Testing the temporal accuracy of keystroke logging using the sound card

Frid, Johan; Wengelin, Åsa; Johansson, Victoria; Johansson, Roger; Johansson, Mikael

Published in:
[Publication information missing]

Published: 2012-01-01

Link to publication

Citation for published version (APA):
Testing the temporal accuracy of keystroke logging using the sound card

BACKGROUND

- Writing research has seen an increased use of keystroke logging
- Keystroke logging programs log the writing process in a continuous and non-obtrusive way
- They enable researchers to collect fine-grained data because they log every keystroke in relation to a timestamp (in milliseconds), which indicates the time that a specific key was used.
- For the researcher interested in for example word-internal processing it’s important to know the degree of precision and accuracy that can be achieved by the program.

METHOD

- We propose a method of measuring the accuracy of keystroke timestamps using a recording of the sounds made by key presses.
- Sound cards fit the purpose well since they typically have much better temporal resolution than computer keyboards and they are readily available in most computers.
- Key presses produce noise patterns that are easily temporally located in an acoustic waveform.
- The timestamps of the noise patterns can then be compared with the corresponding timestamps reported by the keystroke logging program.
- Specifically, the differences between the two timestamps of each keystroke, provides an estimate of the accuracy of the program.

RESULTS

<table>
<thead>
<tr>
<th></th>
<th>ScriptLog</th>
<th>JavaScript prototype (Firefox)</th>
<th>Java prototype</th>
<th>C++ prototype</th>
<th>SoundCard</th>
</tr>
</thead>
<tbody>
<tr>
<td>point-by-point</td>
<td>0.005</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>range</td>
<td>0.023</td>
<td>0.012</td>
<td>0.012</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>stddev</td>
<td>0.007</td>
<td>0.006</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>maxdiff</td>
<td>0.038</td>
<td>0.007</td>
<td>0.004</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>range</td>
<td>0.0002</td>
<td>0.0002</td>
<td>0.0002</td>
<td>0.0002</td>
</tr>
<tr>
<td>interval</td>
<td>8.75E-05</td>
<td>5.29E-05</td>
<td>2.3E-05</td>
<td>5.96E-05</td>
<td>5.96E-05</td>
</tr>
</tbody>
</table>

- We find significant differences between the variances of the prototypes and ScriptLog (example: for Java: F=0.287, p<0.001)
- This implies that a reimplemented version will provide improved timing accuracy
- This method can be implemented as part of any keystroke logging program in order for the user to test the accuracy in his/her own computer environment.

Johan Fridl¹, Åsa Wengelin², Victoria Johansson¹, Roger Johansson¹, & Mikael Johansson¹

¹Lund University, Sweden
²University of Gothenburg, Sweden