Abstract
Four -1,4-glucanases (cellulases) of the cellulolytic bacterium Cellulomonas fimi were purified from Escherichia coli cells transformed with recombinant plasmids. Previous analyses using soluble substrates had suggested that CenA and CenC were endoglucanases while CbhA and CbhB resembled the exo-acting cellobiohydrolases produced by cellulolytic fungi. Analysis of molecular size distributions during cellulose hydrolysis by the individual enzymes confirmed these preliminary findings and provided further evidence that endoglucanase CenC has a more processive hydrolytic activity than CenA. The significant differences between the size distributions obtained during hydrolysis of bacterial microcrystalline cellulose and acid-swollen cellulose can be explained in terms of the accessibility of -1,4-glucan chains to enzyme attack. Endoglucanases and cellobiohydrolases were much more easily distinguished when the acid-swollen substrate was used.
Original language | English |
---|---|
Pages (from-to) | 2374-2379 |
Journal | Applied and Environmental Microbiology |
Volume | 64 |
Issue number | 7 |
Publication status | Published - 1998 |
Subject classification (UKÄ)
- Biological Sciences