Molecular Ecology and Evolution Lab

  • Visiting addressShow on map

    Ekologihuset, Sölvegatan 37

    223 62 Lund


  • Postal addressShow on map

    Ekologihuset, Sölvegatan 37

    223 62 Lund


Unit profile


The Molecular Ecology and Evolution Lab (MEEL) is rooted in the fields of ecology and evolutionary biology. MEEL is a collaborative research environment consisting of seven independent PI's who use molecular techniques to investigate evolutionary and ecological problems. The group was established by Torbjörn von Schantz in the late 1980's around the DNA-lab, which continues to be the centre of activity today.


Our research covers a broad range of organisms including mammals, birds, insects, algae, parasites and bacteria. Irrespective of organism, the projects make use of various genetic techniques to investigate a variety of processes and patterns such as adaptation, evolutionary constraints, genome evolution, host-parasite coevolution, immunity, multicellularity, sociality, phylogenetics, senescence, sex chromosomes, sexual conflict, and speciation.

More about us

We collaborate closely on many projects. More detailed descriptions of our research can be found on our personal pages.

Staffan Bensch lab

Our group has a background in behavioural ecology and molecular ecology. We combine large-scale fieldwork with genomic analyses to understand the evolutionary genetics of adaptations. Presently, we carry out two projects in parallel: genetics and genomics of migratory songbirds and host-parasite evolution of avian malaria parasites. 

Charlie Cornwallis lab

Our group is interested in explaining the origin and breakdown of complex life. Life on earth has been shaped by several major evolutionary transitions. For example, transitions to multicellularity, sexual reproduction, group living (societies) and symbiotic existence have all played fundamental roles in the development of life. Our research focuses on investigating: (1) why these transitions occur; (2) how complex life is maintained; (3) what transformations occur in organismal design following transitions; and (4) under what conditions does complexity break down.

Bengt Hansson lab

We study evolutionary processes broadly, with a main focus on the evolutionary ecology of sex determination and sex chromosomes. We are also interested in the speciation process and how to protect threatened species. Our projects often include genome-wide data, which we analyse with population genetics approaches. Phenomena we have explored recently include introgression, adaptation, divergence, epistasis, sexual conflict, and repeated evolution. We work on Sylvioidea songbirds including the great reed warbler at Lake Kvismaren, finches on islands in the Atlantic Ocean, insects including damselflies and bumblebees, and dioecious plants. 

Dennis Hasselquist lab

In our group, we are interested in evolutionary, functional and behavioural ecology questions using molecular, genetic and genomic methods. We focus on two main aspects: 1) how disease ecology, life history strategies, migration and ageing processes influence ecological and evolutionary dynamics of a wild population of great reed warblers (our database contains information for 40 breeding seasons), and 2) how physiological drivers (particularly immune function and telomere dynamics) influence variation in health and fitness. The second aspect involves studies in wild (great reed warbler) and experiments in captive (zebra finches and canaries) study systems that address short- and long-term costs of immune system activation and infection.

Olof Hellgren lab

We work on ecological and evolutionary questions related to host-parasite interaction. We want to understand how observed genetic variation relates to species limits, how variation is maintained and distributed throughout populations or selected for within single infections. We further study gene-gene interactions between different hosts, parasites and vectors at different time points during infection cycles. We work primarily with natural host-parasite systems, with focus on avian malaria, using a variety of methods ranging from single-gene barcoding to genomics and dual-RNA sequencing.

Maja Tarka lab

In our group, we ask questions on how natural and sexual selection shapes phenotypes in wild populations, why some populations are more evolvable than others and how the genetic architecture of traits constrain or facilitate evolution. We address these questions in natural populations of great reed warblers and green tortoise beetles using quantitative and molecular genetics and genomics.

Helena Westerdahl lab

Pathogens evolve quickly and vertebrate hosts slowly – How can we keep up with all these pathogens? One important explanation is the enormous diversity that exists in the adaptive immune system of all vertebrates. In our group, we study the adaptive immune system in wild birds: (1) host-pathogen interactions within populations and (2) the evolution of the immune system, with a special focus on the enigmatic Major Histocompatibility Complex (MHC) genes. 

Associated PI’s

Research support

Postdocs and researchers (host)

PhD-students (supervisor)

Masters-/internship students (supervisor / host)

  • Jesper Andersson (Staffan Bensch)
  • Evelina Krol (Dennis Hasselquist, Staffan Bensch)
  • Erik Svensson Wendel (Maja Tarka)
  • Petronella Wessman (Maria Svensson-Coelho & Charlie Cornwallis)


  • Nayden Chakarov, postdoc 2015-2016 (Senior Res., Bielefeld Univ., Germany)
  • Arif Ciloglu, postdoc 2018 (Associate Prof., Erciyes University, Turkey)
  • Philip Downing, postdoc 2016-2022 (Researcher, University of Oulu, Finland)
  • Vincenzo Ellis, postdoc 2018-2019 (Assistant Prof., University Delaware, USA)
  • Luz García-Longoria Batanete, postdoc 2017-2020 (Researcher, Extremadura, Spain)
  • Xi Huang, PhD 2014-2018 (Assistant Prof., Beijing Normal University, China)
  • Mikkel Willemoes, postdoc 2017-2018
  • Julio Neto, postdoc 2005-2014, researcher 2015-2021
  • Suvi Ponnikas, postdoc 2016-2020 (Researcher, Oulu University, Finland)
  • Jacob Roved, PhD 2014-2019 (Postdoc Copenhagen Univ, Denmark)
  • Hanna Sigeman, PhD 2016-2021 (Postdoc University of Oulu, Finland)
  • Maria Strandh, researcher 2016-2020
  • Janne Swaegers, postdoc 2018-2019 (Researcher, Leuwen University, Belgium)
  • Elin Videvall, PhD 2013-2018 (Postdoc Brown University, USA)

UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. Our work contributes towards the following SDG(s):

  • SDG 3 - Good Health and Well-being
  • SDG 13 - Climate Action
  • SDG 15 - Life on Land

Collaborations and top research areas from the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or