Deliverable No. 3 – Scoping report. Working report within the project Conflict Study – Application in HA (Highway Agency) Road Safety Management

Svensson, Åse; Barker, E

2007

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Conflict Study – Application in HA Road Safety Management

Deliverable No. 3
Scoping Report summarising the work undertaken, relating back to the study objectives

Åse Svensson, Department of Technology and Society, Lund University
Edwin Barker, Research Consultancy, Scott Wilson

Contract Reference: 3/387

HA Task Reference: 200(387) MTSC – Scott Wilson

Project Sponsor: Sandra Brown
Company Details

Highways Research Group (HRG) are a multi-disciplinary supply chain comprising over 30 diverse organisations, strategically designed to meet the technical research needs of the Highways Agency. The Group behaves as a community, sharing knowledge and working in partnership with the HA. Research and Development Framework Tasks are managed through the Contract with Scott Wilson Limited.

The nominated Project Director is: Prof Robert Armitage - Director
Organisation: Scott Wilson
Tel: 0115 9077003
Fax: 0115 9077001
Email: robert.armitage@scottwilson.com
Address: 12 Regan Way, Chetwynd Business Park, Chilwell, Nottingham, NG9 6RZ.

The nominated Project Manager is: Bill Gallear – Technical Director
Organisation: Scott Wilson
Tel: 01629 761763
Fax: 01629 761789
Email: bill.gallear@scottwilson.com
Address: Dimple Road Business Centre, Dimple Road, Matlock, Derbyshire, DE4 3JX

The nominated Assistant Project Manager is: Dr Edwin Barker – Principal Engineer
Organisation: Scott Wilson
Tel: 0115 9077037
Fax: 0115 9077001
Email: edwin.barker@scottwilson.com
Address: 12 Regan Way, Chetwynd Business Park, Chilwell, Nottingham, NG9 6RZ.

The Research and Development Framework Contract Manager is: Dr Alistair Hunter
Organisation: Scott Wilson
Tel: 0115 9077031
Fax: 0115 907 7001
Email: alistair.hunter@scottwilson.com
Address: 12 Regan Way, Chetwynd Business Park, Chilwell, Nottingham, NG9 6RZ

Registered office: 12 Regan Way, Chetwynd Business Park, Chilwell, Nottingham, NG9 6RZ

The company is registered in England & Wales: No. 1910469
Executive Summary

This report summaries the work undertaken to date, and provides a platform on which further site selection, training and fieldwork may be undertaken. The outline quantity of sitework is stated, based on a build up of likely time input required. The availability and applicability of the two main datasets, STATS19 and On The Spot (OTS) data, is summarised. Currently, STATS19 has yielded 11 potential study sites out of 997 accidents on the network over a 5 year period. While OTS data has limited coverage of the proposed study sites, it may be utilized at a later stage for operational matters. A proposed methodology of Conflict Study is detailed with further development required through the trialling process. Best value considerations, in terms of choice of methodology and sites, are outlined providing a basis for appropriate placement of conflict studies within the highway safety design process. The potential study sites have been detailed in the Appendices and summarized with reference to the selection criteria, given in the original task specification.
Contents

Executive Summary i
1. Introduction 1
2. Accident Data: Availability and Applicability 2
 2.1 STAT19 2
 2.2 On The Spot (OTS) Data 2
3. Conflict Study Methodology 3
 3.1 Theoretical and practical considerations when performing conflict studies at rural sites 3
 3.2 Specifications regarding the conflict studies 3
 3.3 Examining Accident Data 4
 3.4 Inspection of Sites 4
 3.5 Extension of Observation Time 4
 3.6 Cameras 4
 3.7 Conflict registration method 4
 3.8 Conflict registration protocols 5
4. ‘Best Value’ Considerations 6
 4.1 Choice of Methodology 6
 4.2 Choice of type of site 6
5. Potential Study Sites 7
 5.1 Introduction 7
 5.2 Selection criteria: General overview 7
 5.3 Multiple Sites 8
 5.4 MAC Liaisons 8
6. Realistic Scope 9
1. Introduction

This report is part of a wider study, the aims of which are to:

- establish reliable relationships between accident and conflict data, pertinent to different situations on the Highways Agency network
- widen the scope of previous work to consider specific junction types, including rural junctions, and to consider the applicability of conflict techniques to links
- compare actual accident data with prediction using conflict study and SafeNET software, which is now applicable to rural as well as urban roads
- test the use of Conflict Study techniques and determine suitability for use by Road Safety Engineers for assessing safety at specific locations on the network
- develop guidelines on the use and methodology applicable for Conflict Studies

