Urinary Biomarkers and Patient Outcome in Chronic Kidney Disease and Atherosclerotic Heart Disease: The value of IgM-uria and IgG-uria

TOFIK, RAFID

2014

Citation for published version (APA):
Tofik, R. (2014). Urinary Biomarkers and Patient Outcome in Chronic Kidney Disease and Atherosclerotic Heart Disease: The value of IgM-uria and IgG-uria Department of Nephrology, Lund University
Urinary Biomarkers and Patient Outcome in Chronic Kidney Disease and Atherosclerotic Heart Disease:

The value of IgM-uria and IgG-uria

Rafid Tofik

DOCTORAL DISSERTATION
by due permission of the Faculty of Medicine, Lund University, Sweden.
To be defended at Segerfalksalen, BMC, Sölvegatan 17, Lund, on 27 September 2014 at 10 am.

Faculty opponent
Professor Bengt Lindholm, Karolinska Institutet
Stockholm, Sweden
Risk stratification of patients with chronic kidney disease and atherosclerotic heart disease is crucial. Microalbuminuria (MA) is associated with an increased risk of kidney and cardiovascular (CV) death, especially in patients with diabetes. However, MA in many instances is not sensitive for disease outcome; for instance, not all diabetic patients with albuminuria progress to kidney failure, and not all patients with diabetic kidney disease (DKD) have albuminuria. Furthermore, albuminuria is not essentially associated with endothelial dysfunction or glomerular lesions in non-diabetic patients. Urinary excretion of larger proteins, such as IgM and IgG would better reflect glomerular dysfunction and vascular endothelial damage. In this thesis we aimed to evaluate the value of IgG-uria and IgM-uria in predicting kidney and CV outcome in patients with diabetes, glomerulonephritis and atherosclerotic heart disease.

In study I, 139 patients with type-1 diabetes, and in study II, 106 patients with type-2 diabetes, were followed at the diabetes outpatient clinic, for an average of 18 and 5 years, respectively. Type-1 & -2 diabetic patients had about a 3-fold increase in CV and renal mortality (HR = 2.7, p = 0.004, and HR = 3.6, p < 0.001, respectively) if they had an increased urine IgM excretion, even when adjusted to the degree of albuminuria. In study III, 178 consecutive patients who presented with acute chest pain to the emergency department of Lund University Hospital were followed for up to 2 years. Patients with acute coronary syndrome had significantly higher baseline IgM-uria than those with non-specific chest pain. Chest pain patients with IgM-uria at time of presentation had a 3-fold higher risk for the occurrence of subsequent major CV event (HR = 3.3, p = 0.001). In study IV, 189 patients with proteinuric primary glomerulonephritis were followed at the nephrology outpatient clinic for an average of 8 years. Patients with an increased urine IgG excretion had an increased risk for end-stage kidney disease (ESKD), even when adjusted for the degree of albuminuria and kidney function (HR = 5.9, p = 0.001).

In conclusion, IgM-uria could be a useful biomarker for kidney and cardiovascular risk assessment of patients with diabetes and atherosclerotic heart disease. IgM-uria could imply an extensive atherosclerotic vascular disease. IgG-uria is helpful in identifying patients with glomerulonephritis at increased risk for disease progression to ESKD.

Key words: Proteinuria, Albuminuria, urine IgM, urine IgG, glomerulonephritis, chronic kidney disease, atherosclerosis, cardiovascular disease, diabetic kidney disease.
Urinary Biomarkers and Patient Outcome in Chronic Kidney Disease and Atherosclerotic Heart Disease:

The value of IgM-uria and IgG-uria

Rafid Tofik
Cover illustration: Schematic cartoon demonstrating the glomerular filtration barrier, small pores, large pores and shunt-pathway.

Copyright © Rafid Tofik

Lund University, Faculty of Medicine
ISBN 978-91-7619-034-0
ISSN 1652-8220

Printed in Sweden by Media-Tryck, Lund University
Lund 2014
To mother and father
my wonderful family
my brother and sister
Contents

Abstract

List of Publications

Abbreviations

Aims Of The Thesis

INTRODUCTION

 The Kidneys

 The glomerular filtration barrier

 Transport theories for protein sieving across the glomerular filtration barrier

 Proteinuria

 Protein reabsorption in the proximal tubules

 Proteinuria and cardiovascular disease

 Urinary biomarkers

 Chronic Kidney Disease (CKD)

 Prevalence and incidence of CKD

 CKD and occurrence of cardiovascular disease (CVD)

 Glomerulonephritis

 Epidemiology

 Types of Glomerulonephritis

 Diabetes Mellitus

 Classification

 Cardiovascular disease and diabetes

 Diabetic Kidney Disease

 The Pathophysiology of DKD

 Atherosclerosis

 The Pathophysiology of Atherosclerosis

MATERIALS AND METHODS

 Study I

 Study II

 Study III

 Study IV
Patient follow-up 37
Laboratory analysis 37
Glomerular filtration rate 38
Statistical analysis 38
RESULTS 39
Study I and II 39
Study III 43
Study IV 45
DISCUSSION 47
CONCLUSIONS 51
Further perspectives 53
Populärvetenskaplig sammanfattning (Swedish Summary) 55
Grants 59
Acknowledgments 61
References 63
Abstract

Risk stratification of patients with chronic kidney disease and atherosclerotic heart disease is crucial. Microalbuminuria (MA) is associated with an increased risk of kidney and cardiovascular (CV) death, especially in patients with diabetes. However, MA in many instances is not sensitive for disease outcome; for instance, not all diabetic patients with albuminuria progress to kidney failure, and not all patients with diabetic kidney disease (DKD) have albuminuria. Furthermore, albuminuria is not essentially associated with endothelial dysfunction or glomerular lesions in non-diabetic patients. Urinary excretion of larger proteins, such as IgM and IgG would better reflect glomerular dysfunction and vascular endothelial damage. In this thesis we aimed to evaluate the value of IgG-uria and IgM-uria in predicting kidney and CV outcome in patients with diabetes, glomerulonephritis and atherosclerotic heart disease.

In study I, 139 patients with type-1 diabetes, and in study II, 106 patients with type-2 diabetes, were followed at the diabetes outpatient clinic, for an average of 18 and 5 years, respectively. Type-1 & -2 diabetic patients had about a 3-fold increase in CV and renal mortality (HR = 2.7, p = 0.004, and HR = 3.6, p < 0.001, respectively) if they had an increased urine IgM excretion, even when adjusted to the degree of albuminuria. In study III, 178 consecutive patients who presented with acute chest pain to the emergency department of Lund University Hospital were followed for up to 2 years. Patients with acute coronary syndrome had significantly higher baseline IgM-uria than those with non-specific chest pain. Chest pain patients with IgM-uria at time of presentation had a 3-fold higher risk for the occurrence of subsequent major CV event (HR = 3.3, p = 0.001). In study IV, 189 patients with proteinuric primary glomerulonephritis were followed at the nephrology outpatient clinic for an average of 8 years. Patients with an increased urine IgG excretion had an increased risk for end-stage kidney disease (ESKD), even when adjusted for the degree of albuminuria and kidney function (HR = 5.9, p = 0.001).

In conclusion, IgM-uria could be a useful biomarker for kidney and cardiovascular risk assessment of patients with diabetes and atherosclerotic heart disease. IgM-uria could imply an extensive atherosclerotic vascular disease. IgG-uria is helpful in identifying patients with glomerulonephritis at increased risk for disease progression to ESKD.
This thesis is based on the following publications:

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR</td>
<td>Albumin creatinine ratio</td>
</tr>
<tr>
<td>AGE</td>
<td>Advanced glycation end products</td>
</tr>
<tr>
<td>Ang II</td>
<td>Angiotensin II</td>
</tr>
<tr>
<td>Apo CIII</td>
<td>Apolipoprotein CIII</td>
</tr>
<tr>
<td>AT1R</td>
<td>Angiotensin type 1 receptors</td>
</tr>
<tr>
<td>CKD</td>
<td>Chronic Kidney Disease</td>
</tr>
<tr>
<td>CV</td>
<td>Cardiovascular</td>
</tr>
<tr>
<td>DM</td>
<td>Diabetes Mellitus</td>
</tr>
<tr>
<td>DKD</td>
<td>Diabetic Kidney Disease</td>
</tr>
<tr>
<td>ESKD</td>
<td>End-stage Kidney Disease</td>
</tr>
<tr>
<td>FSGS</td>
<td>Focal segmental glomerulosclerosis</td>
</tr>
<tr>
<td>GBM</td>
<td>Glomerular basement membrane</td>
</tr>
<tr>
<td>GFB</td>
<td>Glomerular filtration barrier</td>
</tr>
<tr>
<td>GFR</td>
<td>Glomerular filtration rate</td>
</tr>
<tr>
<td>GN</td>
<td>Glomerulonephritis</td>
</tr>
<tr>
<td>GTPase</td>
<td>Guanosine triphosphatases</td>
</tr>
<tr>
<td>H⁺-ATPase</td>
<td>Proton-adenosine triphosphatase</td>
</tr>
<tr>
<td>HMW</td>
<td>High molecular weight</td>
</tr>
<tr>
<td>HPSG</td>
<td>Heparan sulphate proteoglycans</td>
</tr>
<tr>
<td>hsCRP</td>
<td>High sensitive C-reactive protein</td>
</tr>
<tr>
<td>IgAN</td>
<td>Immunoglobulin A nephropathy</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunoglobulin G</td>
</tr>
<tr>
<td>IgM</td>
<td>Immunoglobulin M</td>
</tr>
<tr>
<td>IHD</td>
<td>Ischemic heart disease</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>IL-1β</td>
<td>Interleukin-1beta</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>KDOQI</td>
<td>Kidney Disease Outcomes Quality Initiative</td>
</tr>
<tr>
<td>LDL</td>
<td>Low-density lipoprotein</td>
</tr>
<tr>
<td>LMW</td>
<td>Low molecular weight</td>
</tr>
<tr>
<td>LPL</td>
<td>Lipoprotein lipase</td>
</tr>
<tr>
<td>MA</td>
<td>Microalbuminuria</td>
</tr>
<tr>
<td>MCN</td>
<td>Minimal change nephropathy</td>
</tr>
<tr>
<td>MN</td>
<td>Membranous nephropathy</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric Oxide</td>
</tr>
<tr>
<td>PKC</td>
<td>Protein kinase C</td>
</tr>
<tr>
<td>Protein HC</td>
<td>Protein α1-microglobulin</td>
</tr>
<tr>
<td>Rac1</td>
<td>Ras-related C3 botulinum toxin substrate 1</td>
</tr>
<tr>
<td>RAGE</td>
<td>Receptor of advanced glycation end products</td>
</tr>
<tr>
<td>RAS</td>
<td>Renin-angiotensin system</td>
</tr>
<tr>
<td>RhoA</td>
<td>Ras homolog gene A</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Transforming growth factor beta</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumor necrosis factor-alpha</td>
</tr>
<tr>
<td>TNT</td>
<td>Troponin T</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
</tr>
<tr>
<td>Å</td>
<td>Ångström</td>
</tr>
</tbody>
</table>
Aims Of The Thesis

