelen av umodne sædceller. SCSA metoden har så langt stort sett bare vært brukt innenfor veterinærmedisin og ikke i utredning av mannlig infertilitet. Studiene som ingår i denne avhandling omhandler anvendelsen av SCSA i behandling av ufrivillig barnløshet (Artikler I-V). I en av studiene (Artikkel V) utføres i tillegg mutasjonsundersøkelser av et bestemt gen (Protein C Inhibitor (PCI) gen) som i dyreforsøk har vist seg å ha en avgjørende betydning for sædcellenes evne til å befrukte, spontant eller ved hjelp av IVF.

Materialet som er studert, er basert på sædprøver innsamlet fra ca 1000 menn i fertilitetsbehandling, alle samlet inn ved Fertilitetsklinikken, Sygehus Viborg, Skive, Danmark. Innen våre studier ble påbegynt hadde flere studier vist at ufrivillig barnløse menn hyppigere har sædceller med kromosombrudd, enn de som er fertile. Et par andre studier hadde også vist at par hvor mennene hadde høy andel av sædceller med kromosombrudd, brukte lengre tid på å oppnå graviditet spontant sammenlignet med par hvor mannen hadde sædceller med få kromosombrudd. En gruppe forskere i USA hadde også i noen mindre studier funnet at man ikke kunne oppnå graviditet ved assistert befruktning om DFI var over 27%. Andre mindre studier har vist at høy DFI og HDS har en negativ betydning for befruktning, utvikling av de befruktede egg (embryo) og for abortrisiko, men data var ikke konklusive. Disse funn var et viktig utgangspunkt for våre studier.

I avhandlingen presenteres resultater som blant annet viser at sjansen for å oppnå graviditet ved hjelp av inseminasjonsbehandling er nær null dersom DFI er høy (over 30%) (Artikkel I og II). Når ICSI velges som befruktningsteknikk har imidlertid menn med høy grad av kromosombrudd i sædcellene (høy DFI) like gode sjanser for å oppnå graviditet med sin partner som menn hvor DFI er lav. Så mange som 20-25% av menn som søker fertilitetsbehandling har DFI over 30%. Til forskjell fra endel andre studier, men i samsvar med andre, viste artikkel II også at høy DFI og HDS ikke hadde negativ betydning for befruktning eller utvikling av
embryo (befruktete egg) (Artikkel II). Med hensyn til risiko for tidlig abort, fant vi ingen indikasjoner på at det var en sammenheng mellom DFI og abortrisiko, dog med en viss usikkhet for de aller høyeste verdier (>60%) (Artikkel II). Resultatene fra artikkel IV, viste på samme måte at som de tradisjonelle sædkvalitets parametre, så varierer DFI fra prøve til prøve, dog likevel ikke i samme uttalte grad som for de tradisjonelle parametre. Optimalt bør SCSA gjøres i fertilitetsutredningen samt umiddelbart innen hver påbegynte fertilitetsbehandling.

Hos en viss andel av de par som gjennomgår IVF, mislykkes befruktningen, uten at man finner noen forklaring. Disse par kan i ny behandling hjelpes ved ICSI, hvor man mekanisk hjelper sædcellen inn i egget. Dette gir imidlertid ikke paret noen forklaring på den manglende befruktning og risikoen for at eventuelle genetiske feil nedarves vil være tilstede. Sannsynligvis ligger det mange mulige årsaker bak en mislykket befruktning, men forskningen på problemet har vært meget begrenset. I et enkelt dyreforsøk fant man at PCI-genet var en forutsetning for at sædcellen skulle kunne befrukte egget. I artikkel V ble DNA (arvemateriale) fra menn hos par som ikke hadde befruktning av eggene i sin første IVF behandling (Artikkel V) undersøkt. PCI-genet hos disse menn ble kartlagt og sammenlignet med en kontrollgruppe samt den normale variant av genet. Avhandlingen presenterer resultater som viser at for endel av de par som opplever manglende befruktning ved IVF, kan årsaken høve på forandringar (mutationer) i PCI-genet.