This report is intended to summarise the work undertaken, relating back to the study objectives. In particular this report addresses the following:

- What can reasonably be done in the time available (10 months)
- Availability and applicability of accident data
- Methodology for carrying out Conflict Studies
- Consideration of “best value” in choice of methodology and type of site
- List of potential study sites against criteria in specification
2 Accident Data: Availability and Applicability

2.1 STATS 19

STATS 19 data describes 997 incidents in the South Nottinghamshire area over a 5 year period, from October 2001 to October 2006, with 471 of these accidents occurring at 38 potential cluster sites (Appendix A) where a conflict study could have potentially be undertaken using currently recognized techniques. During the site selection workshop this quantity of potential study sites was further filtered through analysis of accident data, aerial photographs, local relevant knowledge and a site visit. This process resulted in 11 sites (Appendix B) being selected as potential sites for conflict studies to be undertaken (Task 5).

This filtering process, and future detailed conflict study methodologies, rely on the following items of information provided by STATS 19.

- Date of Accident
- Cause
- Carriageway
- Day of Week
- Description
- OS Grid References
- Lighting Conditions
- Location
- Month
- Road Type
- Severity of Accident
- Speed
- Time of Day
- Weather

2.2 OTS Data

The use of On The Spot (OTS) data for future statistical analysis in this project has been discounted at this stage, since very few accidents are available from the OTS database at the chosen sites. This low number of recorded events at the chosen sites reflects the fact that OTS covers all roads in the East Midlands with 88% of accidents investigated occurring on urban trunk roads; a further 11% occur at sites that, though on rural trunk roads, are away from the chosen ‘cluster’ sites. OTS may be utilized at a later date in the study for operational matters (e.g. The use of the video ‘fly throughs’).
3. **Conflict Study Methodology**

3.1 **Theoretical and practical considerations when performing conflict studies at rural sites**

It is proposed that a conflict technique based on the Swedish Traffic Conflicts Technique (TCT) is used at rural sites, with appropriate adaptation made from the urban to rural environment. This approach is informed by both practical and theoretical considerations. An important modification (when compared to the original TCT) will be to consider the potential impact speeds, including the highest speeds and the relative speeds of the involved road users, when estimating the severity. Simultaneous video recordings will be a precondition as speeds, and consequently both distances and Time to Accident (TA) values, will be much higher when compared to urban conditions.

In practice this is neither anything new nor extraordinary, as the present technique is based on the optimal braking distance at all speeds. Also when making conflict studies in urban situations the sites are often video recorded. This provides the observer with a backup and makes it possible to look again at some events in more detail. It also allows for other behavioural studies and use of data which are important complements to conflict studies, such as red light violations, measuring the flow of different streams and types of road users, and measuring speeds. In connection to the training of conflict observers the outdoor activities are always video recorded. On return from site it is then possible to view and assess the conflicts again to give the observers correct feedback on their registrations. At more complex sites such as rural links and junctions, simultaneous video recordings can be of assistance to the conflict observer. The selection of events will still be made by the observer at site while the estimate of conflicting speed and position for evasive action can be verified afterwards from the video recordings.

In summary, the modified Traffic Conflicts Technique will:

- Identify conflict situations using manual observers
- Use video analysis as a tool for checking the reliability of the manual observations and for providing data on vehicle speed and path
- Assess alternative hypotheses that might be preferable at rural conditions, such as:
 1. Distinguishing between the probability of an accident and the probability of an injury once an accident occurs (i.e. distinguish between (a) accident risk and (b) severity of outcome).
 2. For junction purposes, define the conflict severity on the basis of the more severe of the two Time to Accident/ Speed values as proposed by Shbeeb (2000).
 3. For head-on conflicts on links, define the conflict severity on the basis of the relative speed of the participants.