1. STUDY I: To study the prognostic value of IgM-uria in predicting the cardiovascular and renal outcomes in patients with type-1 DM.

2. STUDY II: To study the prognostic value of IgM-uria in patients with type-2 diabetes in comparison to albuminuria.

3. STUDY III: To explore the association of IgM-uria and acute coronary syndrome in patients with acute chest pain, and its impact in predicting subsequent major cardiovascular events.

4. STUDY IV: To study the prognostic value of IgG-uria in comparison to albuminuria in patients with idiopathic glomerular disease.
INTRODUCTION

Chronic kidney disease (CKD), diabetes mellitus (DM) and ischemic heart disease (IHD) have been considered to be a major global health problems because of rising incidence and prevalence, high financial costs and fatal outcomes [1-3]. Patients with such chronic diseases are highly vulnerable to cardiovascular (CV) complications and premature death [4]. Fortunately, preventive medical management is available for patients at risk. However, in many cases it is still difficult to assess the individual risk for subsequent cardiovascular complications and outcomes [5]. Therefore, there is a constant need for new better markers to early identify risk groups, for immediate preventive management of complications.

Albuminuria is a well-established urinary biomarker for the diagnosis and prognostic evaluation of patients with kidney diseases. It is associated with generalized vascular endothelial dysfunction and worse cardiovascular outcome [6-9]. The risk of kidney and CV disease is already high in patients with urine albumin concentrations lying at the “upper normal limit” [10]. However, not all patients with albuminuria will progress to kidney failure and not all patients with kidney disease develop albuminuria [11, 12]. Albuminuria per se could be due to other factors than glomerular injury, such as proximal tubular dysfunction [13], or due to other non-pathological conditions such as physical exercise [14-19]. Recently, some experimental and epidemiological studies have pointed out a better correlation between increased urine concentrations of high molecular weight proteins and the diagnosis and prognostic evaluation of kidney disease [20-24]. In this thesis we investigated the significance of urine concentrations of IgM and IgG in predicting the risk of end-stage kidney disease and cardiovascular death in longitudinal cohorts of patients with glomerular diseases, diabetes mellitus, and coronary artery disease.
The Kidneys

Each human being has two kidneys, located retroperitoneally inside the abdomen and each kidney is supplied by a renal artery. Total blood flow to the kidneys is about 1100 ml/min, or about 22% of the cardiac output. The “nephron” is the smallest functional unit in the kidney. Each kidney consists of approximately one million nephrons. The nephron contains a “glomerulus” through which the blood filtered, and “tubules” in which the filtered fluid, the primary urine, is converted to the final urine. Several tubules drain into a larger collecting duct. The glomerulus is made up by a capsule-like structure called the “Bowman’s capsule” in which a network of small anastomosing glomerular capillary vessels covered by epithelial cells invaginates. The primary urine is collected in the “Bowman’s space” before it runs further into the proximal tubule (figure 1).

![Figure 1](image)

Figure 1. The structure of the nephron and the glomerulus.

Both kidneys filter about 180 liter of plasma a day. At the tubular system of the nephron, about 99% of the primary urine (which is normally devoid of proteins and cellular elements but has similar composition as plasma) is reabsorbed to maintain fluid, electrolyte and acid-base balance, resulting in the final urine in the collecting ducts.
Besides their main and most important function in filtering plasma, eliminating waste products from the filtrate and returning back vital substances to the circulation; the kidneys play an important role in many other vital physiological functions. They regulate water and electrolyte balance, acid-base balance, arterial blood pressure, erythrocyte homeostasis and vitamin D3-production.

The glomerular filtration barrier

The glomerular filtration barrier (GFB) consists of three sequential layers (figure 2). The first layer is the endothelial cell layer that lines the capillary from the inside. It is perforated by relatively large holes (about 60 – 90 nm in diameter), called fenestrae. This layer is endowed with a negatively charged glycocalyx that consists of glycosaminoglycans and proteoglycans [25-27]. The second layer is the glomerular basement membrane (GBM). It is a meshwork of collagen IV and laminin, cross-linked with negatively charged sulfated glycoproteins and proteoglycans [27]. The third outermost layer, is the epithelial layer which consists of highly specialized contractile cells, the podocytes, with its interdigitating foot processes that embrace the glomerular capillaries. The foot processes contain F-actin filaments and non-muscle myosin. The gaps between the foot processes, the filtration slits, are interconnected by a thin membranous structure (40 nm wide), the slit diaphragm, through which the glomerular filtrate percolates. The slits are made up by a number of adherence and signaling proteins, mainly nephrin, podocin and Neph1, that play a critical role in maintaining of the structural integrity of the podocyte cytoskeleton, and thereby, the whole filtration barrier [28]. The podocytes are also covered by negatively charged glycoproteins [29, 30]. All these three layers continuously interact with each other mechanically and biochemically.

Figure 2. A schematic drawing of the structure of the glomerular filtration barrier.
Until now it is still controversial which part of the GFB is representing the major filtration barrier to macromolecules. However, dysfunction of any of the above mentioned layers of the GFB, and possibly, changes in the hemodynamic state, may result in proteinuria [29, 31]. The GFB has a highly dynamic sieving capacity. Its permeability to large molecules, like albumin, can rapidly and dynamically change in response to different physiological and pathophysiological conditions such as, systemic inflammation, trauma, acute hyperglycemia, increased plasma levels of ANP (atrial natriuretic peptide) and increased plasma levels of angiotensin II [13, 15, 32-36].

Transport theories for protein sieving across the glomerular filtration barrier

The permeability (sieving coefficients) of the GFB to various molecules decreases with increasing size of the molecule. Normally, for larger proteins, like albumin (molecular radius ∼36 Å), only tiny amounts are filtered across the glomerulus (one molecule out of 10,000) [29], and more than 97% of the filtered albumin is normally reabsorbed by the proximal tubules [13, 32]. For very large proteins, such as IgM (molecular radius 120 Å), these molecules normally do not pass the GFB, except in case of severe damage of the GFB. The transport of proteins through the GFB is not only restricted by size-selectivity but also, to some extent, by charge-selectivity of the filtration barrier and size, shape and charge of the permeating molecule, in addition to glomerular plasma flow and pressure [20, 37, 38]. A widely used model for transport of proteins across the GFB is the "two-pore with a shunt" model [39-42]. According to this model, the majority of the pores are of radius 37.5 Å and, in addition, there is a very small number (1 x 10⁶ of the small pore number) of large pores of radius 110 Å [37, 38, 43]. The small pore population is affected by negative charge, which makes the barrier more impermeable to negatively charged macromolecules of the same size. Thus, the negatively charged native albumin molecule of molecular radius 36 Å is totally excluded from the negatively charged small pore radius 37.5 Å because of charge-selectivity [13]. At normal ionic strength approximately 20% of the Debye length (i.e. 20% of 8 Å) will functionally add on to the albumin radius and has to be subtracted from the small pore radius to account for the impact of the negative charge-selectivity of the GFB [29, 44]. Thereby, albumin and larger proteins are confined to large pores (by convection) for their passage across the GFB [37, 38, 43]. In addition to these pores there may be large sporadic physiological "defects" or "shunts" in the GFB. These shunts are large enough to allow transport of larger proteins like IgM and even red blood cells [37, 45, 46]. The normal glomerular sieving coefficient to red blood cells is only ∼10⁻⁹.
Another widely used model of the GFB permeability is the (negative charged) fiber-matrix model with or without the presence of large pores [40]. This model is mechanistically and mathematically not very different from the two-pore model, but is somewhat less intuitive.

