A variant in the KCNQ1 gene predicts future type 2 diabetes and mediates impaired insulin secretion.

Anna Jonsson, Bo Isomaa, Tiinamaija Tuomi, Jalal Taneera, S Albert Salehi, Peter Nilsson, Leif Groop, Valeriya Lyssenko

Research output: Contribution to journalArticlepeer-review

Abstract

Objective- Two independent genome wide association studies for type 2 diabetes in Japanese have recently identified common variants in the KCNQ1 gene to be strongly associated with type 2 diabetes. Here we studied whether a common variant in KCNQ1 would influence BMI, insulin secretion and action and predict future type 2 diabetes in subjects from Sweden and Finland. Research design and methods- Risk of type 2 diabetes conferred by KCNQ1 rs2237895 was studied in 2,830 type 2 diabetes cases and 3,550 controls from Sweden (Malmö Case-Control) and prospectively in 16,061 individuals from the Malmö Preventive Project (MPP). Association between genotype and insulin secretion/action was assessed cross-sectionally in 3,298 non-diabetic subjects from the PPP-Botnia Study and longitudinally in 2,328 non-diabetic subjects from the Botnia Prospective Study (BPS). KCNQ1 expression (n=18) and glucose-stimulated insulin secretion (n=19) was measured in human islets from non-diabetic cadaver donors. Results. The C-allele of KCNQ1 rs2237895 was associated with increased risk of type 2 diabetes in both the case-control (OR 1.23 [1.12-1.34], p=5.6x10(-6)) and the prospective (OR 1.14 [1.06-1.22], p=4.8x10(-4)) studies. Furthermore, the C-allele was associated with decreased insulin secretion (CIR p=0.013; DI p=0.013) in the PPP-Botnia study and in the BPS at baseline (CIR p=3.6x10(-4); DI p=0.0058) and after follow-up (CIR p=0.0018; DI p=0.0030). C-allele carriers showed reduced glucose-stimulated insulin secretion in human islets (p=2.5x10(-6)). Conclusion. A common variant in the KCNQ1 gene is associated with increased risk of future type 2 diabetes in Scandinavians which partially can be explained by an effect on insulin secretion.
Original languageEnglish
Pages (from-to)2409-2413
JournalDiabetes
Volume58
Issue number10
DOIs
Publication statusPublished - 2009

Subject classification (UKÄ)

  • Endocrinology and Diabetes

Fingerprint

Dive into the research topics of 'A variant in the KCNQ1 gene predicts future type 2 diabetes and mediates impaired insulin secretion.'. Together they form a unique fingerprint.

Cite this