3.2 **Specifications regarding the conflict studies**

As mentioned before, performing conflict studies at rural sites will be a new, different and more complex task when compared to performing them in urban conditions. A detailed scheme can therefore not be produced before some initial experience is gained. More specific recommendations will be available after analysis of results from the trialling period when the capability of conflict observers is assessed to define:

- Size of area that each conflict observer can cover
- Volume of traffic that each observer can handle
- Impact of considerably higher speeds, compared to urban conditions

The trial period also helped assess the use of video recordings:

- Number of cameras per site and camera location (including height)
- Ability to afterwards find the relevant situations (time coding)
- Ability to measure speeds and distances
All in all the assessment above is not about questioning whether it is possible to perform conflict studies at rural junctions and links; it will be possible to perform conflict studies. The question is how many conflict observers and cameras will be needed to make proper studies.

3.3 Examining Accident Data

The accident history of each potential site should be studied to determine the type of accidents occurring and the manoeuvres involved. Are the accidents randomly distributed with regard to type and location or is it possible to track clusters? These details are essential to get a first rough appreciation of the numbers of observers required at each site, also the location for each observer, as well as the most relevant times (week days, times of the day) to do the observations.

3.4 Inspection of Sites

Site inspections should be carried out carefully, before selecting a site and performing the conflict studies, to determine:

- Layout and possible manoeuvres
- Feasibility to position observers and camera(s), ensuring:
 1) safe position
 2) good overview
 3) no affect on road user behaviour
- Traffic volumes
- Traffic speeds

If there are no suitable observation points then the site should be excluded.

These details are essential in order to be able to decide on the number of observers required at each site. There is however not any “ready-to-use” formula based on, for example, traffic volumes and speeds. This information is gained by the inspection of the sites, the experience and capabilities of the observers and the accident patterns.

3.5 Extension of Observation Time

It will be preferable to cover each site during the periods of the day when accidents occur. For a normal study at an urban junction the conflict studies are carried out for 3 days; 6 hours a day. For rural sites the peak periods might be longer, so an additional 2 hours per day may be relevant.

3.6 Cameras

The number of cameras at each site depends on the specific layout, and there must be correlation between the coverage by the observers and the cameras. The cameras must have a clock in the display to make it possible to find the conflicts that the observers have detected and to measure speeds during post site analysis. To be able to measure speeds and distances from the video recordings the site must be calibrated, which is ideally undertaken by ascertaining the geometry of existing site features such as road markings. If these cannot be clearly observed through the video recording, temporary pegs set back in the verge can be used during the site tasks. A map of the site, to scale, also helps when making these estimates back in the office.

3.7 Conflict recording method

The conflict recording method to be used at rural sites has its basis in the traditional Swedish TCT for urban studies. The original Swedish technique is founded on comprehensive validation of manual (i.e. not video) studies. This can not be done in the prevailing project due to time and budget constraints. The proposed changes of the original technique will therefore be based on “sound theoretical considerations” originating in the experience from earlier validation studies.
During the 5-day training course the observers are be trained to
• Distinguish a serious conflict from other events in traffic
• Estimate the speeds of the involved road users
• Estimate the distances between vehicles

For the first 2 days, the training is carried out in urban conditions according to the traditional Swedish TCT. Then the training will be/was moved to rural sites. The modification of the technique is based on both the observers’ and trainers’ experiences. There are discussions on the applicability of the traditional TCT to rural conditions, suggestions on modifications, and introduction of new parameters. Then the modifications are tested which perhaps leads/led on to further suggestions on modifications; i.e. in an iterative process. An observer’s subjective severity rating of a conflict is, for instance, not a parameter that is part of the traditional technique, but is a parameter considered to be of interest for a rural TCT and a future modified urban technique. Subjective severity rating will therefore be a new parameter most likely to be introduced in the modified technique. Before the end of the training course, there is a decision on a conflict recording method to be used for this project. (Although such a method will be employed during this study there may be further modifications in the longer term).

The most important tasks for the observer performing the rural conflict studies will be to detect and register the serious conflicts and to note parameters which are not possible to estimate from the video recordings. Physical parameters of interest, such as speeds and distances, are of course important, but the simultaneous video recording will assist in making such estimates. This of course implies that the conflict observer registers the time of the event, identifies the vehicles involved (i.e. type and colour), and describes the direction of the vehicles and the process preceding the serious conflict, making it possible to identify the correct conflict on the video afterwards.

3.8 Conflict registration protocols

Each conflict is recorded on one sheet; the data includes speeds, distances, TA-values and a description of the process preceding the conflict. To facilitate different types of analyses (when compared to conflict studies performed at urban junctions) it is important that the speed is estimated for both vehicle users. The conflict observer will probably also be instructed to include some subjective estimates and other additional information based on the modifications that have been developed form the trials. The subjective estimate consists of:
1) probability of an accident
2) probability of an injury if there has been a collision
i.e. the observer is to estimate the likelihood of an injury accident.