Proteinuria

The excreted urinary proteins can be classified according to the molecular size of the filtered proteins into low molecular weight (LMW) proteinuria (molecular weight 10 - 44 kDa), intermediate (MW 44 - 90 kDa) and high molecular weight (HMW) proteinuria (MW > 90 kDa). Proteinuria can also be classified according to the site of damage in the nephron, into “glomerular proteinuria”, where larger proteins pass through a defect in the GFB (size- or charge-selectivity defect); or “tubular proteinuria” when smaller proteins filtered across the GFB cannot be reabsorbed by a defect in the proximal tubules. “Overload proteinuria” refers to overproduction of proteins in the plasma to be filtered in large amounts that exceed the tubular capability for reabsorption. In glomerular diseases, the major protein leaked to the urine is plasma albumin, and in general, proteinuria refers often to albuminuria, unless specifically stated otherwise (e.g. Bence-Jones proteinuria). Glomerular proteinuria could be of “selective” type, when mainly albumin is seen in the urine; and of “non-selective” type, when larger proteins (such as IgG, IgM and α-macroglobulin) are also seen in significant amount with albumin in the urine.

A daily urinary albumin excretion of < 30 mg/day or a urine albumin/creatinine ratio (ACR) < 3 mg/mmol, is referred to as “normoalbuminuria”. A low grade increase in the urine albumin excretion is called “microalbuminuria” which refers to urinary albumin excretion range between 30-300 mg/day or ACR 3-30 mg/mmol. Albuminuria over 300 mg/day or ACR > 30 mg/mmol is defined as “macroalbuminuria”. “Nephrotic range proteinuria” usually refers to urinary albumin excretion > 3 g/day or ACR > 300 mg/mmol.
Protein reabsorption in the proximal tubules

The reabsorption of protein molecules in the initial part of the proximal tubules occurs by binding to the brush-border apical membrane receptor (megalin and cubulin) and a receptor-mediated endocytosis [47]. The apical endocytosis apparatus is mainly located in the first two segments of the proximal tubule. Filtered protein molecules bind to megalin and cubulin receptors at the apical membrane, forming apical clathrin-coated pits. These pits release from the membrane to form clathrin-coated vesicles. After losing the clathrin-coat, the protein-megalin/cubulin ligands start to dissociate, by vesicular acidification via H⁺-ATPase, into uncoated acidic endosomes, and the megalin and cubulin recycle back to the apical membrane via dense apical tubules. The endosomes are then taken up by lysosomes for degradation of the protein molecules into amino-acids, to be returned back to the circulation [48-51] (figure 3). The time until protein molecules are taken up by lysosomes may take up to 15 minutes and for albumin degradation to amino acids up to 120 minutes [52]. In tracer studies there is a linear accumulation of radiolabeled proteins (albumin) in the proximal tubules during ~ 0 – 8 min, which is used in tissue-uptake studies of protein transport across the GFB [38]. Normally the tubular reabsorption of protein is almost complete (~ 98%). However, the tubular maximum for protein reabsorption is rapidly exceeded in states of increased proteinuria. Hence, proteinuria in glomerular disease is a result of both glomerular size-selectivity defects and (partial) saturation of tubular reabsorption.

Figure 3. A schematic drawing of cellular albumin reabsorption in the proximal tubule.
Proteinuria and cardiovascular disease

Patients with proteinuria, with or without diabetes, carry an increased risk for cardiovascular mortality [53]. The degree of urinary albumin excretion seems to follow a linear relationship with the risk of cardiovascular disease (CVD) [54]. Even a small increase in urine albumin excretion (at 1 mg/mmol), with or without other risk factors, such as DM and hypertension, is associated with higher risk for CVD and mortality [55, 56]. Albuminuria could reflect a generalized vascular endothelial dysfunction of small vessels (retinal, glomerular) and large vessels simultaneously [57-62]. Thus, albuminuria and CVD might be initiated by the same pathophysiological process of vascular endothelial dysfunction [57]. Albuminuria predicts CV mortality independently from traditional CV risk factors (diabetes, hypertension, dyslipidemia, smoking) and non-traditional CV risk factors (elevated plasma levels of C-reactive protein, interleukin-6, fibrinogen and white blood cells), [53, 54, 63].

Low grade albuminuria is associated with an increased CV death in patients with ischemic heart disease and myocardial infarction [64-66]. It is associated with the diagnosis of left ventricular hypertrophy, cerebrovascular insult and a 3-fold increased risk for heart failure [67-70].

Urinary biomarkers

Albumin is the main plasma protein, which produced by the liver (concentration in serum 34 - 45 g/L). Albumin is a compact, stable but flexible protein. It is ellipsoid (140 Å x 40 Å) in shape and comprised of 609 amino acids. The molecular weight is 69 kDa and the molecular radius is ~36 Å. Native albumin has a net negative charge of ~ -20. Albumin, by its abundance and negative charge, accounts for about 75% of the plasma oncotic pressure. In addition, it functions as an antioxidant and is immunomodulatory. It plays an important role in acid-base buffering and transport of molecules and ions, such as fatty acids, steroids and vitamins. Approximately 4% of the albumin pool, of which 50% is intravascular and 50% is extravascular (interstitial), is metabolized per day. The half-life of albumin is thus about 16-17 days [71, 72].

Immunoglobulin M (IgM) is a pentamer of IgG with a molecular weight of 950 kDa, and a molecular radius of ~120 Å, forming the largest antibody isotype molecule. It accounts for about 5-10% of all antibodies in the body. The normal plasma concentration is 0.5-4 g/L. There are two types of IgM, the natural IgM, which is the natural antibody produced predominantly by the B1 cells, and the antibody-mediated IgM [73, 74]. IgM has a high binding affinity to target antigens.
Immunoglobulin G (IgG) is a monomer with a molecular weight of 150 kDa, and a molecular radius of 55 Å. The normal plasma concentration is 5-15 g/L. IgG accounts for about 80% of all antibodies in the body. It predominates in secondary immunity response against infectious microorganisms. Differing in the number of disulphide bonds, there are four subclasses of human IgG namely IgG\(_1\) (65%), IgG\(_2\) (25%), IgG\(_3\) (6%), and IgG\(_4\) (4%) of different isoelectric points [75]. The IgG\(_4\) is known to be negatively charged, while the IgG\(_2\) is neutral.

\(\alpha 1\)-microglobulin (protein HC) is a small globular glycoprotein with charge heterogeneity and a molecular weight of 26 kDa [76]. The mean plasma concentration is 44 mg/L [77]. The liver is the main site for synthesis. Protein HC has a strong cell protective effect by its antioxidant nature, in addition to its immunoregulatory properties [78, 79]. Increased urinary excretion of protein HC is a good indicator for renal proximal tubular dysfunction [80, 81].

Chronic Kidney Disease (CKD)

Chronic kidney disease (CDK) is defined as presence of kidney damage, proteinuria, or decreased glomerular filtration rate (GFR). The GFR is the amount of filtered plasma through the glomerular filtration barrier in milliliters per minute and 1.73m\(^2\) surface area (mL/min/1.73m\(^2\)). Thus, CKD diagnosed when there is a decline in GFR, presence of albuminuria or presence of structural kidney damage. Independent of traditional risk factors, progression of CKD is associated with unpleasant outcomes like kidney failure, kidney replacement therapy, and premature cardiovascular death [82]. Even in the early CKD stages there is an increasing incidence of CV mortality [83, 84].

The causes of CKD are numerous. Diabetes mellitus (DM), glomerulonephritis and hypertension, are the main causes [85-87]. Other causes may include; interstitial nephritis, genetic disorders (polycystic kidney disease, Alport syndrome), chronic heart failure, liver cirrhosis or systemic infections (HIV infection). Individuals of age > 60 years, or chronic use of non-steroidal anti-inflammatory drugs are at increased risk for CKD [2].

The clinical staging of the CKD is mainly based on the measured or estimated GFR levels (table 1) [2, 88].
Table 1. The clinical staging of CKD according to the KDOQI.

<table>
<thead>
<tr>
<th>Staging</th>
<th>GFR mL/min/1.73m²</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>> 90</td>
<td>Normal or high</td>
</tr>
<tr>
<td>G2</td>
<td>60 - 89</td>
<td>Mildly decreased</td>
</tr>
<tr>
<td>G3a</td>
<td>45 - 59</td>
<td>Mildly to moderately decreased</td>
</tr>
<tr>
<td>G3b</td>
<td>30 - 44</td>
<td>Moderately to severely decreased</td>
</tr>
<tr>
<td>G4</td>
<td>15 - 29</td>
<td>Severely decreased</td>
</tr>
<tr>
<td>G5</td>
<td>< 15</td>
<td>End-stage kidney disease</td>
</tr>
</tbody>
</table>

Prevalence and incidence of CKD

The prevalence of CKD in general population in the US and in Europe is about 10% of adults [88, 89]. The prevalence of early stages of the CKD disease (CKD1-4, 3.3%, 3.0%, 4.3% and 0.2% respectively) is 100 times higher than the prevalence of end-stage kidney disease (G5 0.1%) [2]. The incidence of CKD increases with age. The annual incidence in middle aged is about 1%. Women have higher incidence of CKD but lower risk for kidney failure than men. African Americans have higher risk for kidney failure [90-92].

