TY - JOUR
T1 - A simulation model for the design and analysis of district systems with simultaneous heating and cooling demands
AU - Abugabbara, Marwan
AU - Javed, Saqib
AU - Johansson, Dennis
PY - 2022
Y1 - 2022
N2 - Latest generations of district heating and cooling systems are characterised by low network temperature with uninsulated pipes, decentralised heat pumps and chillers to modulate the network temperature, and shared energy flows between interconnected buildings. This paper presents a simulation model for the design and analysis of these systems. The model was developed using the Modelica language and it consists of component models from thermal, fluid, and control domains. The model was employed to simulate and analyse the first existing Swedish district system with simultaneous heating and cooling demands and bidirectional energy flows. The system currently connects nine buildings with total respective annual heating and cooling demands of 4.2 and 1.2 GWh. Simulation results revealed several benefits for integrating district and heat pump technologies, including (1) sharing energy flows between interconnected buildings to cover 40 % of the total carried heat in the network, (2) reducing the total purchased energy by 69 % compared to a traditional four-pipe district system, and (3) reducing distribution losses by 28 % compared to traditional networks with insulated pipes. The model can be utilised to support future research and development of new advanced district heating and cooling systems.
AB - Latest generations of district heating and cooling systems are characterised by low network temperature with uninsulated pipes, decentralised heat pumps and chillers to modulate the network temperature, and shared energy flows between interconnected buildings. This paper presents a simulation model for the design and analysis of these systems. The model was developed using the Modelica language and it consists of component models from thermal, fluid, and control domains. The model was employed to simulate and analyse the first existing Swedish district system with simultaneous heating and cooling demands and bidirectional energy flows. The system currently connects nine buildings with total respective annual heating and cooling demands of 4.2 and 1.2 GWh. Simulation results revealed several benefits for integrating district and heat pump technologies, including (1) sharing energy flows between interconnected buildings to cover 40 % of the total carried heat in the network, (2) reducing the total purchased energy by 69 % compared to a traditional four-pipe district system, and (3) reducing distribution losses by 28 % compared to traditional networks with insulated pipes. The model can be utilised to support future research and development of new advanced district heating and cooling systems.
KW - District heating and cooling
KW - 5GDHC
KW - Decentralised substations
KW - Heat pumps
KW - Modelica
U2 - 10.1016/j.energy.2022.125245
DO - 10.1016/j.energy.2022.125245
M3 - Article
SN - 0360-5442
VL - 261, Part A
JO - Energy
JF - Energy
M1 - 125245
ER -