55 Cancri e's occultation captured with CHEOPS

B.-O. Demory, M.B. Davies, N.A. Walton, et al.

Research output: Contribution to journalArticlepeer-review


Past occultation and phase-curve observations of the ultra-short period super-Earth 55 Cnc e obtained at visible and infrared wavelengths have been challenging to reconcile with a planetary reflection and emission model. In this study, we analyse a set of 41 occultations obtained over a two-year timespan with the CHEOPS satellite. We report the detection of 55 Cnc e's occultation with an average depth of 12 ± 3 ppm. We derive a corresponding 2Ïà  upper limit on the geometric albedo of Ag < 0.55 once decontaminated from the thermal emission measured by Spitzer at 4.5 μm. CHEOPSâà €à ™ s photometric performance enables, for the first time, the detection of individual occultations of this super-Earth in the visible and identifies short-timescale photometric corrugations likely induced by stellar granulation. We also find a clear 47.3-day sinusoidal pattern in the time-dependent occultation depths that we are unable to relate to stellar noise, nor instrumental systematics, but whose planetary origin could be tested with upcoming JWST occultation observations of this iconic super-Earth. © 2023 EDP Sciences. All rights reserved.
Original languageEnglish
Article numberA64
JournalAstronomy and Astrophysics
Publication statusPublished - 2023 Jan

Subject classification (UKÄ)

  • Astronomy, Astrophysics and Cosmology

Free keywords

  • Methods: observational
  • Planets and satellites: individual: 55 Cnc e
  • Techniques: photometric
  • Satellites
  • Stars
  • Infrared wavelengths
  • Methods:observational
  • Photometrics
  • Planet and satellite: individual: 55 cnc e
  • Planets and satellites: individual
  • Reflection Models
  • Short periods
  • Stellars
  • Visible wavelengths
  • Photometry


Dive into the research topics of '55 Cancri e's occultation captured with CHEOPS'. Together they form a unique fingerprint.

Cite this