A Novel Application of Plasmonics: Plasmon-Driven Surface-Catalyzed Reactions

Mengtao Sun, Hongxing Xu

Research output: Contribution to journalReview articlepeer-review

Abstract

The first experimental and theoretical evidence of the surface-catalyzed reaction of p,p'-dimercaptoazobenzene (DMAB) produced from para-aminothiophenol (PATP) by local surface plasmons was reported in 2010, and since that time a series of investigations have supported these findings using different experimental and theoretical methods. Recent work has also found that local plasmons can drive a surface-catalyzed reaction of DMAB converted from 4-nitrobenzenethiol (4NBT), assisted by local surface plasmons. There are at least three important discoveries in these investigations: 1) in the field of surface-enhanced Raman scattering (SERS) the widely accepted misinterpretation (since 1994) that the chemical mechanism resulting in three additional Raman peaks of PATP in Ag or Au solutions has been corrected with a new mechanism; 2) it is confirmed that SERS is not always a noninvasive technique, and under certain conditions cannot always obtain the vibrational fingerprint information of the original surface species; 3) a novel method to synthesize new molecules, induced by local surface plasmons or plasmon waveguides on the nanoscale, has been found. This Review considers recent novel applications of plasmonics to chemical reactions, especially to plasmon-driven surface-catalyzed reactions.
Original languageEnglish
Pages (from-to)2777-2786
JournalSmall
Volume8
Issue number18
DOIs
Publication statusPublished - 2012

Subject classification (UKÄ)

  • Nano Technology

Free keywords

  • plasmonics
  • surface-catalyzed reactions
  • local surface plasmons
  • propagating surface plasmons
  • "hot" electrons

Fingerprint

Dive into the research topics of 'A Novel Application of Plasmonics: Plasmon-Driven Surface-Catalyzed Reactions'. Together they form a unique fingerprint.

Cite this