A Condition Monitoring for Collapsing Bubble Mechanism for Sonoluminescence and Sonochemistry

Ali Kadhim Hadi Alhelfi, Bengt Sundén

Research output: Contribution to specialist publication or newspaperSpecialist publication article

2 Citations (SciVal)


The acoustic cavitation phenomenon is a source of energy for a wide range of applications such as sonoluminescence and sonochemistry. The behavior of a single bubble in liquids is an essential study for acoustic cavitation. The bubbles react with the pressure forces in liquids and reveal their full potential when periodically driven by acoustic waves. As a result of extreme compression of the bubble oscillation in an acoustic field, the bubble produces a very high pressure and temperature during collapse. The temperature may increase many thousands of Kelvin, and the pressure may approach up to hundreds of bar. Subsequently, short flashes can be emitted (sonoluminescence) and the high local temperatures and pressures induce chemical reactions under extreme conditions (sonochemistry). Different models have been presented to describe the bubble dynamics in acoustic cavitation. These studies are done through full numerical simulation of the compressible Navier–Stokes equations. This task is very complex and consumes much computation time. Several features of the cavitation fields remain unexplained. In the current model, all hydrodynamics forces acting on the bubble are considered in the typical solution. Bubble oscillation and its characteristics under the action of a sound wave are presented in order to improve and give a more comprehensive understanding of the phenomenon, which is considered to have a significant role in different areas of science and technology.
Original languageEnglish
Specialist publicationJournal of Thermal Science and Engineering Apllications
PublisherAmerican Society Of Mechanical Engineers (ASME)
Publication statusPublished - 2015

Subject classification (UKÄ)

  • Energy Engineering


  • sonoluminescence
  • bubble dynamics
  • sonochemistry
  • ultrasound
  • acoustic cavitation


Dive into the research topics of 'A Condition Monitoring for Collapsing Bubble Mechanism for Sonoluminescence and Sonochemistry'. Together they form a unique fingerprint.

Cite this