Alpha band oscillations correlate with illusory self-location induced by virtual reality

Bigna Lenggenhager, Pär Halje, Olaf Blanke

Research output: Contribution to journalArticlepeer-review

Abstract

Neuroscience of the self has focused on high-level mechanisms related to language, memory or imagery of the self. However, recent evidence suggests that low-level mechanisms such as multisensory and sensorimotor integration may play a fundamental role in self-related processing. Here we used virtual reality technology and visuo-tactile conflict to study such low-level mechanisms and manipulate where participants experienced their self to be localized (self-location). Frequency analysis and electrical neuroimaging of co-recorded high-resolution electroencephalography revealed body-specific alpha band power modulations in bilateral sensorimotor cortices. Furthermore, alpha power in the medial prefrontal cortex (mPFC) was correlated with the degree of experimentally manipulated self-location. We argue that these alpha oscillations in sensorimotor cortex and mPFC reflect self-location as manipulated through multisensory conflict.

Original languageEnglish
Pages (from-to)1935-1943
Number of pages9
JournalEuropean Journal of Neuroscience
Volume33
Issue number10
DOIs
Publication statusPublished - 2011 May
Externally publishedYes

Subject classification (UKÄ)

  • Neurology

Free keywords

  • Frequency analysis
  • Medial prefrontal cortex
  • Mu-rhythm
  • Multisensory integration
  • Peripersonal space

Fingerprint

Dive into the research topics of 'Alpha band oscillations correlate with illusory self-location induced by virtual reality'. Together they form a unique fingerprint.

Cite this