One of the validation studies of the Swedish TCT showed that the subjective severity had a good correlation with the accident potential; a dimension that is not fully appreciated in the present objective definition of a serious conflict.

With the general conflict registration protocol described above it will be possible to analyse the conflicts in all sorts of ways; both according to the traditional conflict theory and according to alternative hypotheses that might be preferable at rural conditions, such as:
• Distinguishing between the probability of an accident and the probability of an injury once an accident occurs. The first part of this, probability of an accident, should be well covered by the original technique’s estimates of TA-value and Conflicting Speed. The second part, probability of an injury once an accident occurs, must be based on possible impact speed and the vulnerability of the road users in the type of conflict they are involved (type of road user, type of collision – rear end, head on, side sweep)
• Specifically for perpendicular courses (side impact): Irrespective of who’s taking evasive action it is the highest speed involved that has a relationship with injury accidents
• Specifically for head-on courses: It is the relative speed of the involved road users that has a relationship with injury accidents
4 ‘Best Value’ Considerations

The Traffic Conflict Technique has demonstrated a high confidence level between the number and type of conflicts and the number of serious accidents. To enable this level of confidence to be maintained the methodology for use on rural links should be as close to the original method, validated for urban roads, as possible.

It is likely that the technique could be used on sites where there is no dominant collision type and therefore solutions would be difficult to determine. Undertaking a Conflict Study on this type of site will facilitate optimum safety scheme design based on a knowledge of the dominant conflict types.
5. Potential Study Sites

5.1 Introduction

As a result of the site selection workshop, the 38 cluster sites have been filtered, in terms of suitability for conflict studies, to 11 potential sites. Appendix B provides details of these sites in terms of the selection criteria with a general overview provide in Section 5.2. There are 3 sites where multiple conflict types have been identified, and these are described in Section 5.3. Finally, liaison with the local Managing Agent Contractor (MAC) is detailed in Section 5.4. The details of traffic flow and accident data have been obtained from TRADS and STATS 19 respectively and are given in Appendix C.

5.2 Selection criteria: General overview

The sites selected include the following features:

- Termination of dual carriageways to single carriageway
- Bends on single / dual carriageway
- Termination of climbing lanes
- Overtaking on single carriageways
- Roundabouts

The following criteria have also been considered:

- **Where**: The sites are in derestricted (national speed limit) areas and are predominantly in non-built up areas.

- **Why**: The sites possess a range of unique characteristics such as roundabouts, T-Junctions, Y-Junctions, slip roads, and crossroads. The sites possess a range of curvature and gradient with varying scope for overtaking. None of the sites have designated hard shoulders.

- **Local Character and Geometry**: The traffic volumes through the sites vary from 7,475 - 23,912 vehicles per day, with speeds in the range 36 - 76mph and with 9.7 - 19.7% of vehicles being greater than 5.2m in length. It should be noted that no pedestrian or cyclist traffic counts have been examined. From Appendix B it may be observed that between 16 - 66% of accidents occurred when the road surface was wet with the majority of sites exhibiting less than 36% of accidents on wet surfaces. With the exception of the A1 there were no fatal accidents at the sites; accidents were split between slight and serious, ranging from all slight accidents up to a 67/33 split between slight and serious accidents. It should be noted that the STATS 19 data reveals that fatal accidents account for 2.4% of all reported accidents, with 66% of these occurring on the A46 away from the cluster sites identified; the largest single cause is connected with an overtaking manoeuvre at speed.

- **When**: The patterns of daily traffic at each site are broadly similar with low flows occurring between 00:00-05:00, morning peak flows between 07:00-09:00, and evening peak flows between 16:00-18:00. However, within these general patterns there are significant variations in magnitude between morning and evening peak flows, likely reflecting the daily commuter traffic close to the place of work. Analysis of weekly traffic patterns reveals that the sites typically exhibit similar daily patterns Monday to Friday, with the exception of Friday evening where larger flows are observed. Weekend traffic patterns see the morning peaks occurring later, typically around midday.
5.3 Multiple Sites

It should be noted that two of the 11 sites selected potentially comprise 2 - 3 conflict types, these sites being:

Saxondale: The predominant manoeuvres at this roundabout are A46 southbound to A52 westbound during the morning peak, and A52 eastbound to A46 northbound during the evening peak. This provides several potential sites at different times of the day on this intersection.

