Robustly-optimal rate one-half binary convolutional codes

Johannesson, Rolf

Published in:
IEEE Transactions on Information Theory

1975

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Degree for a MAXPOL of any given degree. One searches all \(k, m_i, \) and \(m_j \) such that

\[
e = \left\lfloor \log_k \left(\frac{(2^{m_i} + 1) (2^{m_j} - 1)}{1} \right) \right\rfloor
\]

and keep the combination that yields the maximum \(e. \) (\(\lfloor x \rfloor \) denotes the upper integer part of \(x. \)) This search was programmed in a simple APL routine that produced the list in Table II of one MAXPOL per given degree. We observe that the MAXPOL exponents are very near to \(2^{(m_1 + 3)/2} \) for which we have no explanation at this time.

This theorem establishes a reduced exhaustive search method for a MAXPOL of any given degree. One searches all \(k, m_i, \) and \(m_j \) such that \(k \geq 0, r = k + 2(\Sigma m_i + \Sigma m_j), m_i > 1, m_j > 1, m_i \neq m_j. \) Compute the exponent by

\[
e = \left\lfloor \log_k \left(\frac{(2^{m_i} + 1) (2^{m_j} - 1)}{1} \right) \right\rfloor
\]

and keep the combination that yields the maximum \(e. \) (\(\lfloor x \rfloor \) denotes the upper integer part of \(x. \)) This search was programmed in a simple APL routine that produced the list in Table II of one MAXPOL per given degree. We observe that the MAXPOL exponents are very near to \(2^{(m_1 + 3)/2} \) for which we have no explanation at this time.

References

Robustly Optimal Rate One-Half Binary Convolutional Codes

Rolf Johannesson

Abstract—Three optimality criteria for convolutional codes are considered in this correspondence: namely, free distance, minimum distance, and distance profile. Here we report the results of computer searches for rate one-half binary convolutional codes that are "robustly optimal" in the sense of being optimal for one criterion and optimal or near-optimal for the other two criteria. Comparisons with previously known codes are made. The results of a computer simulation are reported to show the importance of the distance profile to computational performance with sequential decoding.

Manuscript received August 14, 1974. This work was supported by the National Aeronautics and Space Administration under Grant NGL 15-004-026 at the University of Notre Dame in liaison with the Communications and Navigation Division, Goddard Space Flight Center.

The author was with the Department of Electrical Engineering, University of Notre Dame, Notre Dame, Ind. 46556. He is now with Telecommunications Theory, Lund Institute of Technology, Lund, Sweden.

Several distance measures have been proposed for convolutional codes, each of which is important for particular applications. In this correspondence we report the results of the search for "robustly optimal" convolutional codes, i.e., codes that are optimal for one distance measure and also optimal or near-optimal for the other two distance measures. We have limited the search to binary codes of rate \(R = \frac{1}{2} \) as the case of greatest practical interest.

In a rate \(R = \frac{1}{2} \) binary convolutional code, the information sequence \(i_0, i_1, i_2, \ldots \) is encoded as the sequence

\[
t_0(i_0) t_0(i_1) t_1(i_1) t_2(i_2) t_2(i_2) \ldots
\]

where

\[
t_u(k) = \sum_{j=0}^{k-1} u_{i-u} g_j(u)
\]

The parameter \(M \) is the code memory and

\[
G(k) = [g_0(k), g_1(k), \ldots, g_M(k)]
\]

for \(k = 1, 2 \), are the code generators. The code is systematic when \(G(1) = [1, 0, \ldots, 0] \). The code is a quick-look-in (QLI) code [1] when

\[
g_j(2) = \begin{cases} g_j(1), & j \neq 1 \\ 1 + g_{j-1}(1), & j = 1 \end{cases}
\]

QLI codes have some advantages in recovering the information sequence from the encoded sequence compared to general nonsystematic codes.

We shall find it convenient to write

\[
t_{(i_0, n)} = (t_{0(i_0)} t_{0(i_1)} t_{1(i_1)} t_{2(i_2)} t_{2(i_2)} \ldots t_{n(i_n)} t_{n(i_n)})
\]

for the encoded path containing the first \(n + 1 \) "branches" of the encoded sequence. The encoded path \(t_{(i_0, n)} \) is called the first constraint length of the code. The \(j \)th order column distance [2] \(d_j \) is the minimum Hamming distance between some \(t_{(i_0, n)} \) resulting from an information sequence with \(i_0 = 1 \) and some \(t_{(i_0, n)} \) with \(i_0 = 0 \). By linearity, \(d_j \) is also the minimum of the Hamming weights of the first \(n \) resulting from information sequences with \(i_0 = 1 \).

