TY - JOUR
T1 - A piglet with surgically induced exocrine pancreatic insufficiency as an animal model of newborns to study fat digestion.
AU - Goncharova, Katerina
AU - Pierzynowski, Stefan
AU - Grujic, Danica
AU - Kirko, Siarhei
AU - Szwiec, Katarzyna
AU - Wang, Jing
AU - Kovalenko, Tetiana
AU - Osadchenko, Iryna
AU - Ushakova, Galyna
AU - Shmigel, Halyna
AU - Fedkiv, Olexandr
AU - Majda, Blanka
AU - Prykhodko, Olena
PY - 2014
Y1 - 2014
N2 - The maldigestion and malabsorption of fat in infants fed milk formula results due to the minimal production of pancreatic lipase. Thus, to investigate lipid digestion and absorption and mimic the situation in newborns, a young porcine exocrine pancreatic insufficient (EPI) model was adapted and validated in the present study. A total of thirteen EPI pigs, aged 8 weeks old, were randomised into three groups and fed either a milk-based formula or a milk-based formula supplemented with either bacterial or fungal lipase. Digestion and absorption of fat was directly correlated with the addition of lipases as demonstrated by a 30 % increase in the coefficient of fat absorption. In comparison to the control group, a 40 and 25 % reduction in total fat content and 26 and 45 % reduction in n-3 and n-6 fatty acid (FA) content in the stool was observed for lipases 1 and 2, respectively. Improved fat absorption was reflected in the blood levels of lipid parameters. During the experiment, only a very slight gain in body weight was observed in EPI piglets, which can be explained by the absence of pancreatic protease and amylase in the gastrointestinal tract. This is similar to newborn babies that have reduced physiological function of exocrine pancreas. In conclusion, we postulate that the EPI pig model fed with infant formula mimics the growth and lipid digestion and absorption in human neonates and can be used to elucidate further importance of fat and FA in the development and growth of newborns, as well as for testing novel formula compositions.
AB - The maldigestion and malabsorption of fat in infants fed milk formula results due to the minimal production of pancreatic lipase. Thus, to investigate lipid digestion and absorption and mimic the situation in newborns, a young porcine exocrine pancreatic insufficient (EPI) model was adapted and validated in the present study. A total of thirteen EPI pigs, aged 8 weeks old, were randomised into three groups and fed either a milk-based formula or a milk-based formula supplemented with either bacterial or fungal lipase. Digestion and absorption of fat was directly correlated with the addition of lipases as demonstrated by a 30 % increase in the coefficient of fat absorption. In comparison to the control group, a 40 and 25 % reduction in total fat content and 26 and 45 % reduction in n-3 and n-6 fatty acid (FA) content in the stool was observed for lipases 1 and 2, respectively. Improved fat absorption was reflected in the blood levels of lipid parameters. During the experiment, only a very slight gain in body weight was observed in EPI piglets, which can be explained by the absence of pancreatic protease and amylase in the gastrointestinal tract. This is similar to newborn babies that have reduced physiological function of exocrine pancreas. In conclusion, we postulate that the EPI pig model fed with infant formula mimics the growth and lipid digestion and absorption in human neonates and can be used to elucidate further importance of fat and FA in the development and growth of newborns, as well as for testing novel formula compositions.
U2 - 10.1017/S0007114514003286
DO - 10.1017/S0007114514003286
M3 - Article
C2 - 25348808
SN - 1475-2662
VL - 112
SP - 2060
EP - 2067
JO - British Journal of Nutrition
JF - British Journal of Nutrition
IS - 12
ER -