Borrowash: From an observation point situated on an overbridge above the A52 dual carriageway, three potential conflict sites may be observed.
1. Vehicles turning onto the westbound A52 from a minor road
2. Vehicles turning onto the eastbound A52 from a minor road
3. Vehicles overtaking in the vicinity of a slight gradient and curve.

These sites were used during the training and trialling process.

5.4 MAC Liaisons

Liaison with the MAC (AmScott) has been taking place in specific relation to the following:

Planned events / Road works: The project Task Manager has been notified of all planned events / road works in the area and will receive weekly updates.

Accident history: The MAC has supplied details of the 50 top collision cluster locations in Area 7. This provides detailed trends for the past 2 years as well as a brief commentary.

Site Specific Study: The MAC has agreed to supply reports on detailed studies at the sites of interest, such as the current scheme identification study being undertaken at Saxondale. The MAC have provided a list of schemes which are likely to be undertaken this financial year.
6. Realistic Scope

The project had been scoped at tender stage to undertake 2 trial sites and up to 9 test sites, assuming an average of 8 person days on site, and 5 person days post site analysis. The assumptions made at tender stage assumed the studies to be undertaken at specific points and at one time frame. During the training and trialling period it was found that each observer should not observe more than 150m length of road. Due to the complexity and speed over which conflicts may take place the number of person days currently assumed would not be sufficient to gather the quantities of data required for validation on some sites. Thus, each site described below has been assigned an “equivalent number” of sites based on the complexity and size of site, and the number of visits required.

A short list of 11 potential sites had been identified with final selection undertaken during training and trialling week 11-15th June. After consideration of both the project aims and the available sites within the time frame afforded, the following sites have been recommended for study. Although Saxondale and Borrowash have been used during the training and trialling phase, they have not been selected for the main phase of data collection. This is due to receiving fresh information from the MAC, resulting in other sites, listed below, being deemed to be more suitable. The majority of the fieldwork will be undertaken from September to October, with the ‘post-construction’ survey at Winthorpe Roundabout being potentially undertaken in November after the safety works have been completed.