CKD and occurrence of cardiovascular disease (CVD)

Patients with CKD have high prevalence of ischemic heart disease, peripheral vascular disease, cerebrovascular disease, hypertension and cardiomyopathy. Therefore, patients with CKD are at higher risk to die of CVD than to develop end-stage kidney disease (ESKD) [93, 94]. Once they reach ESKD, the CV mortality increases by 10 to 30 times, mainly due to acute myocardial infarction and heart failure [94, 95].
Glomerulonephritis

Glomerulonephritis is an immune-mediated inflammation within the glomerulus, and is characterized by an increased glomerular filtration of different plasma proteins (glomerular proteinuria) [96, 97]. The glomerulonephritis (GN) is classified according to etiology (primary or secondary), clinical presentation (asymptomatic, acute, rapidly progressive or chronic) and according to histopathology (proliferative or non-proliferative, diffuse or focal etc.). GN represents a major cause of ESKD worldwide. However, the clinical course and outcome is highly variable [98]. The main burden of GN is the progression to chronic kidney disease with the accompanied risks of premature CV death, end-stage kidney disease, dialysis and renal transplantation.

Epidemiology

Glomerulonephritis in general is more common in male than female. IgA-nephropathy (IgAN), focal segmental glomerulosclerosis (FSGS) membranous nephropathy, and small vessel vasculitis are the most commonly diagnosed in adults, while minimal change nephropathy (MCN) is the most commonly diagnosed in children [99]. The incidence rate of primary GN worldwide varies between 0.2 and 2.5/100,000 population/year depending on the type of GN. It is 0.6/100,000/year for MCN, 0.8/100,000/year for FSGS, 1.2/100,000/year for membranous nephropathy and 2.5/100,000/year for IgAN [100]. However, in southern Sweden (Skåne district), the incidence rate for IgA is much higher, and accounts for about 4/100,000/year (the Swedish Renal Registry, www.snroline.se).
Types of Glomerulonephritis

The common types of glomerulonephritis are discussed briefly in Table 2.

Table 2. The causes, clinical symptoms and complications of the common types of glomerulonephritis.

<table>
<thead>
<tr>
<th></th>
<th>IgAN</th>
<th>FSGS</th>
<th>MCN</th>
<th>MN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause</td>
<td>Mesangial deposition of polymeric IgA1</td>
<td>Podocytes injury, cause still unknown</td>
<td>Effacement of podocytes foot processes, unknown pathology</td>
<td>Immune deposits of IgG and complement in the glomerular basement membrane.</td>
</tr>
<tr>
<td>Symptoms</td>
<td>- 50-60% macroscopic hematuria</td>
<td>- Clinical presentation as in nephrotic syndrome.</td>
<td>- Mainly children</td>
<td>- Mainly nephrotic syndrome in Caucasians.</td>
</tr>
<tr>
<td></td>
<td>30% asymptomatic microscopic hematuria and proteinuria</td>
<td></td>
<td>- Abrupt onset nephrotic syndrome</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-10% nephrotic or nephritic syndrome.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical course</td>
<td>- 20-40% develop ESKD</td>
<td>- > 50% develop ESKD.</td>
<td>- 40% spontaneous remission.</td>
<td>- 1/3 spontaneous remission.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- ESKD is rare</td>
<td>- 1/3 sustained symptoms.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 1/3 ESKD.</td>
</tr>
<tr>
<td>References</td>
<td>[98, 101]</td>
<td>[102]</td>
<td>[103]</td>
<td>[104]</td>
</tr>
</tbody>
</table>

IgAN = IgA-nephropathy; FSGS = focal segmental glomerulosclerosis; MCN = minimal change nephropathy; MN = membranous nephropathy; ESKD = end-stage kidney disease.
Diabetes Mellitus

Diabetes is a multi-systemic disease characterized by hyperglycemia and is resulting from defects in insulin secretion or action or both [105]. Diabetes mellitus is associated with multi-organ damage and dysfunction and premature mortality due to ischemic heart disease, and cerebrovascular disease [106]. According to the WHO the world prevalence of diabetes mellitus among adults (aged 20-79 years) estimated to increase from 6.4 % in 2010 to 7.7 % in 2030, and the number of adult patients with DM is expected to rise up to 439 million by 2030 [107]. This increment is predominantly due to the global increase in obesity, aging, stressful life conditions, smoking and decreased physical activity [108]. In developed countries the majority of people with DM are > 64 years of age, while in developing countries the majority are between 45-64 years of age. Men have higher prevalence for DM than women and the prevalence also varies among different races and ethnics [109].

Classification

According to the American Diabetes Association 2011 [105], DM is classified into four types,

1. Type-1 DM, is an immune-mediated disease where autoantibodies attack insulin-producing β-cells in the pancreas leading to hyperglycemia due to insufficient insulin hormone production. Patients require immediate insulin-replacement therapy. This type accounts for only 5-10% of patients with DM, and it does mainly affect children and adolescents.

2. Type-2 DM, is associated with increased insulin resistance in the cells, while insulin production remains unaffected initially. Type-2 DM accounts for about 90% of all diabetics and it affects mainly middle-aged adults and older. Most patients in this type are obese.

3. Other specific types, like genetic defects in insulin action, pancreatic disease, endocrinopathies (Cushing’s syndrome, Acromegaly), drug induced, infections, uncommon (Stiff-man syndrome).

4. Other genetic syndromes sometimes associated with diabetes, like Down’s syndrome
Cardiovascular disease and diabetes

Diabetic patients have nearly twice the mortality of the general population, because of prevalent cardiovascular disease, coronary artery disease, cerebrovascular disease and peripheral vascular disease [110]. Furthermore, diabetes is the main cause of blindness, lower leg amputation and stroke in adults [3, 111, 112]. There is a strong correlation between diabetes and the known well established markers of atherosclerosis (hyperglycemia, hyperlipidemia and low-grade inflammation) [113]. Furthermore the occurrence of persistent proteinuria in diabetic patients considerably increases the risk for cardiovascular death [114].

Diabetic Kidney Disease

DKD is a long-term kidney and vascular complication of diabetes mellitus (DM), and is manifested clinically by persistent albuminuria (> 30 mg/24h or a spot-urine albumin creatinine ratio > 3 mg/mmol), elevated blood pressure and progressive decline in kidney function. About one-third of the patients who have had DM over 20 years develop persistent microalbuminuria, even when diabetes is controlled [115-117], and about 15% of newly diagnosed type-2 DM have evidence of microalbuminuria [118]. DKD is a leading cause of end-stage kidney disease (ESKD), where about half of the patients on kidney replacement therapy are diabetics [119-122]. DKD is associated with many-fold increase in cardiovascular (CV) and all cause mortality [123]. In type-2 DKD, the clinical course and the kidney structural changes are more heterogeneous, and are usually influenced by aging, atherosclerosis and hypertension. [124-126]. DKD is more prevalent among Americans and Asians than Caucasians [127].

Clinically, the DKD can be classified according to urinary albumin excretion into two stages, incipient nephropathy characterized by low grade albuminuria of 3-29 mg/mmol, (previously called microalbuminuria), and established nephropathy characterized by high grade albuminuria of > 30 mg/mmol (previously called macroalbuminuria) [117]. Histologically, the glomerular lesions have been recently classified into 4 classes; Class 1: Thickening of the glomerular basement membrane (GBM); Class 2: Mesangial expansion (a. Mild, b. Severe); Class 3: Nodular sclerosis (Kimmelstiel-Wilson lesions); and Class 4: advanced diabetic glomerular sclerosis [128].
The Pathophysiology of DKD

During the course of diabetes, the body undergoes several metabolic derangements due to chronic hyperglycemia and increased insulin resistance. Diabetic kidney damage is believed to occur via different metabolic pathways, represented by the non-enzymatic glycation of proteins and the formation of advanced glycation end products (AGE), generation of reactive oxygen species (ROS), activation of protein kinase C (PKC), abnormal polyol metabolism, and activation of renin-angiotensin system (RAS). [129-131]. The receptors for AGE (RAGE) are upregulated in the diabetic kidney, mainly in podocytes and mesangial cells [132]. The stimulation of AGE-RAGE axis elicits oxidative stress generation, by increasing ROS and decreasing endothelial nitric oxide (NO) production [133]. ROS lead to inflammation (mediated by macrophages and cytokines) and fibrogenic stimulation (mediated mainly by transforming growth factor β (TGF-β) and vascular endothelial growth factor (VEGF)) at the glomerulus, resulting in glomerulosclerosis and tubulointerstitial fibrosis [134]. The hyperglycemia-induced activation of PKC is also important in the ROS generation and activation of the TGF-β and VEGF [135]. The activation of the local RAS leads to the production of angiotensin II (Ang II) which in turn increases glomerular capillary pressure and stimulates renal fibrosis through Ang II type1 receptors (AT1R) and stimulation of growth factors, such as TGF-β [136]. Finally, alteration of the polyol metabolism at the cellular level is assumed to increase the mitochondrial ROS generation [137]. All these metabolic alterations cause vascular wall inflammation, fibrosis, atherosclerosis and thrombosis [138, 139].

