Bone strength is an important contributor to fracture risk. Areal bone mineral density (aBMD) derived from dual-energy X-ray absorptiometry (DXA) is used as a surrogate for bone strength in fracture risk prediction tools. 3D finite element (FE) models predict bone strength better than aBMD, but their clinical use is limited by the need for 3D computed tomography and lack of automation. We have earlier developed a method to reconstruct the 3D hip anatomy from a 2D DXA image, followed by subject-specific FE-based prediction of proximal femoral strength. In the current study, we aim to evaluate the method's ability to predict incident hip fractures in a population-based cohort (MrOS Sweden). We defined two sub-cohorts: (i) hip fracture cases and controls cohort: 120 men with a hip fracture (<10 years from baseline) and 2 controls to each hip fracture case, matched by age, height, and body mass index; (ii) fallers cohort: 86 men who had fallen the year before their hip DXA scan was acquired, 15 of which sustained a hip fracture during the following 10 years. For each participant, we reconstructed the 3D hip anatomy and predicted proximal femoral strength in 10 sideways fall configurations using FE analysis. The FE-predicted proximal femoral strength was a better predictor of incident hip fractures than aBMD for both hip fracture cases and controls (difference in area under the receiver operating characteristics curve, ΔAUROC = 0.06) and fallers (ΔAUROC = 0.22) cohorts. This is the first time that FE models outperform aBMD in predicting incident hip fractures in a population-based prospectively followed cohort based on 3D FE models obtained from a 2D DXA scan. Our approach has potential to notably improve the accuracy of fracture risk predictions in a clinically feasible manner (only one single DXA image is needed) and without additional costs compared to the current clinical approach.

Original languageEnglish
Pages (from-to)1258-1267
JournalJournal of Bone and Mineral Research
Issue number9
Early online date2023 Jul 7
Publication statusPublished - 2023

Bibliographical note

This article is protected by copyright. All rights reserved.

Subject classification (UKÄ)

  • Orthopedics


Dive into the research topics of '3d Finite Element Models Reconstructed From 2d Dxa Images Improve Hip Fracture Prediction Compared to Areal Bmd in Mros Sweden Cohort'. Together they form a unique fingerprint.

Cite this