A Hardy inequality in twisted waveguides

Tomas Ekholm, H Kovarik, D Krejcirik

Research output: Contribution to journalArticlepeer-review

Abstract

We show that twisting of an infinite straight three-dimensional tube with non-circular cross-section gives rise to a Hardy-type inequality for the associated Dirichlet Laplacian. As an application we prove certain stability of the spectrum of the Dirichlet Laplacian in locally and mildly bent tubes. Namely, it is known that any local bending, no matter how small, generates eigenvalues below the essential spectrum of the Laplacian in the tubes with arbitrary cross-sections rotated along a reference curve in an appropriate way. In the present paper we show that for any other rotation some critical strength of the bending is needed in order to induce a non-empty discrete spectrum.
Original languageEnglish
Pages (from-to)245-264
JournalArchive for Rational Mechanics and Analysis
Volume188
Issue number2
DOIs
Publication statusPublished - 2008

Subject classification (UKÄ)

  • Mathematics

Fingerprint

Dive into the research topics of 'A Hardy inequality in twisted waveguides'. Together they form a unique fingerprint.

Cite this