The early functional and structural alterations of the diabetic kidney include glomerular hyperperfusion, hypertrophy of the nephron and gross renal enlargement [140]. In the very early stages of DKD, albuminuria is mainly attributed to a defect in the albumin reabsorption in the proximal tubules because of decreased expression of megalin receptors and deficient endocytosis of albumin. The loss of charge- and size-selectivity of the glomerular filtration barrier increases the glomerular permeability for albumin [13, 51, 141, 142]. The loss of size-selectivity is due to vascular endothelial dysfunction, thickening of the glomerular basement membrane and loss of podocytes [143].
Atherosclerosis

Atherosclerosis is a chronic inflammatory disease leading to coronary, cardiovascular and peripheral vascular disease [144, 145]. It is characterized by endothelial dysfunction caused by different risk factors, such as high blood cholesterol, smoking, hyperglycemia, and high blood pressure. This results in atherogenesis, an accumulation of calcium and low-density lipoprotein cholesterol (LDL-cholesterol) inside the vessels wall. Atherogenesis triggers the inflammatory cells in the vessel wall leading to the release of cytokines and growth factors resulting in atherosclerotic plaque formation. The atherosclerotic plaque is made of a fatty core (also called necrotic core) and is covered by fibrotic cap of smooth muscles. These fatty plaques may promote thrombosis and finally may rupture inside the vessel wall leading to acute vascular incident like acute myocardial infarction and stroke.

The Pathophysiology of Atherosclerosis

The normal human blood vessel wall consists of three layers: 1. The tunica intima, which is the inner layer in contact with the blood. It consists of a monolayer of endothelial cells overlying a basement membrane. 2. The tunica media, which is the middle layer. It contains circular smooth muscle fibers and an extracellular matrix. 3. The adventitia, which is the outermost layer of connective tissue. It contains nerve endings, microvessels and mast cells.

During the process of atherogenesis, the vascular endothelium is subjected to oxidative stress and free radical formation, which is aggravated by the presence of e.g. hypertension and hyperglycemia. The LDL molecules find their way inside the vessel wall through the damaged endothelium where they undergo modification (oxidation and lipolysis) [146]. They attach to the endothelium by lipoprotein lipase (LPL) and heparan sulphate proteoglycans (HPSG). The oxidized lipoprotein and local angiotensin II (Ang II) stimulate the vascular wall cells to produce pro-inflammatory cytokines [147]. Apolipoprotein CIII (Apo CIII) acts as a pro-inflammatory mediator. It increases the LDL binding to the endothelium via Toll-like receptors [148-150]. LDL particles start to aggregate to form lipid droplets. At the same time the endothelial cells express adhesion molecules that capture the white blood cells (the monocytes) from the blood stream. Chemoattractant mediators mediate the migration of the monocytes inside the tunica intima. Once migrated inside the vessel wall, the monocytes differentiate into macrophages. The macrophages start to take up modified LDL droplets by scavenger receptors and form larger cells called “foam cells”. Due to
their large size, the foam cells will be entrapped inside the intima. These cells have
the ability to release pro-inflammatory mediators such as Interleukin-1beta (IL-
1β), interferon-γ and tumor necrosis factor (TNF-α) that aggravate the
inflammatory process [151, 152]. The accumulation of foam cells forms the fatty
core of atheroma [153, 154]. Ang II acts as a pro-inflammatory mediator in the
vascular endothelium, and plays a pivotal role in the pathogenesis of
atherosclerosis [147, 155, 156]. Ang II exerts its effect mainly by stimulation of
type I receptors (AT1R), which are upregulated during inflammation [157]. Ang II
induces vascular wall smooth muscle hypertrophy and fibrosis by promoting the
production of cytokines and reactive oxygen species (ROS) [147, 158]. In the
kidney, Ang II has the ability to stimulate NADPH (nicotinamide adenine
dinucleotide phosphate)-oxidase, which activates ROS generation [159]. ROS
triggers several intracellular downstream calcium ion mediated signaling pathways
in the glomerular filtration barrier, which via further downstream steps activate the
small guanosine triphosphatases (GTPases) (Rac1 and RhoA), that are responsible
for podocyte and endothelial cell contraction, inflammation, migration, growth,
apoptosis, fibrosis and proteinuria [160-163]. The perivascular adipocytes in
patients with metabolic syndrome play a role in the process of atherosclerosis
through the secretion of vasoactive substances, such as Ang II and endothelin-1
and the pro-inflammatory cytokines that mediate chronic inflammation and other
adipokines, such as leptin, that stimulate smooth muscle cell proliferation and
migration [164, 165]. The perivascular adipocytes also produce a number of anti-
inflammatory adipokines, such as adiponectin [166, 167]. Adiponectin inhibits
NADPH-oxidase and modulates oxidative stress [168]. Urinary excretion of
adiponectin has shown to be correlated to vascular wall inflammation,
atherosclerosis and the degree of albuminuria [169, 170].
MATERIALS AND METHODS

An overview of patient characteristics in studies I - IV is presented in Table 3. All the studies were approved by the Regional Ethical Committee of Lund University, and all the recruited patients gave informed consent.

Table 3. Summary of the baseline and follow-up characteristics, inclusion and exclusion criteria of studies I - IV.

<table>
<thead>
<tr>
<th></th>
<th>Study I</th>
<th>Study II</th>
<th>Study III</th>
<th>Study IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number, (male/female)</td>
<td>139 (79 / 60)</td>
<td>106 (74 / 32)</td>
<td>178 (101 / 77)</td>
<td>189 (113 / 76)</td>
</tr>
<tr>
<td>Age, median yrs.</td>
<td>35 (18 - 80)</td>
<td>67 (33 - 85)</td>
<td>69 (39 - 98)</td>
<td>48 (17 - 89)</td>
</tr>
<tr>
<td>(range)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Place of recruitment</td>
<td>Diabetes outpatient clinic, LUH</td>
<td>Diabetes outpatient clinic, LUH</td>
<td>Emergency Department, LUH</td>
<td>Nephrology Department, LUH</td>
</tr>
<tr>
<td>End of follow-up (year)</td>
<td>2007</td>
<td>2009</td>
<td>2012</td>
<td>2009</td>
</tr>
<tr>
<td>Follow-up time, (range)</td>
<td>18 yrs. (1 – 22 yrs.)</td>
<td>5 yrs. (6 mo. – 13 yrs.)</td>
<td>16 mo. (13 – 20 mo.)</td>
<td>8 yrs. (1 mo. – 15 yrs.)</td>
</tr>
<tr>
<td></td>
<td>Study I</td>
<td>Study II</td>
<td>Study III</td>
<td>Study IV</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Inclusion criteria</td>
<td>Type-1 diabetes</td>
<td>Type-2 diabetes</td>
<td>Acute chest pain</td>
<td>Idiopathic GN</td>
</tr>
<tr>
<td>Exclusion criteria</td>
<td>GN, systemic disease, kidney failure</td>
<td>GN, systemic disease, kidney failure</td>
<td>Infection, thromboembolism, malignancy, kidney failure</td>
<td>DKD, Systemic disease, Kidney failure</td>
</tr>
<tr>
<td>End point</td>
<td>CV death & ESKD</td>
<td>CV death & ESKD</td>
<td>CV death</td>
<td>ESKD</td>
</tr>
<tr>
<td>Tested urine biomarker</td>
<td>Urine IgM</td>
<td>Urine IgM</td>
<td>Urine IgM</td>
<td>Urine IgG</td>
</tr>
<tr>
<td>Type of study</td>
<td>Observational, Prospective</td>
<td>Observational, Prospective</td>
<td>Observational, Prospective</td>
<td>Observational, Prospective,</td>
</tr>
</tbody>
</table>

LUH = Lund University Hospital; DKD = Diabetic kidney disease; GN = Glomerulonephritis; CV = Cardiovascular; ESKD = End-stage kidney disease.

Study I

139 patients with type-1 diabetes mellitus with regular follow-up at the diabetes outpatient clinic, Lund (Skåne) University Hospital, were recruited to the study. The patients’ cohort was divided into subgroups according to urinary albumin excretion; patients with normoalbuminuria (n = 44, 15 female), patients with microalbuminuria (n = 46, 21 female) and patients with macroalbuminuria (n = 49, 24 female). The cohort was also divided into subgroups according to the urine IgM concentration; patients with low IgM-uria (n = 71, 22 female), and patients with high IgM-uria (n = 68, 38 female). The level of albuminuria and IgM-uria was confirmed by the average value of at least 2 out of 3 consecutive morning spot-urine samples. The patients’ disease course was recorded until death, start of kidney replacement therapy or until the end of the study at 2007. The average follow up time was 18 years.
Study II

106 patients with type-2 diabetes mellitus at regular follow-up at the diabetic outpatient clinic, Lund (Skåne) University Hospital, were recruited to the study. The patients cohort was divided according to urine albumin concentration into; normoalbuminuria (n = 14, 7 female), microalbuminuria (n = 26, 7 female) and macroalbuminuria (n = 66, 18 female); and according to urine IgM concentration into; low IgM-uria (n = 51, 8 female) and high IgM-uria (n = 55, 24 female). The level of albuminuria and IgM-uria was confirmed by the average of at least 2 out of 3 consecutive morning spot-urine samples. The patients’ disease course was recorded till death, start of renal replacement therapy or end of the study at 2009. The average follow up time was 5 years.

Study III

In this case-control study, 178 consecutive patients presenting with chest pain suggestive of acute coronary syndrome (ACS), at the Emergency Department at Lund (Skåne) University Hospital, were recruited during 53 daytime shifts in the period between September 1st and December 31st 2012. Patients were initially assessed by the attending physician with history, physical examination, electrocardiogram (ECG) and blood tests, including high sensitive plasma troponin T (TNT). The final diagnosis was retrieved from the discharge records of the patients. Urine proteins (albumin, IgG, IgM), plasma troponin, plasma hsCRP were taken at time of admission to the emergency department. The patients were followed until death, occurrence of major cardiovascular event or end of the study at 2012.

