Abstract
A scheme for treating unsymmetrical coupled systems is outlined. Such
systems occur naturally in connection with fluid-structure interaction,
where an acoustic fluid is contained in an elastic structure. The discretization is performed by means of the finite element method, using displacement formulation in the structure and either pressure or displacement potential in the fluid. Based on the eigenvalues of each subdomain some simple steps give a standard eigenvalue problem. It might also be concluded that the unsymmetrical matrices have real eigenvalues.
systems occur naturally in connection with fluid-structure interaction,
where an acoustic fluid is contained in an elastic structure. The discretization is performed by means of the finite element method, using displacement formulation in the structure and either pressure or displacement potential in the fluid. Based on the eigenvalues of each subdomain some simple steps give a standard eigenvalue problem. It might also be concluded that the unsymmetrical matrices have real eigenvalues.
Original language | English |
---|---|
Pages (from-to) | 357-370 |
Journal | International Journal for Numerical Methods in Engineering |
Volume | 38 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1995 |
Subject classification (UKÄ)
- Mechanical Engineering
Free keywords
- numerical methods
- fluid-structure
- coupled problems
- finite element