Aerodynamic Analysis of a Humid Air Turbine Expander

Björn Nyberg, Marcus Thern, Magnus Genrup

Research output: Chapter in Book/Report/Conference proceedingPaper in conference proceedingpeer-review

Abstract

This paper presents a reduced-order through-flow expander design for the Humid Air Turbine (HAT) also called the Evaporative Gas Turbine (EvGT). The HAT cycle is an innovative gas turbine cycle that uses humid air to enhance efficiency and power output. This means that there will be a higher water vapour content in the exhaust gases than for a simple cycle. This high water content affects the design of the HAT expander. The design of a wet expander is presented and compared with the results obtained with an expander working under dry exhaust gas conditions. The study was conducted using the reduced-order turbine design tool LUAX-T, developed at Lund University, which is freely available for academic use upon request. LUAX-T allows a flow-path analysis of the expander by specifying important flow-path parameters such as blade root stress and wall-hade angle. The HAT cycle enables cooling flow to the expander under different conditions and design differences for three different options are presented. The first cooling air bleeding point evaluated is the original position, where air is bled from the compressor discharge. The second position is just before the humidification tower, where the air has been cooled down to a low temperature. The third position is just after the humidification tower, where the air has been humidified thus changing its thermodynamic properties. Results in this paper shows that there is a need for an additional turbine stage in a humid expander compared to a dry expander. There are also results indicating that the compressor power can be reduced depending on which cooling strategy is used which can yield an increased total efficiency for a HAT cycle.
Original languageEnglish
Title of host publicationASME Turbo Expo 2012: Turbine Technical Conference and Exposition
PublisherAmerican Society Of Mechanical Engineers (ASME)
Pages217-225
Number of pages9
Volume3
DOIs
Publication statusPublished - 2012
EventASME Turbo Expo 2012: Turbine Technical Conference and Exposition - Copenhagen, Denmark
Duration: 2012 Jun 112012 Jun 15

Publication series

Name
Volume3

Conference

ConferenceASME Turbo Expo 2012: Turbine Technical Conference and Exposition
Country/TerritoryDenmark
CityCopenhagen
Period2012/06/112012/06/15

Subject classification (UKÄ)

  • Energy Engineering

Fingerprint

Dive into the research topics of 'Aerodynamic Analysis of a Humid Air Turbine Expander'. Together they form a unique fingerprint.

Cite this