The patients were divided into 3 groups according to final diagnosis. 58 (23 female) patients had ACS. 55 (19 female) patients had stable angina (SA), which was defined as patients with previous history of CV event with no emerging ECG changes and normal TNT levels. And 65 (35 female) patients had non-specific chest pain with no history of CV event, normal ECG and TNT levels.
Study IV

189 patients with biopsy-verified proteinuric chronic GN and relatively normal kidney function (S. creatinine < 150 µmol/l) (table 4), were recruited to the study. These patients were participants of an investigation program for glomerular diseases conducted at the Nephrology department, Lund (Skåne) University Hospital. Urinary and blood samples were collected in the early morning of the day of kidney biopsy. The patient cohort was divided into subgroups according to the urine concentrations of IgG, protein HC and albumin (table 5). The patients’ disease course was recorded up to death, start of kidney replacement therapy, or end of the study at 2009. The average follow-up time was 8 years.

Table 4. The types and numbers of glomerular diseases.

<table>
<thead>
<tr>
<th>GN type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesangio-proliferative</td>
<td>75</td>
</tr>
<tr>
<td>Minimal change nephropathy</td>
<td>32</td>
</tr>
<tr>
<td>IgA-nephropathy</td>
<td>31</td>
</tr>
<tr>
<td>Nephrosclerosis</td>
<td>24</td>
</tr>
<tr>
<td>Membranous GN</td>
<td>21</td>
</tr>
<tr>
<td>FSGS</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 5. Patients were divided according to quartiles of urine concentrations of IgG, protein HC and albumin.

<table>
<thead>
<tr>
<th>Quartile</th>
<th>IgG-uria (mg/mmol)</th>
<th>HC-uria (mg/mmol)</th>
<th>Albuminuria (mg/mmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>< 1.8</td>
<td>< 0.6</td>
<td>< 20</td>
</tr>
<tr>
<td>Q2</td>
<td>1.8 - 5</td>
<td>0.6 - 1.2</td>
<td>20 - 109</td>
</tr>
<tr>
<td>Q3</td>
<td>5 - 14</td>
<td>1.2 - 2.8</td>
<td>110 - 279</td>
</tr>
<tr>
<td>Q4</td>
<td>> 14</td>
<td>> 2.8</td>
<td>> 280</td>
</tr>
</tbody>
</table>

Q = Quartile; IgG = immunoglobulin G; protein HC = α1-microglobulin
Patient follow-up

The included patients in the studies were followed prospectively. Patients’ clinical assessment, laboratory results and final diagnosis were obtained from the patients’ hospital records. Cardiovascular death was defined as all deaths where unequivocal non-CV death was established. End-stage kidney disease (ESKD) was defined as the start of kidney replacement therapy. Major CV events were defined as any subsequent event of acute myocardial infarction (AMI), unstable angina, stroke, acute heart failure due to ischemic heart disease or CV death during the follow-up time. The cause of death was obtained from the National Death Registry at the Swedish Board of Health and Welfare and the patients’ hospital records [171].

Laboratory analysis

The urine and plasma proteins (albumin, IgG and creatinine) were analyzed at the Central Clinical Chemistry Laboratory at the University Hospital in Lund. Serum and urinary creatinine concentrations were analyzed by creatinine-amidino-hydrolase (KODAK EKTACHEM analyzer, Instrument Kodak, NY, USA). Urinary albumin and IgG concentrations were measured on fresh urine samples using immunoturbidimetry using a Cobas Mira S system (Roche Inc.) and monospecific rabbit antisera obtained from Dako (Copenhagen, Denmark) [172]. The urine samples were stored at -20°C until analyses of urine IgM concentrations [45, 173]. Urine IgM was measured by ELISA method described in detail elsewhere [37, 45, 174, 175].
Glomerular filtration rate

The glomerular filtration rate (GFR) was estimated by Lund-Malmö (LM) equation and MDRD (Modification of Diet in Renal Disease) equation [176-179].

The MDRD equation:

\[eGFR = \{186.3 \times (\text{serum creatinine mg/dl})^{1.154} \times (\text{age})^{-0.203} (\times 0.742 \text{ if female}) \} \]

The Lund-Malmö (LM) equation for Patients with plasma creatinine (pCr) < 150 mmol/l:

\[eGFR = e^{-4.62 + 0.0112 \times \text{pCr} - 0.0124 \times \text{age} + 0.339 \times \ln(\text{age}) - 0.226 \text{ (if female)}} \]

The Lund-Malmö (LM) equation for patients with plasma creatinine (pCr) > 150 mmol/l:

\[eGFR = e^{8.17 - 0.0005 \times \text{pCr} - 1.07 \times \ln(\text{pCr}) \times \text{age} + 0.339 \times \ln(\text{age}) - 0.2226 \text{ (if female)}} \]

Statistical analysis

Data were presented as median (range) or mean ± SE as appropriate. The statistical comparison was performed when appropriate by; Kruskal-Wallis H test, Mann-Whitney U test, Fisher’s exact test and Pearson Chi-squared (\(\chi^2 \)) test. A p-value < 0.05 and a 95% Confidence Interval (CI) and were applied as thresholds of statistical significance. The Cox-regression analysis was used to estimate the hazard ratio (HR) for the occurrence of outcome. The Kaplan-Meier survival analysis and the Log Rank test were used to assess the difference in survival between subgroups.
RESULTS

Study I and II

Patients with type-2 diabetes mellitus were older, and had lower kidney function and higher baseline albuminuria and IgM-uria than those with type-1 DM (table 6). However, irrespective of the level of albuminuria, an increased urine IgM excretion in patients with type-1 or type-2 diabetes was associated with a significantly lower kidney and patient survival compared to those with low urine IgM excretion (table 7).

Out of 139 patients with type-1 diabetes, 32 (18 female) patients died of cardiovascular (CV) disease and 20 (9 female) patients reached ESKD during the 18 years follow-up time. Patients with either micro- or macroalbuminuria and high IgM-uria had a 2.7 fold increased risk for CV and renal mortality, compared to those with low IgM-uria (figure 4a). The same findings were observed in patients with type-2 diabetes mellitus (n = 106), where the composite outcome for CV mortality and ESKD was 4.1 folds higher in patients with either micro- or macroalbuminuria and high IgM-uria, compared to those with low IgM-uria (figure 4b, table 7).

Figure 4a. The composite outcome of renal and cardiovascular death by albuminuria and urine IgM-uria in 139 patients with type-1 DM. The relative risk for microalbuminuria and high IgM-uria RR=2.8, and the relative risk for macroalbuminuria and high IgM-uria RR=2.5.
Figure 4b. The composite outcome of renal and cardiovascular death by albuminuria and IgM-uria in 106 patients with type-2 DM. The relative risk for microalbuminuria and high IgM-uria RR=5.5, and the relative risk for macroalbuminuria and high IgM-uria RR=2.7.
Table 6, illustrates the baseline characteristics of the studied patients of type-1 and -2 diabetes in studies I, and II.

Table 6. Comparison of the baseline characteristics of patients with type-1 and type-2 DM according to the degree of IgM-uria (low and high). Values are presented as median (range).

<table>
<thead>
<tr>
<th></th>
<th>Type-1 DM</th>
<th>Type-2 DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgM group</td>
<td>Low IgM</td>
<td>High IgM</td>
</tr>
<tr>
<td>Age, yrs.</td>
<td>35 (18 - 74)</td>
<td>37.5 (20 - 80)</td>
</tr>
<tr>
<td>Duration, yrs.</td>
<td>15 (1 - 65)</td>
<td>24.5 (1 - 67)</td>
</tr>
<tr>
<td>S. creatinine, mmol/l</td>
<td>78 (54 - 216)</td>
<td>86 (42 - 486)</td>
</tr>
<tr>
<td>ACR, mg/mmol</td>
<td>3.6 (0.23 - 268)</td>
<td>21.3 (0.26 - 640)</td>
</tr>
<tr>
<td>MCR, mg/mmol</td>
<td>0.005 (0.0017 - 0.0091)</td>
<td>0.0158 (0.0095 - 0.363)</td>
</tr>
<tr>
<td>MAP, mmHg</td>
<td>93 (80 - 120)</td>
<td>100 (78 - 133)</td>
</tr>
<tr>
<td>eGFR, ml/min × 1.73m²</td>
<td>88 (27 - 141)</td>
<td>67 (9 - 144)</td>
</tr>
<tr>
<td>HbA1c, %</td>
<td>8.3 (4.5 - 13.4)</td>
<td>9 (5.5 - 13.2)</td>
</tr>
</tbody>
</table>

ACR = urine albumin/creatinine ratio; MCR = urine IgM/creatinine ratio; MAP = mean arterial pressure; eGFR = estimated glomerular filtration rate; HbA1c = Glycosylated Hemoglobin Test.
In both type-1 and -2 diabetic patients, those with high IgM-uria had a higher risk for renal and CV mortality than those with low IgM-uria, irrespective to the level of albuminuria (table 7).

Table 7. The rate of renal and cardiovascular death (combined event) per 100 patients-year, in patients with type-1 and type-2 diabetes, according to degree of albuminuria and IgM-uria.

