A generic model for C-11 labelled radiopharmaceuticals for imaging receptors in the human brain

Bertil Nosslin, L Johansson, Sigrid Leide Svegborn, J Liniecki, Sören Mattsson, DM Taylor

Research output: Contribution to journalArticlepeer-review

Abstract

A large number of rachopharmaceuticals labelled with C-11 (half-time 0.340 h) are being developed for positron emission tomographic studies of different types of receptor in the human brain. For most of these agents, the available biokinetic data are insufficient to construct realistic compound-specific biokinetic models for calculating the internal radiation dose delivered to persons undergoing investigation. A generic model for brain receptor substances that predicts the internal dose with sufficient accuracy for general radiation protection purposes has, therefore, been developed. Biokinetic data for 13 C-11-radiopharmaceuticals used clinically for imaging different brain receptors indicate that, despite differences in chemical structure. their uptake and retention in the human brain and other tissues are broadly similar. The proposed model assumes instantaneous deposition of 5% of the injected radioactivity in the brain, with the remaining radioactivity being rapidly and uniformly distributed throughout all other tissues. Elimination from all tissues is assumed to occur with a half-time of 2 h. It is further assumed that 75% of the injected C-11 is excreted in the urine, and 25% via the gall bladder, with a half-time of 2 h. This model yields all effective dose of 4.5 X 10(-3) mSv MBq(-1), with doses of 3.2 X 10(-2), 1.7 X 10(-2), 8.7 X 10(-3), 5.2 X 10(-3), and 3.8 X 10(-3) mGy MBq(-1) to the urinary bladder, gall bladder, kidneys, brain and ovaries, respectively. These closes are well within the range of those reported using compound-specific models for the radiopharmaceutals studied.
Original languageEnglish
Pages (from-to)587-591
JournalRadiation Protection Dosimetry
Volume105
Issue number1-4
Publication statusPublished - 2003

Bibliographical note

The information about affiliations in this record was updated in December 2015.
The record was previously connected to the following departments: Medical Radiation Physics, Malmö (013243210), Emergency medicine/Medicine/Surgery (013240200)

Subject classification (UKÄ)

  • Radiology, Nuclear Medicine and Medical Imaging

Fingerprint

Dive into the research topics of 'A generic model for C-11 labelled radiopharmaceuticals for imaging receptors in the human brain'. Together they form a unique fingerprint.

Cite this