The quantity \(d_M \) is called the minimum distance of the convolutional code and determines the guaranteed error-correcting capability when the code is decoded by a "feedback decoder" [3]. The quantity \(d_e \) is called the free distance of the code and has been found to be the principal determiner of decoding error probability when maximum-likelihood (or nearly so) decoding is used, i.e., for Viterbi decoding or sequential decoding [1, 4].

It has also been observed [1] that for good computational performance with sequential decoding, the column distances should "grow as rapidly as possible." We are led then to define the distance profile of the code as the \((M + 1) \)-tuple

\[
d = [d_0, d_1, \ldots, d_M]
\]

and to say that a distance profile \(d \) is superior to a distance profile \(d' \) when there is some \(n \) such that

\[
d_j \geq d'_j, \quad j = 0, 1, \ldots, n - 1
\]

Thus \(d > d' \) implies that the "early growth" of \(d_j \) with \(j \) is greater than that of \(d'_j \) with \(j \). (It could, of course, happen that for sufficiently large \(j \), \(d_j < d'_j \).)

We notice that only in the range \(0 \leq j \leq M \) is each branch on a path \(t_{(i_0, n)} \) affected by a new portion of the generator as one penetrates into the tree. The great dependence of the branches thereafter militates against the semi-infinite choice \(d_0 = \ldots = d_M = \ldots = d_N = \ldots = 0 \).
[d_1, d_2, \ldots, d_n]$, as does the fact that d_{odp} is probably a description of the remainder of the column distances, which is quite adequate for all practical purposes.

We shall say that a code is an optimum minimum distance (OMD) code (or an optimum free distance (OFD) code or an optimum distance profile (ODP) code) when its minimum distance (or free distance or distance profile) is equal to or superior to the optimum distance profile.

In Tables I–V we report the results of computer searches for binary convolutional codes that are robustly-optimal, i.e., optimal for one of the preceding distance measures and optimal or near-optimal for the other two. In cases where the optimum code is not unique, we have chosen a code with the fewest number of low-weight paths for the distance measure in question, e.g.,
Fig. 1. Minimum distance d_M and free distance d_∞ for some rate $\frac{1}{2}$ convolutional codes.

Fig. 2. Minimum distance d_M and free distance d_∞ for some rate $\frac{1}{2}$ convolutional codes.
the fewest number of paths $t_{0,M}$ with Hamming weight d_M resulting from information sequences with $i_0 = 1$ when d_M is the distance measure in question.

In Table I we list ODP systematic codes for the range $1 \leq M < 14$. In all the tables we write the generators in the octal form where the first octal digit denotes $[g_{00}, g_{01}, g_{02}, g_{03}]$, the second denotes $[g_{10}, g_{11}, g_{12}, g_{13}]$, etc. (It should be noted that the "customary" octal notation for generators [5] uses $[g_{00} - 2g_{10} - g_{01}]$ for the last octal digit, etc., so that the generators [1111] and [111101] become 17 and 75, respectively. In the notation here these would be 74 and 75, which we think better shows the fact that the former is a truncation of the latter.) In case of ties not resolved by the number of weight d_M paths, we have chosen for Table I a code with the greatest d_M. The codes in Table I are all OMD codes as well as ODP codes. Since the "truncation" to smaller memory of an ODP code must give an ODP code for the reduced memory, the $M = 14$ code in Table I can be used to obtain an ODP code for all $M \leq 14$ but not necessarily one with the least number of low-weight paths.

For $M = 15$, we have found that an ODP code has $d_{15} = 8$ whereas an OMD code has $d_{15} = 9$ so there is no code that is both ODP and OMD for $M = 15$. We know of no other M in the range $15 \leq M \leq 35$ with this property. In Table II we list the systematic ODP codes that we have found for $15 \leq M \leq 35$. For $M \geq 16$, the value of d_M for OMD codes is unknown, but the codes in Table II have d_M as large as any previously known codes. In fact, for $M = 30$ and $M = 34$, the codes in Table II have larger d_M than any codes previously known. Moreover, the $M = 35$ code in Table II has d_M superior to the best previously known systematic code, viz., the joint [6] code of Forney's extension [7] of one of Bussgang's optimal codes [6].