<table>
<thead>
<tr>
<th></th>
<th>Type1 Combined event per 100 patient-year</th>
<th>Relative Risk (RR)</th>
<th>Type2 Combined event per 100 patient-year</th>
<th>Relative Risk (RR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normoalbuminuria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low IgM-uria</td>
<td>0.19</td>
<td>4.7</td>
<td>3.2</td>
<td>3</td>
</tr>
<tr>
<td>High IgM-uria</td>
<td>0.9</td>
<td></td>
<td>9.8</td>
<td></td>
</tr>
<tr>
<td>Microalbuminuria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low IgM-uria</td>
<td>0.95</td>
<td>2.8</td>
<td>2.3</td>
<td>5.5</td>
</tr>
<tr>
<td>High IgM-uria</td>
<td>2.7</td>
<td></td>
<td>12.3</td>
<td></td>
</tr>
<tr>
<td>Macroalbuminuria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low IgM-uria</td>
<td>2.9</td>
<td>2.5</td>
<td>9.4</td>
<td>2.7</td>
</tr>
<tr>
<td>High IgM-uria</td>
<td>7.3</td>
<td></td>
<td>19.0</td>
<td></td>
</tr>
</tbody>
</table>
Study III

Patients with acute coronary syndrome (ACS) at time of presentation to the emergency department had significantly higher baseline urinary albumin and IgM levels than those with non-specific chest pain (p = 0.001, p = 0.029, respectively) (figure 5a). Out of 178 patients, 5 (1 female) patients died of CV cause and 40 (19 female) patients suffered a subsequent major CV event during a ~2 years follow-up. The risk for occurrence of subsequent major CV event was predicted by IgM-uria independently of albuminuria, where as chest pain patients with high IgM-uria had a 3 fold increase in risk for future CV event compared to those with low IgM-uria (RR = 3.3, p = 0.001) (figure 5b).

![Figure 5a](image-url). The pattern of proteinuria in 178 patients diagnosed with acute coronary syndrome (ACS), Stable angina (SA), or non-specific chest pain (NS).
Figure 5b. IgM-uria and cardiovascular outcome in 178 patients with acute chest pain.
Study IV

In this study we found that an increased baseline urine IgG excretion in patients with proteinuric glomerular disease was associated with an increased risk for ESKD, independently of the level of albuminuria (HR = 5.9, p < 0.001). IgG-uria concentration of > 5 mg/mmol was the best cutoff level that identified glomerulonephritis patients at increased risk for ESKD (figure 6a). Also patients with a baseline urine protein HC of > 2.8 mg/mmol had 2.9 fold risk for ESKD (figure 6b). There was no significant difference in risk for ESKD with different levels of albuminuria (figure 6c).

Figure 6a. Cumulative risk of end-stage kidney disease (ESKD) according to a cut-off level of IgG-uria (less than vs. greater than 5 mg/mmol). Relative Risk ~ 6, Log-rank test < 0.001.
Figure 6b. Cumulative risk of end-stage kidney disease (ESKD) according to a cut-off level of HC-uria (less than vs. greater than 2.8 mg/mmol). Relative Risk ~ 3, Log-rank test = 0.006.

Figure 6c. Cumulative risk for end-stage kidney disease (ESKD) according to cut-off level of albuminuria (less than vs. greater than 110 mg/mmol). Log-rank test = 0.07.
DISCUSSION

In studies I and II, we found that patients with type-1 and type-2 diabetes with an increased urine IgM excretion (high IgM-uria) are at higher risk of kidney and cardiovascular complications than those with low IgM-uria, irrespective of the degree of albuminuria. The ability of albuminuria in predicting disease outcome has been questioned in many studies, e.g. up to 30% of diabetic patients with diabetic kidney disease (DKD) have a normal urine albumin excretion, despite decline in kidney function and progressive vascular endothelial damage [12, 180]. Furthermore, not all DKD patients with microalbuminuria progress to macroalbuminuria, and some of them may regress to the normal range of urinary albumin excretion [181]. An increased urine IgM excretion in normoalbuminuric diabetic patients, has also been recently reported in another American study by Gohda et al [182]. Thus, albuminuria might be a less sensitive marker of glomerular kidney disease progression. This fact is of enormous concern, since in routine clinical practice, albuminuria is used for diagnosis and risk stratification of patients with DKD. We believe that, by including IgM-uria in the management protocols of patients with type-1 or type-2 diabetes mellitus might further improve the sensitivity of the routine clinical diagnostic and prognostic tools [20, 21, 23, 183]. The finding of higher urine IgM excretion in patients with type-2 diabetes compared to type-1 diabetes could be due to the difference in age and pathophysiological mechanisms of DKD in both types of diabetes [124-126, 184, 185]. While chronic hyperglycemia is the main driving mechanism for DKD in type-1 DM, the metabolic syndrome of obesity, hypertension, dyslipidemia, and hyperglycemia is the main driving element in the pathology of DKD in type-2 diabetes [186-188].

Markers of general inflammation, such as pro-inflammatory cytokines, high sensitive C-reactive protein (hsCRP) and albuminuria are also associated with cardiovascular disease [189-194]. However, in recent large cohort studies the clinical value of these markers in estimation of the CV risk in healthy and diabetic patients is doubtful [195, 196]. Besides, albuminuria may or may not reflect the degree of vascular endothelial dysfunction in healthy individuals with coronary artery disease [197]. In study III, IgM-uria was found to be associated with increased risk for the occurrence of subsequent CV events in patients presenting to the emergency department (ED) with acute chest pain. The extent of association between IgM-uria and the degree of vascular wall inflammation and atherosclerosis need to be studied. However, the data from our research group,
strongly suggest that the glomerular passage of large molecules, in the size of IgM is mainly occurred through large shunts or defects in the glomerular filtration barrier (GFB). Thus, the presence of IgM-uria conceivably reflects severe size-selectivity dysfunction of the glomerular filtration barrier, secondary to generalized atherosclerosis and systemic inflammation. This is further strengthened by the fact that (study III) patients with acute coronary syndrome (ACS) and IgM-uria have significantly elevated levels of hsCRP, and troponin T, reflecting systemic inflammation, associated with atherosclerosis and coronary artery disease [194, 198], [199]. At the kidney level, atherosclerosis is associated with elevated glomerular vascular wall resistance, resulting in glomerular ischemia, and as a consequence, a markedly increased population of highly unselective glomerular shunt-pathways [21, 32, 200, 201]. This could explain the association of IgM-uria with cardiovascular mortality in diabetic patients and in patients with coronary artery disease (figure 7).

Urine IgM analysis is a simple non-invasive urine test that could be included in the general clinical setting, together with urine albumin creatinine ratio (ACR), in risk stratification of patients with DKD and patients with atherosclerotic heart disease. This could help in early introduction of multifactorial cardiovascular preventive treatment strategy to improve the overall cardiovascular risk profile and patients’ outcome (figure 8).

In study IV; patients with idiopathic proteinuric glomerulonephritis with an increased urine IgG excretion at time of diagnosis are found to be more likely to progress to kidney failure than patients with only high degree of albuminuria [20-24, 202]. The cut-off level of IgG-uria > 5 mg/mmol was determined to best predict the risk of kidney failure. An increased urinary excretion of IgG (molecular radius 55 Å) implies loss in size selectivity of the glomerular filter and severe glomerular damage, while pure albuminuria may occur if the small pore radius is increased or charge-selectivity of the glomerular filter is lost, as is proposed to be the case in minimal change nephropathy. This condition is not associated with progressive kidney damage [203]. This further strengthened by the association of IgG-uria with occurrence of tubulo-interstitial fibrosis and an increased urine protein HC concentration [22]. Protein HC is a low-molecular weight (LMW) protein that passes “unrestricted” through the glomerulus and is normally reabsorbed by the proximal tubules. Thus, an increased urine protein HC concentration may reflect tubulo-interstitial damage secondary to unselective proteinuria. [24, 204, 205].
Figure 7. A simple flowchart representing the pathophysiology of IgM-uria and its association with cardiovascular disease.
Figure 8. A proposal for the use of IgM-uria in the risk assessment of patients with acute chest pain.
CONCLUSIONS

• IgM-uria is associated with an increased risk for cardiovascular and end-stage kidney disease in both type-1 and type-2 diabetes mellitus.

• IgM-uria in patients with chest pain is associated with an increased risk of occurrence of cardiovascular events.

• Adding IgM-uria in the risk stratification of diabetic and chest pain patients could improve disease outcome by promoting early initiation of cardiovascular disease preventive treatment.

• IgG-uria could be helpful in risk stratification of patients with proteinuric glomerulonephritis for early identification and management of patients at high risk for kidney disease progression.
Further perspectives

The studies in this thesis are a continuation of previously presented data on the impact of high molecular weight proteinuria in patients with chronic kidney disease. Our study results report for the first time the potential value of IgM-uria in the risk assessment for worse kidney and cardiovascular outcomes in patients with diabetes and coronary artery disease. However, the results have raised many questions that need to be further investigated. We need to better understand the mechanisms of the association of IgM-uria with atherosclerotic and cardiovascular disease. Therefore, studying the correlation between IgM-uria, and pro-inflammatory cytokines, such as interleukins, gamma-interferon and tumor necrosis factor would be of interest. Besides, we also intend to study the correlation between IgM-uria and anti-inflammatory adipokines (adiponectin), which was recently shown to be correlated to poor kidney function in diabetic patients.
Populärvetenskaplig sammanfattning
(Swedish Summary)

Diabetes mellitus, kronisk njursjukdom samt aterosklerotisk hjärtssjukdom utgör de vanligaste orsakerna till hjärt-kärlsjukdom och för tidig dödighet. Dessa sjukdomar har blivit ett stort världsomfattande hälsovård-problem med ökande prevalens och incidens. Tidig identifiering av patienter som ligger i riskzonen för komplikationer, framförallt hjärt-kärl komplikationer, torde vara av stort värde för både patienter och samhälle. Därför är behovet av att finna nya markörer för hjärt-kärlsjukdom ytterst angeläget.

