Aglycone specificity of Thermotoga neapolitana beta-glucosidase 1A modified by mutagenesis, leading to increased catalytic efficiency in quercetin-3-glucoside hydrolysis

Samiullah Khan, Tania Pozzo, Marton Megyeri, Sofia Lindahl, Anders Sundin, Charlotta Turner, Eva Nordberg Karlsson

Research output: Contribution to journalArticlepeer-review

25 Citations (SciVal)

Abstract

Background: The thermostable beta-glucosidase (TnBgl1A) from Thermotoga neapolitana is a promising biocatalyst for hydrolysis of glucosylated flavonoids and can be coupled to extraction methods using pressurized hot water. Hydrolysis has however been shown to be dependent on the position of the glucosylation on the flavonoid, and e. g. quercetin-3-glucoside (Q3) was hydrolysed slowly. A set of mutants of TnBgl1A were thus created to analyse the influence on the kinetic parameters using the model substrate para-nitrophenyl-beta-D-glucopyranoside (pNPGlc), and screened for hydrolysis of Q3. Results: Structural analysis pinpointed an area in the active site pocket with non-conserved residues between specificity groups in glycoside hydrolase family 1 (GH1). Three residues in this area located on beta-strand 5 (F219, N221, and G222) close to sugar binding sub-site +2 were selected for mutagenesis and amplified in a protocol that introduced a few spontaneous mutations. Eight mutants (four triple: F219L/P165L/M278I, N221S/P165L/M278I, G222Q/P165L/M278I, G222Q/V203M/K214R, two double: F219L/K214R, N221S/P342L and two single: G222M and N221S) were produced in E. coli, and purified to apparent homogeneity. Thermostability, measured as T-m by differential scanning calorimetry (101.9 degrees C for wt), was kept in the mutated variants and significant decrease (Delta T of 5 -10 degrees C) was only observed for the triple mutants. The exchanged residue(s) in the respective mutant resulted in variations in K-M and turnover. The K-M-value was only changed in variants mutated at position 221 (N221S) and was in all cases monitored as a 2-3 x increase for pNPGlc, while the K-M decreased a corresponding extent for Q3. Turnover was only significantly changed using pNPGlc, and was decreased 2-3 x in variants mutated at position 222, while the single, double and triple mutated variants carrying a mutation at position 221 (N221S) increased turnover up to 3.5 x compared to the wild type. Modelling showed that the mutation at position 221, may alter the position of N291 resulting in increased hydrogen bonding of Q3 (at a position corresponding to the +1 subsite) which may explain the decrease in K-M for this substrate. Conclusion: These results show that residues at the +2 subsite are interesting targets for mutagenesis and mutations at these positions can directly or indirectly affect both K-M and turnover. An affinity change, leading to a decreased K-M, can be explained by an altered position of N291, while the changes in turnover are more difficult to explain and may be the result of smaller conformational changes in the active site.
Original languageEnglish
JournalBMC Biochemistry
Volume12
DOIs
Publication statusPublished - 2011

Bibliographical note

The information about affiliations in this record was updated in December 2015.
The record was previously connected to the following departments: Organic chemistry (S/LTH) (011001240), Biotechnology (LTH) (011001037)

Subject classification (UKÄ)

  • Biochemistry and Molecular Biology

Fingerprint

Dive into the research topics of 'Aglycone specificity of Thermotoga neapolitana beta-glucosidase 1A modified by mutagenesis, leading to increased catalytic efficiency in quercetin-3-glucoside hydrolysis'. Together they form a unique fingerprint.

Cite this