Abstract
The mechanism for the acid-mediated substitution of a phenolic hydroxyl group with a sulfur nucleophile has been investigated by a combination of experimental and theoretical methods. We conclude that the mechanism is distinctively different in nonpolar solvents (i.e., toluene) compared with polar solvents. The cationic mechanism, proposed for the reaction in polar solvents, is not feasible and the reaction instead proceeds through a multistep mechanism in which the acid (pTsOH) mediates the proton shuffling. From DFT calculations, we found a rate-determining transition state with protonation of the hydroxyl group to generate free water and a tight ion pair between a cationic protonated naphthalene species and a tosylate anion. Kinetic experiments support this mechanism and show that, at moderate concentrations, the reaction is first order with respect to 2-naphthol, n-propanethiol, and p-toluenesulfonic acid (pTsOH). Experimentally determined activation parameters are similar to the calculated values (DeltaH(exp) ( not equal)=105+/-9, DeltaH(calcd) ( not equal)=118 kJ mol(-1); DeltaG(exp) ( not equal)=112+/-18, DeltaG(calcd) ( not equal)=142 kJ mol(-1)).
Original language | English |
---|---|
Pages (from-to) | 3954-3960 |
Journal | Chemistry: A European Journal |
Volume | 14 |
Issue number | 13 |
DOIs | |
Publication status | Published - 2008 |
Bibliographical note
The information about affiliations in this record was updated in December 2015.The record was previously connected to the following departments: Organic chemistry (S/LTH) (011001240)
Subject classification (UKÄ)
- Organic Chemistry
Free keywords
- aromatic substitution
- density functional calculations
- kinetics
- nucleophilic substitution
- reaction mechanisms