Det är sedan tidigare känt att även en lätt förhöjd utsöndring av äggvita i urinen, s.k. mikroalbuminuri, är en oberoende riskfaktor för njursjukdom, ateroskleros och dödlig d i hjärt-kärlsjukdom. Dock, mikroalbuminuri kan förekomma vid såväl olika sjukdomstillstånd (såsom diabetes, högt blodtryck, övervikt, etc.), som en rad olika icke sjukliga tillstånd (såsom vid fysisk ansträngning, trauma, graviditet, etc.). Dessutom, en stor del av patienterna med diabetisk njursjukdom, trots befintlig diabetisk njurskada, har ingen uttalad albuminuri. Senaste experimentella och epidemiologiska studier har visat ett samband mellan utsöndringen av mycket stora proteiner, som IgG och IgM, i urinen med ökad risk för njursjukdom. I denna avhandling har vi studerat betydelsen av utsöndringen av dessa stora proteiner (IgG och IgM) i urinen vid vanligt förekommande sjukdomstillstånd, såsom diabetes, glomerulonefrit och ischemisk hjärtssjukdom, och dess samband med hjärt-kärl dödighet och njursvikt.

I studie I och II har vi undersökt 139 patienter med typ-1, respektive 106 patienter med typ-2 diabetes som har början till njurskada, vid njurmottagningen på universitetssjukhuset i Lund. Medianuppföljningstiden var 18 år respektive 5 år. De som hade en hög grad av IgM-urid vid studiestart, oavsett grad av albuminuri, hade en signifikant högre risk (ca 3-4 gånger högre) att avlida av komplikationer som hjärtinfarkt, hjärtstillestånd samt att utveckla njursvikt under uppföljningstiden.
I studie III, undersöktes sambandet mellan urin-IgM och förekomsten av större hjärt-kärl händelser, såsom akut hjärtinfarkt, angina pectoris, akut hjärtsvikt och stroke. Vi inkluderade 178 patienter som sökte akutmottagningen vid universitetssjukhuset i Lund för akut bröstsmärta. Vid ankomsten till akutmottagningen, efter patientens samtycke, togs urin- och blodprover samt EKG. Proverna analyserades för urinproteiner (albumin och IgM) samt plasma troponin T (hjärtinfarkt markör) och högsensitiv snabbsänka (hsCRP). Studien visade att patienter som hade akut kranskärlssjukdom vid ankomsten till akutmottagningen hade signifikant högre grad av IgM-urin jämfört med de som hade icke-specifik bröstsmärta. Dessutom, dem med hög IgM-urin vid ankomsten, oavsett grad av albuminuri, hade 3 gånger högre risk inom ca 2 år för att dö i hjärtsjukdom eller utveckla en större hjärt-kärl händelse.

Njurens minsta funktionella enhet nefronet, består av ett kärlnystan (glomerulus) som producerar urin genom filtration av blodplasma genom kapillärvägggen (den glomerulära filtrationsbarriären). Den glomerulära filtrationsbarriären består av 3 lager: endotelcellerna (finns närmast blodet), det glomerulära basalmembranet samt podocytcellerna med sina fotutskott (omsluter kapillärerna). Alla tre lager samlar för att filtret ska vara tätt. För stora proteiner, som albumin (radie 36 Å), är det endast mycket små mängder som passerar ut (1 av 10 000 albuminmolekyler). Ännu större proteiner, som IgM (radius 120 Å), kan passera filtret endast via mycket stora hål (läckor), som föreligger vid en svår skada i filtret. Därför kan en skada i ett eller flera av dessa lager (som till exempel vid kärlförkalkningar eller inflammation) leda till att stora proteiner kan komma att färras ur i urinen.

Förekomst av IgG/IgM i urinen i stora mängder speglar således en betydligt större skada i glomerulära filtret. Då våra studieresultat har visat att IgM i urinen hos diabetiker och kranskärlsjuka är starkt förknippat med ökad risk för njur- och hjärt-kärlsjukdomar, torde urin-IgM vara en markör för en underliggande ateroskleros och kronisk kärlinflammation. Ateroskleros och inflammation i sin tur orsakar minskat blodflöde, så kallad ischemi, som medför ökat antal mycket stora hål (läckor) i det glomerulära filtret och därmed IgM-urin. Svåra glomerulonefriter
orsakar också stora skador i det glomerulära filtret vilket leder till ökat antal mycket stora porer. Vi tror att graden av IgG-uri (och med all sannolikhet IgM-uri) kan reflektera svår glomerulärskada, och därmed njursvikt. Dessa fynd ger oss en möjlighet att hitta patienter som riskerar att utveckla komplikationer tidigare än vad som är möjligt idag.

Konklusion: Högriskpatienter som vi kan identifiera med hjälp av IgG och IgM i urinen, bör genomgå intensivare uppföljning och behandling, för att på så sätt minska risken för framtida skador på hjärta, blodkärl och njurar. I praktiken innebär detta en ny approach för omhändertagandet av denna patientgrupp.
This work was supported by the Swedish government (ALF grants); The Swedish Medical Research Council (Vetenskapsrådet, grant #08285); Kungliga Fysiografiska Sällskapet I Lund; Läkarsällskapet I Lund and the Swedish Heart and Lung Foundation (Hjärt-Lungfonden); We appreciate and greatly acknowledge all support.
Acknowledgments

I would like to take the opportunity to thank everyone who helped me during this interesting journey. They have all made it possible for me to commence and complete this enormous task. I am sincerely grateful to my principal tutor, Associate Professor Dr. Omran Bakoush, for introducing me to the research environment and patiently taking me through this difficult task of educational research. I am so deeply humbled by his gracious support and positive attitude. I am thankful for all the time and extra hours he spent in supervising me, taking care of me and encouraging me. This work would not have been accomplished without him. I would also like to acknowledge and commend Professor Dr. Bengt Rippe for his continuous and generous guidance and support. I appreciate his outstanding enthusiastic spirit and his enormous knowledge. Thanks for being so nice and ever ready to share your time.

I would also express my sincere gratitude to;
Associate Professor Dr. Ole Torffvitt, my co-author, for introducing me to this research, using his laboratory facilities for IgM analysis and for valuable revision of manuscripts.

Associate Professor Dr. Ulf Ekelund, my colleague and co-author, for giving me the chance to present my research at the emergency department, helping me with the needed preparations for study IV and for constructive feedback and revision of manuscripts.

Dr. Per Swärd, my colleague and co-author, for fantastic co-operation, sharing ideas and stimulatory discussions.

Anna Rippe and Josefin Axelsson for introducing me to the animal laboratory and being so nice to me. Thank you for unforgettable funny moments during coffee breaks.

Kersting Wihlborg for professional secretary help. Thank you for letting me feel welcomed every time I knocked the door.

Pia Myllenberg for excellent secretary help.
Åsa Pettersson for helping me with the IgM analyses and taking care of the samples.

My colleagues, nurses and staff of the Emergency Department in Lund, for fantastic help and superb cooperation. Special thanks to my previous managers at the ED specifically, Associate Professor Dr. Hans Friberg, Dr. Ann-Kathrin Demény, Margaretha Grabe-Andersson and Dr. Jan Ljunghusen for their support.

The nurses and the staff of the Acute Medical Ward (MAVA) and the Cardiac Care Unite (IIA), for fantastic help in sample collection.

Nurse Mona and nurse Margareta at the Kidney Out-patient Clinic in Lund, for their exceptional hard work in collection and storage of the samples.

The personnel at Media Tryck, Lund University, for wonderful edition of my posters and this thesis.

My friends and colleagues, Mohaned Hameed, Dalia Rhman, Wathik Alsalim, Ali Salloom and Muhammad Kadum for standing by my side in times of need.

Last but not least, I need to honor the most precious persons in my life, my parents, my wife Noor and children Selma and the “coming angel”, my brother Mohammad and sister Rasha for their endless love, encouragement, support and praying for me. Thank you for your understanding and patience. You made my life worth living. Thank you Rasha for the nice drawings in the thesis. Thank you Noor and Selma for providing me all the support I needed and for providing me all the requirements for this work to be accomplished. Thanks for being there for me.
References

44. Oberg CM, Rippe B: Quantification of the electrostatic properties of the glomerular filtration barrier modeled as a charged fiber matrix separating

111. Gregg EW, Gu Q, Williams D, de Rekeneire N, Cheng YJ, Geiss L, Engelgau M: *Prevalence of lower extremity diseases associated with normal glucose levels*, 70

transfection of cardiomyocytes with AT1R and AT2R cDNA. Experimental biology and medicine 2012, 237(12):1394-1401.

Glomerular Size Selectivity, Are Not Affected by Dalteparin Therapy in Patients with Type 2 Diabetes. Biochemistry research international 2012, 2012:480529.

