TY - JOUR
T1 - A dual-interfacial system with well-defined spatially separated redox-sites for boosting photocatalytic overall H2S splitting
AU - Dan, Meng
AU - Wu, Fan
AU - Xiang, Jianglai
AU - Cao, Yuehan
AU - Zhong, Yunqian
AU - Zheng, Kaibo
AU - Liu, Yang
AU - Liu, Zhao Qing
AU - Yu, Shan
AU - Zhou, Ying
PY - 2021
Y1 - 2021
N2 - Integration of high activity, selectivity, and stability is urgently desired to achieve more ideal photocatalysts. Herein, we reported the rational design of MoS2-MnS@(InxCu1-x)2S3 (M-M@IC) catalysts with dual interface to integrate separated redox sites for boosting photocatalytic hydrogen sulphide (H2S) splitting and the resource utilization of sacrificial reagents (Na2S/Na2SO3). The spatially separated reduction (MnS) and oxidation (In2S3) sites in MnS/In2S3 heterojunction, on which MoS2 and Cu were selectively loaded, can drive electrons and holes near the surface to flow along opposite directions, while the heterojunction between MnS and In2S3 inhibits the bulk charge recombination. Furthermore, the introduction of Cu atoms creates a d-band center, which favours mass diffusion of reactants/products species and greatly facilitates sunlight response. The MoS2 serves to provide abundant sites for proton reduction due to the unsaturated-sulfur-edge-rich (US-rich) nature. As a result, the M−M@IC shows a state-of-the-art visible-light photocatalytic H2 evolution rate (126.5 mmol g-1h−1), inspiring stability of >50 h, and nearly 100% selectivity toward value-added Na2S2O3 production under optimized condition. This work opens up new opportunities for the construction and design of spatially separated catalytic site in photocatalysts.
AB - Integration of high activity, selectivity, and stability is urgently desired to achieve more ideal photocatalysts. Herein, we reported the rational design of MoS2-MnS@(InxCu1-x)2S3 (M-M@IC) catalysts with dual interface to integrate separated redox sites for boosting photocatalytic hydrogen sulphide (H2S) splitting and the resource utilization of sacrificial reagents (Na2S/Na2SO3). The spatially separated reduction (MnS) and oxidation (In2S3) sites in MnS/In2S3 heterojunction, on which MoS2 and Cu were selectively loaded, can drive electrons and holes near the surface to flow along opposite directions, while the heterojunction between MnS and In2S3 inhibits the bulk charge recombination. Furthermore, the introduction of Cu atoms creates a d-band center, which favours mass diffusion of reactants/products species and greatly facilitates sunlight response. The MoS2 serves to provide abundant sites for proton reduction due to the unsaturated-sulfur-edge-rich (US-rich) nature. As a result, the M−M@IC shows a state-of-the-art visible-light photocatalytic H2 evolution rate (126.5 mmol g-1h−1), inspiring stability of >50 h, and nearly 100% selectivity toward value-added Na2S2O3 production under optimized condition. This work opens up new opportunities for the construction and design of spatially separated catalytic site in photocatalysts.
KW - Dual-interfacial system
KW - H evolution
KW - Sacrificial reagent conversion
KW - Spatially separated reaction sites
U2 - 10.1016/j.cej.2021.130201
DO - 10.1016/j.cej.2021.130201
M3 - Article
AN - SCOPUS:85108114474
SN - 1385-8947
VL - 423
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 130201
ER -