The excellence as regards d_M of the systematic ODP codes in Tables I and II can be seen from Fig. 1 in which we have plotted d_M for these codes and for the best of the codes found previously by Bussgang [6], Lin–Lyne [8], and Forney [7]. For comparison, we have also plotted the Gilbert lower bound [3] on $d_M.$ To show the excellence of their d_M, we have also plotted d_M for the ODP systematic codes and for the systematic codes found by Costello [2].

It should be mentioned that, in Table II (as well as later in Table III), a notation of L indicates that d_L, which is a lower bound on d_M, is actually given rather than d_M, which is unknown. It is likely, however, that $d_{71} - d_{in}$ in most, if not all, of these cases.

In Table III, we list the ODP QLI codes we have found for $1 \leq M \leq 23$. These codes, except when $M = 1$, are nonsystematic. QLI codes can generally achieve a greater d_M for a given M than is possible with systematic codes.

The excellence of the ODP QLI codes of Table III as regards d_M and d_{on} can be seen from Fig. 2 where we have plotted d_M and d_{on} for these codes and d_M for the QLI codes of Massey–Costello [1]. The ODP QLI codes of Table III appear very attractive for use with sequential decoding since 1) their QLI structure guarantees easy recovery of the information sequence from the encoded sequence with small "error amplification" [1]; 2) their ODP property ensures good computational performance; and 3) their large d_m ensures a small decoding error probability.

In Table IV, we list the QLI codes that we have found to have the greatest d_m for any QLI codes for $1 \leq M \leq 13$. For $M \leq 5$ these codes are also OFD, but for $M \geq 6$ larger d_m is possible only with more general nonsystematic codes. Ties were resolved using first d_m and then d_M as further optimality criteria. The codes of Table IV appear attractive for use with Viterbi decoders for $1 \leq M \leq 5$.

In Table V, we list ODP general nonsystematic convolutional codes with ties resolved first according to d_M and then according to d_M. The codes for $M \leq 10$ and $M = 13$ are all OFD codes [5], and it is surprising that the ODP property can be obtained over such a wide range at no sacrifice in free distance.

The excellence as regards d_m of the codes in Table V can be seen from Fig. 2 where we have plotted their d_m as well as that of the "complementary codes" found earlier by Bahl–Jelinek [9]. The codes of Table V are attractive candidates for use with Viterbi decoding when the QLI feature is of no interest. The $M = 5$ code in Table V is quite remarkable being simultaneously optimal for all three distance measures and also being QLI.

To illustrate the importance of the ODP property for sequential decoding computation, we have simulated the performance of a stack sequential decoder [10] on a binary symmetric channel (BSC) for 1) the ODP QLI code with $M = 23$, $d_20 \geq d_{21} = 19$, and $d_M = 11$ of Table II; 2) the $M = 23$ Massey–Costello QLI code [1] with $d_{20} \geq d_{21} = 17$ and $d_M = 9$, which is currently being used by NASA in several deep-space programs; and 3) the $M = 23$ Bahl–Jelinek complementary code [9] with $d_{20} = 24$ and $d_M = 10$. The results of decoding 1000 frames of 256 information bits in length for each of these codes are given in Tables VI and VII for BSC's with crossover probability p of 0.045 and 0.057, respectively. No decoding errors were made in any case. It can be seen from Tables VI and VII that the computational performance of the ODP QLI code is far superior to the Massey–Costello QLI code and slightly better than the Bahl–Jelinek code that (while having larger d_m) lacks the desirable QLI property.

Table VI

<table>
<thead>
<tr>
<th>Fraction of Frames with Computation</th>
<th>More Than N</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>ODP QLI code</td>
</tr>
<tr>
<td>278</td>
<td>1.000</td>
</tr>
<tr>
<td>330</td>
<td>0.955</td>
</tr>
<tr>
<td>260</td>
<td>0.928</td>
</tr>
<tr>
<td>250</td>
<td>0.927</td>
</tr>
<tr>
<td>600</td>
<td>0.123</td>
</tr>
<tr>
<td>1100</td>
<td>0.097</td>
</tr>
<tr>
<td>1700</td>
<td>0.028</td>
</tr>
<tr>
<td>2700</td>
<td>0.017</td>
</tr>
</tbody>
</table>

Table VII

<table>
<thead>
<tr>
<th>Fraction of Frames Decoded in Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>0.000</td>
</tr>
</tbody>
</table>
A Class of Binoid Single-Error-Correcting Codes

VASILE V. MASGRAS

Abstract—A new class of group binoid single-error-correcting codes is given. The codes are nonbinary group codes over the additive group of integers modulo q.

