Personal profile

Research

The rapid warming of the Earth caused by anthropogenic factors has profound long-term implications for preventing pests and controlling vector-borne diseases. Put simply, Arthropods, ectotherms animals, do better in a warmer world. One of the advantages of a more hospitable environment is spreading geographically to establish new niches. However, appropriate communication within and between individuals is crucial for successful niche realization, and one of the most ancient ways of communication occurs via chemicals and chemoreception. As biological models, this project will examine chemosensory adaptations to specialized lifestyles in two arthropods. First, Ixodes ricinus (Chelicerata) is a vector for multiple tick-borne diseases common in Europe and, as a result, has a significant impact on public health. Despite their epidemiological importance, there is still limited knowledge of the chemosensory system of this species, and thus a poor understanding of host-seeking behavior and chemical ecology. Through comprehensive phylogenetic analysis and comparative genomics approaches, we will investigate how the chemosensory receptor genes are conserved or diversified in seven tick species from five significant genera in the hard ticks (Ixodidae).

 

On the other hand, this project will annotate the chemosensory gene families in the ambrosia beetle Trypodendron lineatum, the second biological model. The T. lineatum genome will be globally annotated using automated annotation pipelines, and gene family expansions will be analyzed for comparisons with available bark beetle genomes (Ips typographus and Dendroctonus ponderosa) to seek genomic signatures of the specialized lifestyle of ambrosia beetles as fungal farmers and eusocial insects.

Expertise related to UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This person’s work contributes towards the following SDG(s):

  • SDG 2 - Zero Hunger

UKÄ subject classification

  • Bioinformatics (Computational Biology)
  • Behavioral Sciences Biology

Fingerprint

Dive into the research topics where Zaide Montes Ortiz is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 1 Similar Profiles

Collaborations the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or