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Description</th>
<th>Equivalent number of sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winthorpe Roundabout (A46)</td>
<td>The Winthorpe Roundabout has been selected primarily due to the fact that safety works (transverse yellow bar markings) are provisionally due for construction in October 2007. Winthorpe Roundabout has been included in preference to Saxondale since these safety works allow ‘before and after’ studies to be undertaken during the project. This should provide an indication whether the conflict study technique is suitable for early monitoring of the success, or otherwise, of highway improvement schemes.</td>
<td>6</td>
</tr>
<tr>
<td>Barton Lane (A453)</td>
<td>Barton Lane Junction is currently ranked 28 in the MAC’s top collision cluster locations. Safety improvement works have been undertaken in 2004 with a stage 4 audit imminent. Studying this site will allow validation of the adapted TCT to rural junctions on single carriageways.</td>
<td>1</td>
</tr>
<tr>
<td>Tithby Road (A52)</td>
<td>Tithby Road Junction is currently ranked 53 in the MAC’s top collision cluster locations. Studying this site will allow validation of the adapted TCT to rural junctions where there is also a change in cross section of the route, i.e. dual to single carriageway.</td>
<td>1</td>
</tr>
<tr>
<td>Colsterworth – Little Ponton Gap Closures (A1)</td>
<td>Although these sites were not considered during the initial phases of site selection they are part of a current study being undertaken by Scott Wilson (Matlock) on behalf of AmScott. The Highways Agency has a programme to close the central reserve gaps along on the A1. However, there is currently insufficient accident data to provide conclusive evidence as to which gaps to close. Studies to date have revealed that out of 34 gaps, which are mainly farm accesses, there are 4 cluster sites with 2 of these sites having had fatal collisions since 2000. Undertaking investigation on 2 of these sites would demonstrate the validity of performing the TCT where there are high vehicle speeds, and potentially establish a sound methodology for identifying suitable gap closure schemes. Further, fieldwork at these sites will demonstrate the applicability of the technique to higher speed situations, thus negating the further use of the Borrowash site at this stage.</td>
<td>4</td>
</tr>
<tr>
<td>Number</td>
<td>Site Name</td>
<td>Eastings</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
<td>Kegworth</td>
<td>448145</td>
</tr>
<tr>
<td>2</td>
<td>Ratcliffe on Soar</td>
<td>449900</td>
</tr>
<tr>
<td>3</td>
<td>Ratcliffe on Soar Power Station</td>
<td>450370</td>
</tr>
<tr>
<td>4</td>
<td>Thrumpton</td>
<td>451710</td>
</tr>
<tr>
<td>5</td>
<td>Thrumpton NE</td>
<td>452100</td>
</tr>
<tr>
<td>6</td>
<td>Manor Road</td>
<td>452515</td>
</tr>
<tr>
<td>7</td>
<td>New Road</td>
<td>452900</td>
</tr>
<tr>
<td>8</td>
<td>Barton in Fabis</td>
<td>452785</td>
</tr>
<tr>
<td>9</td>
<td>New Road</td>
<td>453020</td>
</tr>
<tr>
<td>10</td>
<td>Barton Lane</td>
<td>453060</td>
</tr>
<tr>
<td>11</td>
<td>Widmerpool</td>
<td>465280</td>
</tr>
<tr>
<td>12</td>
<td>Kinoulton</td>
<td>465350</td>
</tr>
<tr>
<td>13</td>
<td>De Ronpa</td>
<td>465810</td>
</tr>
<tr>
<td>14</td>
<td>Saxondale</td>
<td>466220</td>
</tr>
<tr>
<td>15</td>
<td>Straggles Thorpe</td>
<td>466710</td>
</tr>
<tr>
<td>16</td>
<td>Saxondale</td>
<td>466800</td>
</tr>
<tr>
<td>17</td>
<td>Margidunum</td>
<td>470020</td>
</tr>
<tr>
<td>18</td>
<td>Bilton Towers</td>
<td>474670</td>
</tr>
<tr>
<td>19</td>
<td>Manor Lane</td>
<td>475170</td>
</tr>
<tr>
<td>20</td>
<td>East Stoke</td>
<td>475370</td>
</tr>
<tr>
<td>21</td>
<td>Farndon</td>
<td>477190</td>
</tr>
<tr>
<td>22</td>
<td>Farndon NE</td>
<td>478100</td>
</tr>
<tr>
<td>23</td>
<td>Cattle Market</td>
<td>479360</td>
</tr>
<tr>
<td>24</td>
<td>Walthrope</td>
<td>482290</td>
</tr>
<tr>
<td>25</td>
<td>Motorway Borrow Wash</td>
<td>442096</td>
</tr>
<tr>
<td>26</td>
<td>Risley</td>
<td>446532</td>
</tr>
<tr>
<td>27</td>
<td>J25 - M1</td>
<td>447347</td>
</tr>
<tr>
<td>28</td>
<td>Barlby</td>
<td>449140</td>
</tr>
<tr>
<td>29</td>
<td>Saxondale (A52)</td>
<td>468800</td>
</tr>
<tr>
<td>30</td>
<td>Tibby Road</td>
<td>470900</td>
</tr>
<tr>
<td>31</td>
<td>Grantham Road</td>
<td>471480</td>
</tr>
<tr>
<td>32</td>
<td>Jet Services</td>
<td>471820</td>
</tr>
<tr>
<td>33</td>
<td>Old Grantham Road</td>
<td>474810</td>
</tr>
<tr>
<td>34</td>
<td>Manor Arms</td>
<td>476190</td>
</tr>
<tr>
<td>35</td>
<td>Belvoir Road</td>
<td>485470</td>
</tr>
</tbody>
</table>
Appendix B: Details of Potential Study Sites