Samlet viser avhandlingen at man gjennom anvendelsen av nye genetiske markører for fertilitet i utredning og behandling av det ufrivillig barnløse par kan oppnå en mer målrettet, individuell og effektiv behandling. SCSA er et verdifullt redskap til å undersøke DNA-skade i sædceller hos ufrivillig barnløse menn. Innføring av SCSA analysen i utredning og behandling av ufrivillig barnløse par, bør kunne bety en bedre ressursutnyttelse. Fertilitesklinikkene kan gjøre bruk av DFI som en parameter til å utvelge den enklaste og best mulige behandlingsform for paret. For paret bør anvendelse av analysen bety en hurtigere vei til den rette behandling, en mindre belastende behandlingsprosess samt en større sjansen for å oppnå den ønskede graviditet. For de par som opplever eller risikerer manglende befruktning ved IVF, kan forklaringen ligge i forandringar i PCI-genet, men innen man kan anbefale en rutinemessig bruk av denne analysen, bør nye større studier utføres.
ACKNOWLEDGEMENTS

This work was performed partly at the Reproductive Medicine Centre, Malmö University Hospital, Lunds University, Sweden and partly at the Fertility Clinic, Viborg Hospital, Denmark. Among the many people without whose generous and able assistance this thesis could never have been completed, I would particularly like to express my thanks to the following:

Aleksander Giwercman, my supervisor, boss and friend, for genuine support and for being so enthusiastic, optimistic and funny to cooperate with and learn from. You really make a difference!

Yvonne Giwercman, my co-supervisor, for unique teaching and guidance, for your impressing patience and helpfulness. Thanks for your encouragement and warm friendship and for always having time for me;

Marcello Spano, my co-supervisor, for, on distance, so willingly sharing knowledge and new papers with me. Thanks for your support in writing the manuscripts and for being a good friend;

Peter Humaidan, my friend and former colleague at the Fertility Clinic, Viborg Hospital in Skive, Denmark, for important contribution and encouragement;

All former colleagues at the Fertility Clinic, Viborg Hospital in Skive, Denmark, for the enthusiasm in recruiting patients and collecting samples for the studies.

Katarina Jepson, Patrizia Eleuteri and Michele Rescia for doing parts of the SCSA analysis and Hamideh Rastkhani and Susanne Lundin for helping with the sequencing procedures when everything seemed to be against me;

Juris Erenpreiss, Anna Axmon, Saad Elzanaty and Janis Orbidans for co-authorship;

Johan Malm and Birgitta Frohm, for so kindly letting the flowcytometer being available for the SCSA analysis;

All colleagues at the Reproductive Medicine Centre (RMC) and both past and present members of our research group at the Clinical Research Centre (CRC) for help and friendship;

Martin Stjärnvist and Preben Christensen for being opponents at the half-time control;
This work would not have been done without the inspiration I got from a particular lecture about sperm chromatin integrity testing, held in Århus, Denmark in 2002 by my thesis opponent, Professor Donald Evenson. Many thanks for this inspiring introduction to the field;

I cannot end without thanking my family, on whose constant encouragement and love I have relied throughout the work with the thesis:

My mother and my father, for giving me the “never-give-up” genes and for bringing me up in a loving atmosphere and my three sisters for all talks concerning all other topics of life;

Special thanks to my husband Leif, for your important professional contribution to this work, but most of all for your inspiration, never-ending support, love and friendship;

All our wonderful children, Ane, Ola, Lars, Linn, Helle and Silje for bringing so much happiness and love into my life;

Katharina, for sharing so much of your time with our family and also particular thanks for creating the front page of this book;

Finally, I want to thank the boys I first have met during this work, Johan, Karsten, Carsten, Theodor and Max for giving me such a promising future…!
REFERENCES

153. Kurinczuk, J. J. (2003) Safety issues in assisted reproduction technology. From theory to reality--just what are the data telling us about ICSI offspring health and future fertility and should we be concerned? Hum Reprod 18, 925-931.

ORIGINAL PUBLICATIONS