Activity and migratory flights of individual free-flying songbirds throughout the annual cycle: Method and first case study

Johan Bäckman, Arne Andersson, Thomas Alerstam, Lykke Pedersen, Sissel Sjöberg, Kasper Thorup, Anders P. Tøttrup

    Research output: Contribution to journalArticlepeer-review


    We describe a method and device (< 1.2 g) for recording, processing and storing data about activity and location of individuals of free-living songbirds throughout the annual cycle. Activity level was determined every five minutes from five 100 ms samples of accelerometer data with 5 s between the sampling events. Activity levels were stored on an hourly basis throughout the annual cycle, allowing periods of resting/sleep, continuous flight and intermediate activity (foraging, breeding) to be distinguished. Measurements from a light sensor were stored from preprogrammed key stationary periods during the year to provide control information about geographic location. Successful results, including annual actogram, were obtained for a red-backed shrike Lanius collurio carrying out its annual loop migration between northern Europe and southern Africa. The shrike completed its annual migration by performing > 66 (max. 73) nocturnal migratory flights (29 flights in autumn and > 37, max. 44, in spring) adding up to a total of > 434 (max. 495) flight hours. Migratory flights lasted on average 6.6 h with maximum 15.9 h. These flights were aggregated into eight travel episodes (periods of 4-11 nights when flights took place on the majority of nights). Daytime resting levels were much higher during the winter period compared to breeding and final part of spring migration. Daytime resting showed peaks during days between successive nocturnal flights across Sahara, continental Africa and the Arabian Peninsula, indicating that the bird was mostly sleeping between these long migratory flights. Annual activity and flight data for free-living songbirds will open up many new research possibilities. Main topics that can be addressed are e.g. migratory flight performance (total flight investment, numbers and characteristics of flights), timing of stationary periods, activity patterns (resting/sleep, activity level) in different phases of the annual cycle and variability in the annual activity patterns between and within individuals.

    Original languageEnglish
    Pages (from-to)309-319
    JournalJournal of Avian Biology
    Issue number2
    Early online date2016
    Publication statusPublished - 2017 Feb

    Subject classification (UKÄ)

    • Ecology
    • Zoology

    Cite this