<table>
<thead>
<tr>
<th>Site Number</th>
<th>Site Name</th>
<th>Road Class</th>
<th>MAC's Top 50</th>
<th>Analytical Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ratcliffe on Soar A453</td>
<td>Currently Ranked 27, no history. KSI site, East Midlands Parkway roundabout due 07/08</td>
<td>Single carriage way</td>
<td>1 Rural</td>
</tr>
<tr>
<td>2</td>
<td>Saxondale A46</td>
<td>Currently Ranked 5, from 6 last year. Scheme completed November 04</td>
<td>Dual carriage way</td>
<td>2 Rural</td>
</tr>
<tr>
<td>3</td>
<td>Sedgebrook A52</td>
<td>Currently Ranked 53, no history.</td>
<td>Single carriage way</td>
<td>1 Rural</td>
</tr>
<tr>
<td>4</td>
<td>Straggletorpe A46</td>
<td>Currently Ranked 41, no history. Scheme completed 04, New SPECS</td>
<td>Single/ dual carriage way</td>
<td>1-2 Rural</td>
</tr>
<tr>
<td>5</td>
<td>Tithby Road A52</td>
<td>Currently Ranked 53, no history.</td>
<td>Single carriage way</td>
<td>1 Rural</td>
</tr>
<tr>
<td>6</td>
<td>Widmerpool A46</td>
<td>Currently Ranked 41, from 38 last year. Scheme completed Dec 2005.</td>
<td>Single/ dual carriage way</td>
<td>1-2 Rural</td>
</tr>
<tr>
<td>7</td>
<td>Barrowby Hill A52</td>
<td>Currently Ranked 53, no history.</td>
<td>Dual carriage way</td>
<td>1 Rural</td>
</tr>
<tr>
<td>8</td>
<td>Barton Lane A453</td>
<td>Currently Ranked 18, from 29 last year. Safety scheme completed Oct 04.</td>
<td>Single carriage way</td>
<td>1 Rural</td>
</tr>
<tr>
<td>9</td>
<td>Borrow Wash A52</td>
<td>Currently Ranked 53, no history.</td>
<td>Dual carriage way</td>
<td>1 Rural</td>
</tr>
<tr>
<td>10</td>
<td>Cattle Market A46</td>
<td>Currently Ranked 21, from 25 last year. Economy / safety study in progress.</td>
<td>Dual carriage way</td>
<td>2 Rural</td>
</tr>
<tr>
<td>11</td>
<td>Margidunum A46</td>
<td>Currently Ranked 23, from 29 last year. Study complete; re-surfaced in January 06 with changes to road markings on NBD approach</td>
<td>Dual carriage way</td>
<td>2 Rural</td>
</tr>
</tbody>
</table>
Appendix C: Daily Flow Rates and Accident Distributions

Radcliffe on Soar

Daily Traffic Flow

Accident Distribution
Barton Lane

Daily Traffic Flow

Accident Distribution
Task: Conflict Study – Application in HA Road Safety Management - HA National Framework 3/387
Deliverable No. 3 Scoping Report summarising the work undertaken, relating back to the study objectives

Widmerpool

TBA

Daily Traffic Flow

Accident Distribution
Task: Conflict Study – Application in HA Road Safety Management - HA National Framework 3/387
Deliverable No. 3 Scoping Report summarising the work undertaken, relating back to the study objectives

Stragglethorpe

![Graph showing daily traffic flow with time of day and traffic flow in vehicles per hour.]

Daily Traffic Flow

![Graph showing accident distribution with time of day and month.]

Accident Distribution
Saxon Dale

Daily Traffic Flow

Accident Distribution
Task: Conflict Study – Application in HA Road Safety Management - HA National Framework 3/387
Deliverable No. 3 Scoping Report summarising the work undertaken, relating back to the study objectives

Margidunum

![Traffic Flow Chart]

- Margidunum - NB: (30013553)
- Margidunum - SB: (30013554)

Daily Traffic Flow

![Daily Traffic Flow Chart]

Accident Distribution
Cattle Market

Traffic Flow, Vehicles per hour

Time of Day

Daily Traffic Flow

Time of Day

Month

Accident Distribution
Task: Conflict Study – Application in HA Road Safety Management - HA National Framework 3/387
Deliverable No. 3 Scoping Report summarising the work undertaken, relating back to the study objectives

Borrow Wash

Daily Traffic Flow

Accident Distribution
Tithby Road

Traffic Flow, Vehicles per hour

Time of Day

Daily Traffic Flow

Time of Day

Month

Accident Distribution
Task: Conflict Study – Application in HA Road Safety Management - HA National Framework 3/387
Deliverable No. 3 Scoping Report summarising the work undertaken, relating back to the study objectives

Sedgebrook

![Traffic Flow Chart](chart1.png)

Daily Traffic Flow

![Traffic Flow Chart](chart2.png)

Accident Distribution
Task: Conflict Study – Application in HA Road Safety Management - HA National Framework 3/387
Deliverable No. 3 Scoping Report summarising the work undertaken, relating back to the study objectives

Barrowby Hill

Daily Traffic Flow

Accident Distribution