Abstract
The stereoselective reduction of the bicyclic diketone bicyclo[2.2.2]octane-2,6-dione, to the ketoalcohol (1R,4S,6S)-6-hydroxybicyclo[2.2.2]octane-2-one, was used as a model reduction to optimize parameters involved in NADPH-dependent reductions in Saccharomyces cerevisiae with glucose as co-substrate. The co-substrate yield (ketoalcohol formed/glucose consumed) was affected by the initial concentration of bicyclic diketone, the ratio of yeast to glucose, the medium composition, and the pH. The reduction of 5 g l(-1) bicyclic diketone was completed in less than 20 h in complex medium (pH 5.5) under oxygen limitation with an initial concentration of 200 g l(-1) glucose and 5 g l(-1) yeast. The co-substrate yield was further enhanced by genetically engineered strains with reduced phosphoglucose isomerase activity and with the gene encoding alcohol dehydrogenase deleted. Co-substrate yields were increased 2.3-fold and 2.4-fold, respectively, in these strains.
Original language | English |
---|---|
Pages (from-to) | 641-648 |
Journal | Applied Microbiology and Biotechnology |
Volume | 59 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2002 |
Bibliographical note
The information about affiliations in this record was updated in December 2015.The record was previously connected to the following departments: Organic chemistry (S/LTH) (011001240), Applied Microbiology (LTH) (011001021)
Subject classification (UKÄ)
- Organic Chemistry
- Industrial Biotechnology