All-trans retinoic acid-induced expression of bactericidal/permeability-increasing protein (BPI) in human myeloid cells correlates to binding of C/EBP{beta} and C/EBP{varepsilon} to the BPI promoter.

Andreas Lennartsson, Karina Vidovic, Malene Bjerregaard Pass, Jack B Cowland, Urban Gullberg

Research output: Contribution to journalArticlepeer-review

Abstract

Bactericidal/permeability-inereasing protein (BPI) neutralizes the proinflammatory effects of lipopolysaccharide and is of potential clinical use in the treatment of fulminant Gram-negative infections. BPI is a cationic protein with antibacterial activity stored in azurophil (primary) granules of neutrophil granulocytes. However, the absence of BPI in patients with specific granule deficiency indicates a transcriptional control of BPI, which is distinct from that of other azurophil granule proteins. Accordingly, we demonstrate in vivo that the BPI mRNA level peaks, together with mRNA for specific granule proteins, during the myelocytic and metamyelocytic stage of granulocytic maturation. The human promyelocytic cell line NB4 expresses several azurophil granule proteins, but expression of BPI is undetectable. We show that treatment of NB4 cells with all-trans retinoic acid (ATRA) induces BPI expression at mRNA and at protein level. The induction is dependent on de novo protein synthesis, as judged by sensitivity to cycloheximide. Previous investigations have indicated a potential role of CCAAT/enhancer-binding protein (C/EBP) transcription factors in the regulation of BPI expression. Here, we show that induction of NB4 cells with ATRA correlates to direct binding of C/EBP beta and C/EBP epsilon to the proximal BPI promoter, as determined by electrophoretic mobility shift analysis and chromatin immunoprecipitation. The dependency on C/EBP beta and C/EBP epsilon provides an explanation for delayed BPI mRNA expression, as compared with mRNA of other azurophil granule proteins.
Original languageEnglish
Pages (from-to)196-203
JournalJournal of Leukocyte Biology
Volume80
Issue number1
DOIs
Publication statusPublished - 2006

Subject classification (UKÄ)

  • Cell and Molecular Biology

Free keywords

  • azurophil granule protein
  • granulocyte
  • innate immunity
  • transcriptional regulation

Fingerprint

Dive into the research topics of 'All-trans retinoic acid-induced expression of bactericidal/permeability-increasing protein (BPI) in human myeloid cells correlates to binding of C/EBP{beta} and C/EBP{varepsilon} to the BPI promoter.'. Together they form a unique fingerprint.

Cite this