I. NOTATION AND DEFINITIONS

Let n and q ($n > q$) be two positive integers. We denote by $(n)_q$ the radix-q representation of n. Suppose that this representation has s digits. Let I^n_q be the following set:

$$I^n_q = \{ i \mid 1 \leq i \leq n, (i)_q = i_1, \ldots, i_{k-1}, i_k+1, \ldots, i_s \},$$

where $1 \leq j \leq q - 1$, $1 \leq k \leq s$.

We denote by Z^n_q the additive group of integers (mod q).

Definition 1: The set $C \subseteq Z^n_q$ is the nonbinary group code [3], such that

$$C = (c_1, \ldots, c_q) \in C$$

if and only if

$$\sum_{i \in I^n_q} c_i = 0 \pmod{q}, \quad 1 \leq j \leq q - 1, \quad 1 \leq k \leq s. \quad (1)$$

If we let $r = \#(I^n_q \cap I^n_q \neq \varnothing, 1 \leq i \leq q - 1, 1 \leq k \leq s)$, then the group code has r check symbols and $m = n - r$ information symbols.

For $q = 2$ and $n = 2^s - 1$, C is a binary Hamming code [1], [2]. For $q > 2$, C represents another nonbinary generalization of the Hamming code [3].

Definition 2: A pair of sets (A,M) is a binoid [4], if the following two conditions are satisfied:

i) there are two operations $\oplus : A \times A \rightarrow A$ and $\otimes : A \times M \rightarrow A$;

ii) the set A is a group with respect to the \oplus operation.

A binoid (A, M) is called distributive if the \otimes operation is distributive with respect to the \oplus operation, and it will be termed commutative if A is a commutative group. The set $A^* = \{ a \mid a \in A, a \otimes m \neq a \otimes m' ; \forall m, m' \in M, m \neq m' \}$ is called the univalence domain. If, in addition, we have $A^* = A - \{0\}$, (A, M) is termed a completely univalent binoid.

Definition 3: A set $C \subseteq A^*$ is a binoid code [4], if there is a set M such that following conditions are satisfied:

i) (A, M) is a binoid;

ii) C is a nonbinary group code (of length n);

iii) the parity check matrix of C has its components from M.

II. LINK THEOREM

Taking into account Definitions 1 and 3, we may formulate the following theorem.

Theorem 1: The nonbinary group code C of Definition 1 is always a binoid code for $M = \{0,1\}$, where \oplus is modulo q addition and \otimes is ordinary multiplication.

Proof: This is obvious if we note that the code C is the null space of the matrix $H = [\delta(i,j,k)]$, where $\delta(i,j,k) \in M = \{0,1\}$ are defined in the following way:

$$\delta(i,j,k) = \begin{cases} 1, & \text{if } i \in I^n_q^j \bigcap I^n_q^k \bigcap I^n_q^n, \\ 0, & \text{if } i \notin I^n_q^j. \end{cases} \quad Q.E.D.$$

Any group code C may be regarded as a binoid code. The binoid (A, M) is completely univalent.

III. DETECTION AND CORRECTION OF SINGLE ERROR

Theorem 2: The nonbinary group code $C \subseteq Z^n_q$ of Definition 1 is a single-error-correcting code.

Proof: Let $c = (c_1, \ldots, c_q)$ be a codeword and $b = (b_1, \ldots, b_q)$ be the received vector. We define

$$d_k^j = \sum_{i \in I^n_q^j} b_i \pmod{q}. \quad (2)$$

If we assume that no more than a single error occurred, then we suppose

$$b_i = \begin{cases} c_i, & \text{for } i \neq h, \\ c_h + p \pmod{q}, & \text{for } i = h \end{cases}$$

where p and h are the value and position of the error. We have

$$b_i = c_i \oplus \delta_{ik}p, \text{where } \delta_{ik} \text{is the Kronecker symbol.}$$

From the (2) congruences we have

$$d_k^j = \sum_{i \in I^n_q^j} b_i - \sum_{i \in I^n_q^j} \delta(i,j,k) \otimes b_i$$

$$= \sum_{i = 1}^n \delta(i,j,k) \otimes c_i \otimes \sum_{i = 1}^n \delta(i,j,k) \otimes \delta_{ih}p$$

$$= 0 \quad \delta(i,j,k) h = \begin{cases} p, & \text{if } h \in I^n_q^j, \\ 0, & \text{if } h \notin I^n_q^j. \end{cases}$$