TY - JOUR
T1 - A plasma protein biomarker strategy for detection of small intestinal neuroendocrine tumors
AU - Kjellman, Magnus
AU - Knigge, Ulrich
AU - Welin, Staffan
AU - Thiis-Evensen, Espen
AU - Gronbæk, Henning
AU - Schalin-Jäntti, Camilla
AU - Sorbye, Halfdan
AU - Joergensen, Maiken Thyregod
AU - Johanson, Viktor
AU - Metso, Saara
AU - Waldum, Helge
AU - Søreide, Jon Arne
AU - Ebeling, Tapani
AU - Lindberg, Fredrik
AU - Landerholm, Kalle
AU - Wallin, Goran
AU - Salem, Farhad
AU - Schneider, Maria Del Pilar
AU - Belusa, Roger
N1 - © 2020 S. Karger AG, Basel.
PY - 2020/7/28
Y1 - 2020/7/28
N2 - BACKGROUND: Small intestinal neuroendocrine tumors (SI-NETs) are difficult to diagnose in the early stage of disease. Current blood biomarkers such as chromogranin A (CgA) and 5-hydroxyindolacetic acid (5-HIAA) have low sensitivity and specificity. This is a first pre-planned interim analysis (NORDIC non-interventional, exploratory, EXPLAIN study (NCT02630654)). Its objective is to investigate if a plasma protein multi-biomarker strategy can improve diagnostic accuracy in SI-NETs.METHODS: At time of diagnosis, prior any disease specific treatment was initiated, blood was collected from patients with advanced SI-NETs and 92 putative cancer-related plasma proteins from 135 patients were analyzed and compared with the results of age and gender matched controls (n=143), using multiplex proximity extension assay and machine learning techniques.RESULTS: Using a random forest model including 12 top ranked plasma proteins in patients with SI-NETs, the multi-biomarker strategy showed sensitivity (SEN) and specificity (SPE) of 89% and 91%, respectively, with negative predictive value (NPV) and positive predictive value (PPV) of 90% and 91%, respectively, to identify patients with regional or metastatic disease with an area under the receiver operator characteristic curve (AUROC) of 99%. In thirty patients with normal CgA concentrations the model provided diagnostic SPE of 98%, a SEN of 56%, and NPV 90%, PPV of 90%, and AUROC 97%, regardless of proton pump inhibitor intake.CONCLUSION: This interim analysis demonstrate that a multi-biomarker/machine learning strategy improve diagnostic accuracy of patients with SI-NET at the time of diagnosis, especially in patients with normal CgA levels. The results indicate that this multi-biomarker strategy can be useful for early detection of SI-NETs at presentation and conceivably detect recurrence after radical primary resection.
AB - BACKGROUND: Small intestinal neuroendocrine tumors (SI-NETs) are difficult to diagnose in the early stage of disease. Current blood biomarkers such as chromogranin A (CgA) and 5-hydroxyindolacetic acid (5-HIAA) have low sensitivity and specificity. This is a first pre-planned interim analysis (NORDIC non-interventional, exploratory, EXPLAIN study (NCT02630654)). Its objective is to investigate if a plasma protein multi-biomarker strategy can improve diagnostic accuracy in SI-NETs.METHODS: At time of diagnosis, prior any disease specific treatment was initiated, blood was collected from patients with advanced SI-NETs and 92 putative cancer-related plasma proteins from 135 patients were analyzed and compared with the results of age and gender matched controls (n=143), using multiplex proximity extension assay and machine learning techniques.RESULTS: Using a random forest model including 12 top ranked plasma proteins in patients with SI-NETs, the multi-biomarker strategy showed sensitivity (SEN) and specificity (SPE) of 89% and 91%, respectively, with negative predictive value (NPV) and positive predictive value (PPV) of 90% and 91%, respectively, to identify patients with regional or metastatic disease with an area under the receiver operator characteristic curve (AUROC) of 99%. In thirty patients with normal CgA concentrations the model provided diagnostic SPE of 98%, a SEN of 56%, and NPV 90%, PPV of 90%, and AUROC 97%, regardless of proton pump inhibitor intake.CONCLUSION: This interim analysis demonstrate that a multi-biomarker/machine learning strategy improve diagnostic accuracy of patients with SI-NET at the time of diagnosis, especially in patients with normal CgA levels. The results indicate that this multi-biomarker strategy can be useful for early detection of SI-NETs at presentation and conceivably detect recurrence after radical primary resection.
U2 - 10.1159/000510483
DO - 10.1159/000510483
M3 - Article
C2 - 32721955
JO - Neuroendocrinology
JF - Neuroendocrinology
SN - 0028-3835
ER -