An anesthetic method compatible with (18)F-FDG-PET studies in mice.

Jonathan Siikanen, Johanna Sjövall, Anders Forslid, Eva Brun, Maria Bjurberg, Johan Wennerberg, Lars Ekblad, Anders Sandell

Research output: Contribution to journalArticlepeer-review

Abstract

The purpose of this study was to establish an experimental setting and an anesthetic method compatible with future sequential studies using (18)F-FDG-PET single scans, i.e. autoradiographic measurements, for the estimation of metabolic rate of glucose (MRglc) in mice. In this study we had no access to a small animal PET scanner and therefore focus was on the anesthetic setting and optimization of the input function as a preparation for the future tumor metabolic studies. Initially, four combinations of intraperitoneal (ip) anesthesia were tested on tumor bearing mice. Fentanyl-fluanisone plus diazepam yielded low and stable blood glucose levels and kept the animals sedated for approximately 2 h. The anesthesia was also tested in a longitudinal (18)F-FDG study, where tumor bearing mice were anesthetized, injected with (18)F-FDG, and sampled for blood, before, one day after, and 8 days after treatment with cisplatin. The animals were in good condition during the entire study period. To validate the method, average MRglc of whole brain and cerebellum in mice were calculated and compared with the literature. The average MRglc in the whole brain and cerebellum were 46.2±4.4 and 39.0±3.1 µmol 100g(-1) min(-1). In the present study, we have shown that an ip anesthesia with a combination of fentanyl-fluanisone and diazepam is feasible and provides stable and low blood glucose levels after a fasting period of 4 h in experiments in nude mice with xenografted human tumors. We have also verified that (18)F-FDG, intraperitoneally administrated, results in an expected plasma activity uptake and clearance. The method doesn't alter the uptake in brain which is an indirect indication that the anesthesia doesn't alter the uptake in other organs. In combination with meticulous animal handling this set-up is reliable and future sequential tumor studies of early metabolic effects with calculation of MRglc following cytotoxic therapy are made possible.
Original languageEnglish
Pages (from-to)270-277
JournalAmerican journal of nuclear medicine and molecular imaging
Volume5
Issue number3
Publication statusPublished - 2015

Subject classification (UKÄ)

  • Radiology, Nuclear Medicine and Medical Imaging

Fingerprint

Dive into the research topics of 'An anesthetic method compatible with (18)F-FDG-PET studies in mice.'. Together they form a unique fingerprint.

Cite this