A slow time constant in the neurophysiology of language processing

Roll, Mikael; Horne, Merle

Published in:
Neuroscience Day, Medical Faculty

2012

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
A slow time constant in the neurophysiology of language processing

Mikael Roll and Merle Horne
Lund University, Department of Linguistics & Phonetics
mikael.roll@ling.lu.se, merle.horne@ling.lu.se

Introduction

• The phonological trace of perceived words starts fading away in short-term memory after 2–3 s (Baddeley et al., 1975).
• Spoken utterances are usually 2–3 s long (Horne et al., 2006; Vollrath et al. 1992). This allows the listener to form coherent prosodic phrases while the words still have clear traces in short-term memory.
• We tested whether readers also process texts in 2–3 s long prosodic phrases (Roll et al., in press).

Pretest

• Three Swedish speakers read 30 of the test sentences using phrases containing either one, two, or three clauses (see example in Material section). The speakers spontaneously increased their speech rate for the three-clause prosodic phrases, keeping them at a mean of 2.7 s.

Method

Material

• Sentences consisting of 4-word clauses were presented word by word at three different speeds:
 Fast [Clause] [Clause] [Clause] ll2.7 s
 Medium [Clause] [Clause] ll2.7 s [Clause]
 Slow [Clause] ll2.7 s [Clause] ll2.7 s [Clause] ll2.7 s
• Control sentences with 5-word clauses, i.e. 4th word appearing at 2.7 s was penultimate, e.g.:
 Slow [Clause] ll3.4 s [Clause] ll3.4 s [Clause] ll3.4 s
• 40 sentences presented randomly at all speeds
• 32-channel EEG was recorded using Synamps 2.

Participants

• 26 participants, mean age 24.5 years, 18 women
• 2 working memory span groups: Low, M = 23.4, SD = 8.0, and high, M = 53.8, SD = 10.0, based on automated operation span results.

Results

• Positivity 500–700 ms after every clause ending a 2.7-s unit (Closure Positive Shift, CPS):
 Fast Final word in clause 3 > clause 1 and 2
 Medium Final word in clause 2 > clause 1 and 3
 Slow Final word in clause 1, 2, 3 > control
• Low working memory span group had increased negativity in 3.4-s clauses (slow control).
• N400 reduction over sentence and sentence-final negativity were invariable for all speeds.

Discussion

Results showed a late centroparietal positivity every 2.7 s during reading where a prosodic boundary was possible. The positivity was interpreted as a Closure Positive Shift (CPS) (Steinhauer et al., 1999), showing that the silent readers made 2.7 s long prosodic phrases. Participants with low working memory span showed signs of increased phonological working memory load in clauses that were “too long” (3.4 s).

References